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Abstract. The main data source, on which premium pricing strategy is usually based, is company’s own historical data on policies 
and claims, sometimes supplemented with data from external sources. Nevertheless, a firm which underwrites general insurance 

displays many of the features of a typical production firm, since it receives premium revenues to cover current cost of underwrit-

ing. Moreover, one needs to take also into consideration that individuals and corporations affront insurable and uninsurable risks in 

the non-life insurance market. On the other hand, it is commonly known that many lines of general insurance are highly competi-

tive and as a result, in practice, the loading depends critically on the price that other insurers charge for comparable policies. Thus, 

the main idea of Pantelous and Passalidou [23, 24] papers was that company’s premium is also affected by market’s competition. 

Under the circumstances, the volume of business is related to the past year experience, the company’s premium and reputation, the 

average premium of the market and a stochastic disturbance. Finally, using a linear discounted function for the company’s wealth, 
an optimal premium strategy which maximizes its present value is derived.  

Now, in the present paper, in order to examine the problem more effectively, a maximizing quadratic performance criterion con-

cerning the utility function is suggested, considering a stochastic dynamic wealth function with a linear noise sequence, provided 

only that the mean value and the covariance matrix of the random vector is zero and a quadratic function of the control variables, 
respectively. In this covariance matrix, new parameters enrich the previous model, such as the income insurance elasticity of de-

mand, number of consumers, inflation, market’s financial risk and consumers’ future expectations in addition to company’s reputa-

tion. The quadratic utility function concerns the present value of wealth and also the marginal utility of insurance contracts. Finally, 

the derived optimal premium depends, among other factors, on company’s wealth. 
Keywords: Optimal Premium Strategies; Competitive Markets; Volume of Business; Quadratic performance criterion; Discrete 

time 

 

1  Introduction 

Non-life insurance pricing is the procedure of setting the price of a general insurance policy, taking into considera-

tion various properties of the insured object and the policy holder. The main data source, on which pricing strategy is 

based, is the insurance company’s own historical data on policies and claims, sometimes supplemented with data from 

external sources. Nevertheless, a firm which underwrites general insurance displays many of the features of a typical 

production firm, since it receives current premium revenues to cover the cost of underwriting. Needless to say that 

every company’s objective is to maximize its wealth. Consequently, the main challenge that a company faces is to set 

a premium that comes up from a wealth maximization procedure which includes many different financial parameters. 

In actuarial science, a premium principle connects the cost of a general insurance policy to the moments of the cor-

responding claim arrival and severity distributions. Insurers add a loading to this cost price in order to make a profit 

and cover their expenses. After this consideration, two main questions are raised; “How an optimal premium can be 

calculated in order to maximize company’s wealth?” and “How it is possible to find a premium strategy that takes 

into consideration all the different economic parameters that affect company’s wealth except from the cost of a gen-

eral insurance policy?” 

The usual approach concerning non-life insurance pricing is the use of generalized linear models (GLM); a num-

ber of key ratios are dependent on a set of rating factors according to Ohlsson and Johansson [22]. For personal lines 

(designed to be sold in large quantities) the key ratios are often claim frequency and severity (cost per claim), while 

for commercial lines (designed for relatively small legal entities) the loss ratio may be considered (claims costs per 

earned premium). Rating factors are grouped into classes (i.e. factor variables) and may include information about 

policyholder, the insured risk as well as geographic and demographic information. Generalized linear models (GLMs) 

consist of a rich class of statistical methods, which generalizes the ordinary linear models in two directions: 

• Probability distribution: Instead of assuming the normal distribution, GLMs work with a general class of distribu-

tions, which contains a number of discrete and continuous distributions as special cases, in particular the normal, 

Poisson and gamma distributions. 

• Model for the mean: In linear models the mean is a linear function of the covariates x. In GLMs, some monotone 

transformation of the mean is a linear function of the x’s, with the linear and multiplicative models as special cases. 

