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Abstract. Operational risk is one of the core risks of every insurance company under the 

Solvency II framework and can be defined as the financial losses occurred due to 

incorrectly defined systems or processes; failures in IT system, human mistakes or other 

external processes. The research is performed in order to assess the capital to cover 

possible losses due to the occurrence of the operational risk sub-risks and nature of an 

operational risk. We have shown that operational risks can be modelled by skew t-copula 

and estimated tail dependence in each situation for modelling distributions with heavier 

tail area. The model is prepared on a non-life insurance companyôs example and is based 

on the recorded data from loss database that encompasses historical information of five 

main operational sub-risks: legal, informational, organizational, human resources and 

expense risk.  
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1 Introduction  
 

The fact is that the requirements of the Solvency II Directive are not just about 

capital of an insurance company but about risk assessment through the 

implementation and enhancement of risk measurement and risk management.  

Also, the Solvency II regime requires higher capital compared with the 

requirements of the Solvency I Directive that should ensure the solvency and 

financial stability of each insurance company. Moreover, the new requirements 

of the Solvency II Directive, which will come in force from 1st January 2016, 

set a lot of challenges to every insurance company in the European Union 

member states in relation to the establishment of more sensitive and 

sophisticated risk coverage in order to ensure solvency and the safety of 

policyholders. Based on the requirements of the Solvency II Directive, the 



insurance companies should hold the appropriate amount of capital that could 

ensure safety of policyholders and beneficiaries. The target of this research is to 

study the improvement possibilities of the operational risk measurement under 

the Solvency II regime. The object of this paper is measurement of operational 

risk. Operational risk is the change in value of capital needed caused by the fact 

that actual losses, incurred from inadequate or failed internal processes, people 

and systems, or from external events, including legal risk but excluding strategic 

and reputational risks Since 2001, when document about operational risks 

Sound Practices for the Management and Supervision of Operational Risk was 

published by Basel Committee on  Banking Supervision [2] operational risk has 

been in the centre of interest of mathematicians. Because needed capital for 

different risks in banks is estimated by risk measure VaR (what is 99.9% in 

banks and 99.5% in insurance), it seems natural to use the same measure for 

operational risk too. But the problem is that VaR measure is not a coherent risk 

measure: 
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risks. Therefore, different bounds for VaR of a portfolio of risks can be found in 

Chavez-Demoulin et al. [5] or improved bounds in Embrechts and Puccetti [10]. 

Further different copulas (Gumbel, Gaussian) were used for analysis of risk 

across a non-symmetric matrix of loss data in Embrechts and Puccetti [11]. 

Extreme value theory was used to evaluate operational risks in El-Gamal et al. 

[9], Chavez-Demoulin et al. [6]. Our aim in this paper is to show that skew t-

copula can be used to estimate VaR of portfolio of different operational risks 

including confidence intervals for such as risk measure like VaR and finally 

calculate estimates of tail dependence for risks and for portfolio. We have 

worked out our methodology using data basis of recorded operational risks 

during one year in one insurance company of Latvia. 

 

2 Construction of skew t-copula 
 

We are going to model the joint distribution of different risks via skew t-copula 

to show advantage of the last one. Usually operational risk data have univariate 

marginals with skewed distributions of different types. To construct a 

multivariate model with certain dependence structure and different marginals 

copula theory has been the only tool at hand so far. But most of the suggested 

copulas are symmetric. To join skewed marginals into a multivariate distribution 

it seems more natural to use a skewed multivariate distribution. There exist 

many different modifications and extensions of the standard multivariate t-

distribution. An overview of these distributions is given in Kotz and Nadarajah 

[15], Ch. 5. We have constructed skew t-copula based on the multivariate t-

distribution and skew t-distribution introduced in Azzalini and Capitanio [1] and 

corresponding copulas constructed using these distributions.  Notation ,pt n is 

used when we talk about density of thep -variate t -distribution with n degrees 



of freedom and notation ,pg n is used for the density of the p -variate skew t -

distribution with n degrees of freedom. Similar notations are used for the 

distribution functions.  

DEFINITION 1. A p-dimensional random vector  1( ,..., )TpX X=X  is said to 

have p-variate t-distribution with n degrees of freedom, mean vector ɛ and 

positive definite matrix Ɇ, if its density function is given by (Azzalini and 

Capitanio [1]): 
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Next we give the definition of the p-dimensional skew ,pt n-distribution 

(Azzalini and Capitanio [1]). 

DEFINITION 2. A random p-vector 1( ,..., )TpX X=X  has p-variate skew t -

distribution with parameters ɛ, Ŭ  and Ɇ , if its density function is of the form 
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where Q  denotes the quadratic form 

1( ) ( )TQ -= - -x ɛ Ɇ x ɛ 

and W  is the p p³  diagonal matrix ( )ij ijd s=W , , 1,...,i j p= , where ijd  is 

the Kronecker delta. 1, ( )pTn+ Ö denotes the distribution function of the central 

univariate t - distribution with pn+ degrees of freedom. 

The skew t-copula is introduced in Kollo and Pettere [13]. As marginal 

distributions of the business lines are skewed, a skewed copula will be a natural 

model to give a good fit with the data.  

DEFINITION 3. A copula ,pC n is called skew ,pt n-copula with 

parametersɛ,Ɇ, Ŭ, if 
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where 1
, ( ; , , )p i i ii iG un m s a- , {1,2,..., }i pÍ  denotes the inverse of the univariate 

skew ,pt n-distribution function and ,pG nis the distribution function of p-

variate skew ,pt n-distribution with density (2). 

The corresponding copula density function is 
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 is as in Definition 3. 

We are going to apply the skew t-copula in a special case when the shift 

parameter =ɛ 0. To find a model for our data we have to estimate the 

parameters Ɇ and Ŭ. For that, we shall apply the method of moments. 

Parameters Ɇ and Ŭ are estimated from the first two sample moments (Kollo 

and Pettere [13]). Let X  and XS  denote the sample mean and the sample 

covariance matrix, respectively. Then the estimates are 
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with Ĕ Ĕ( )ij ijd s=W , , 1,...,i j p= , where ijd  is the Kronecker delta and 
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We have to assume in formula (4) that 2.n>   

Variable n is possible to estimate between every two variables using formula 

from Kotz and Nadarajah [15]: 
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where 4( )im X  denotes the sample estimate of the fourth order moments of 

random variable iX  , {1,2}iÍ . The estimates are closest integers to the 

solution of equation (6) and can be found for 4n> . 

 

3 Tail dependence for skew tïdistribution  
 

Let us assume that 
1 2( , )X X  is a two-dimensional vector with univariate 

marginal distributions functions 
1( )F x  and 

2( )F x . Then the upper tail 

dependence coefficient is  

1
lim ( )U U
u

ul l


=  

where 1 2( ) ( ( ) / ( ) )U u P F x u F x ul = > >.  

Similarly is defined the lower tail dependence coefficient 

1
lim ( )L L
u

ul l


=  

where 1 2( ) ( ( ) / ( ) )L u P F x u F x ul = < <.  

For symmetric elliptical distributions
 U Ll l l= = , for normal distributions  

equals zero. For two-dimensional t-distribution with  degrees of freedom 

                                                                            (7) 

where  is the distribution function of standard t-distribution with  

degrees of freedom (see Demarta and McNeil [7])  

It is proved in Bortot [3] that it is sufficient to study the upper tail dependence 

as the lower tail dependence coefficient is determined by the upper one. To 

follow Bortot [3] let us denote by 
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