Nevertheless, it is essential to notice that individuals and corporations affront insurable and uninsurable risks in 

non-life insurance market. Insurable risks includes incidents such automobile damage and building fire while uninsur-

able risks include the volatility of share returns, variations in income and changes in economic conditions according to 
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Huang et al.[14]. As pointed out by Schlesinger and Doherty [25], uninsurable background risk might arise due to any 

number of the following reasons: social risks, general market risk, informational asymmetries, transaction costs of 

insurance, search costs for insurance, nonmarketable assets and risk versus uncertainty. Lee et al. [18, 19] study the 

impact of country risks, including political, financial and economic risks, on the income elasticity of insurance de-

mand and concluded that there is a significant effect between them. In other words, these risks affect the company’s 

premium pricing strategy through the income elasticity of insurance demand. 

On the other hand, it is commonly known that many lines of insurance are highly competitive and as a result in 

practice the loading depends critically on the price that other insurers charge for comparable policies. In literature, the 

first papers concerning competition in insurance markets were written by Taylor [26, 27], who explores successfully 

the relation between the market’s behaviour and the optimal response of an individual insurer, whose objective is to 

maximize the expected present value of the wealth arising over a pre-defined finite time horizon. He also assumes that 

the insurance products display a positive price-elasticity of demand. Thus, if the market as a whole begins underwrit-

ing at a loss, any attempt by a particular insurer to maintain profitability will result in a reduction of its volume of 

business. Therefore, he states that the optimal response depends upon various factors including:  

         (a) The predicted time which will elapse before a return of market rates into profitability,  

         (b) The price elasticity of demand for the insurance product under consideration, and 

         (c) The rate of return required on the capital supporting the insurance operation. 

According to Taylor’s results the optimal strategies do not follow what someone might forecast. For instance, it is 

not the case that profitability is best served by following the market during a period of premium rate depression. In 

particular, the optimal strategy may well involve underwriting for important profit margins at times when the average 

market premium rate is well short of breaking even. 

A paper that extends significantly Taylor’s ideas [26, 27] into a continuous-time stochastic framework is that of 

Emms et al. [10], since they use a stochastic process for modelling the market average premium and in particular a 

geometric Brownian motion. Emms et al. [10] handled the problem as a stochastic optimal control problem assuming 

that the premium policy is a control function and the utility function takes the linear form ( , ) tU w t e w , where  is 

the inter-temporal discount rate. Finally they determine a linear maximization problem   
0

max ,
T

p
U w t t dtE  over a 

choice of strategies p and a finite time horizon T . Emms et al. [10] studies two premium strategies. In the first one the 

premium is proportional to the average markets premium and in the second, the premium policy p is a function of the 

break even premium π and the difference of the market’s average premium p  and the break even premium.  

In this approach, the optimal strategies depend on (a) the ratio of initial market average premium to break-even 

premium, (b) the measure of the inverse elasticity of the demand function, and (c) the non-dimensional drift of the 

market average premium. 

In Pantelous and Passalidou [23] paper, a stochastic demand function for the volume of business of an insurance 

company is formulated into a discrete-time framework extending further Taylor’s ideas [26, 27]. Additionally, using 

the same linear discounted function for the wealth process of the company as in Emms et al. [9, 10], an analytical, 

endogenous formula for the optimal premium strategy of the insurance company is derived. Similar with Emms et al. 

[9, 10], a maximization problem for the wealth process of a company is set up, which is solved using stochastic dy-

namic programming into a discrete-time framework. Consequently, the optimal controller (i.e. the premium) is de-

fined incorporating different parameters of the market into a competitive environment with the same characteristics as 

in Taylor [26, 27] and Emms et al. [9, 10] papers. In more details, the volume of business is equal to 1
k

k k
k

p
V V

p  

k  where kp denotes the premium charged by the insurer and kp  is the average premium of the market in year 

[ , 1)k k  ; 1kV   is the volume of exposure underwritten by the insurer in year 1k  , and k  denotes the set of all other 

stochastic variables (which are assumed to be independently distributed in time and Gaussian) and it is also consid-

ered to be relevant to the demand function in year [ , 1)k k  , such as inflation, interest rate, exchange rate, marketing 

etc. Finally, the optimal strategy process 
*

kp  is derived to be:  

 
 

1/2

*

1

1
k k k k

k

p V E p
E






 
   
 

for 0,1,......, 1k T  . 

More recently, in Pantelous and Passalidou [24] paper, the volume of business is formed to be a general stochastic 

demand function extending further their previous suggestions making the model more realistic. Thus, the company’s 

reputation is also considered to the formulation of the volume of business. According to Cretu and Brodie [6], compa-

ny’s reputation (or corporate reputation) has a strong influence on buying decisions or in other words, on the demand 

of the company’s product. Thus, a general functional equation for the volume of business is proposed, which is related 

to the past years’ experience, the average premium of the market, the company's premium, its reputation, and a sto-

chastic disturbance. Then, using a linear discounted function for the company's wealth, an optimal premium strategy is 

found which maximizes the present value of a wealth function. Analytical solutions of some special and common cas-

es are presented where the optimal premium depends endogenously on the dynamics of the insurance market.  
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In the last two mentioned above papers, the stochastic disturbance of the volume of business function denotes the 

set of all other stochastic variables (which are assumed to be independently distributed in time and Gaussian) that are 

considered to be relevant to the demand function. Analytically, this stochastic parameter consists of many micro-

macro factors that affect company’s volume of business and consequently the optimal premium strategy. 
In order to examine the problem more effectively, a maximizing quadratic performance criterion concerning the 

utility function is suggested subject to a stochastic wealth function. The utility function concerns the present value of 

wealth plus the marginal utility of the insurance contracts. Following close Pantelous and Passalidou [23, 24], the vol-

ume of business in year k is proportional to the ratio of the markets average premium, to the company’s premium in 

year k times, the company’s volume of business of the preceding year in addition to a function of the form 

,( , )k k k kf w p  where ( , ) ( , , ) ( , , ) .k k k k k k k k k k kF w p f w p f w p   E  The function ( , )k k kF w p  consists of micro-macro 

parameters which for the very first time, according to the authors’ knowledge, are introduced in a competitive insur-

ance pricing model, such as the income insurance elasticity of demand, numbers of consumers, inflation, financial risk 

of the market and future expectations of consumers in addition to fame of company. Since it will not be easy or accu-

rate to define completely the function
,( , )k k k kf w p  because of its stochastic property, a rational approach is formulat-

ing the function ( , ).k k kF w p  
To conclude, the contribution of this paper can be summarized on the following key points. Firstly, the optimal 

premium strategy is determined for a quadratic utility function. In this approach expect from the present value of 

company’s wealth, the marginal utility-premium ratio is also included. Second, the stochastic parameter that affects 

company’s volume of business is analysed into different micro-macro parameters which directly or indirectly affect 

the optimal premium. Finally, since the maximized criterion is quadratic the optimal premium found depends among 

other factors, on company’s wealth. 
The paper is organized as follows: In section 2, a discrete-time model for the insurance market is constructed. We 

discuss the utility and wealth function and model’s main assumptions as long as their economic explanation. In the 

next section the calculation of the optimal premium is presented which concludes with tow Theorems. Section 4 con-

sists of the discussion of the main results. Finally, section 5 presents a simple application of the model to complete the 

study. 
 

2        Model Formulation 
  

2.1     Basic Notation 

 
In this part of the paper, following closely Taylor [26, 27], Emms et al. [9, 11], and Pantelous and Passalidou [23, 

24] research work, the following notation is needed for what it follows. 

:kV  denotes the volume of business (or exposure) underwritten by the insurer in year [ , 1)k k  . This volume can be 

measured in any meaningful unit, e.g. number of contracts, total man-hours at risk (for workers' compensation in-

surance). In our paper, we consider the number of contracts as the volume of exposure.  

:k  denotes the break-even premium in year [ , 1)k k  , i.e. risk premium plus expenses per unit exposure. 

:kp  denotes the premium charged by the insurer in year [ , 1)k k  .  

:kp
 
denotes the “average” premium charged by the market in year [ , 1)k k  . 

k : denotes the set of all other stochastic variables (which are assumed to be independently distributed in time and 

follow a Gaussian distribution) and it is considered to be relevant to the demand function in year [ , 1)k k  . 

:Q  denotes the present day value factor of a wealth asset in year [ , 1)k k  . 

:R  denotes the marginal utility of insurance contracts in year [ , 1)k k  . 

:i

kB denotes the income elasticity of demand concerning insurance contracts in year [ , 1)k k   and time period 

0,.....,i n  and  1 / 2n n n     . 

:i

kC  denotes the inflation rate in year [ , 1)k k  and time period 0,.....,i n  and  1 / 2n n n     . 

:i

k  denotes financial risk of the market in year [ , 1)k k   and time period 0,.....,i n  and  1 / 2n n n     . 

:i

kM  denotes the number of consumers in year [ , 1)k k   and time period 0,.....,i n  and  1 / 2n n n     . 
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:i

kg  denotes the reputation’s impact to the volume of business in year [ , 1)k k   and time period 0,.....,i n  and 

 1 / 2n n n     . 

:i

kh  denotes the future expectations of consumers (concerning the premium) and time period 0,.....,i n  and 

 1 / 2n n n     . 

 

2.2  Utility and wealth function 

Utility function has a crucial role concerning company’s optimal premium pricing. Borch [4, 5] showed how utili-

ty theory could be used to formulate and solve some problems that are relevant to insurance. Following Von Neuman 

and Morgenstern [28], who argued that the existence of a utility function could be derived from a set of axioms gov-

erning a preference ordering, the suggested wealth utility function has the following two basic properties following 

Gerber and Pafumi [11]: 

(1) ( )kU W is an increasing function of wealth ,kW  

(2) ( )kU W is a concave function of kW or in other words it is a risk-averse utility function. 

The first property deals with the required evidence that more wealth is better, which is a reasonable target of every 

company. Several reasons are given for the second property. The most obvious one is that an insurance company pre-

fers to use a risk averse (or risk avoiding) utility function to equalize other potential risks (financial etc.) that it may 

confront. One way to justify this, is to require the marginal utility ( )kU W  to be a decreasing function of wealth kW , or 

equivalently, that the gain of utility resulting from a monetary gain of g , ( ) ( )k kU W g U W   to be a decreasing func-

tion of wealth .kW  

The utility function which is proposed is equal to the sum of the present value of company’s wealth plus the mar-

ginal utility-premium ratio, from the starting year which is equal to zero till year 1N   times 1
2

 plus the present val-

ue of the company’s wealth in year N  times 1
2

. 

The marginal utility-premium ratio indicates the fulfilment derived from the last money spent on the insurance. A 

client (insured) maximizes his utility function by equating the marginal utility-price ratio for each insurance contract 

purchased. A generic marginal utility-premium ratio is equal to the marginal utility of general insurance divided to the 

premium paid. Following closely the previous papers, in this paper, we also denote the wealth process kw  as the in-

surer’s capital at time [ , 1)k k  , so we obtain    

                                                                         1 ( )k k k k k kw a w p V     ,                                                             (2.1) 

where  0,1ka   denotes the excess return on capital (i.e. return on capital required by the shareholders of the insurer 

whose strategy is under consideration). Thus, k ka w  is the cost of holding kw  in the time interval [ , 1)k k  . Moreo-

ver, the basic assumption of our previous papers is maintained so the volume of business in year k is assumed to be 

proportional to the ratio of the markets average premium to the company’s premium in year k times the company’s 

volume of business in the preceding year. Furthermore, the volume of business is stochastic due to the stochastic pa-

rameter k  
which is assumed to be independently distributed in time and Gaussian and indirectly affects the premium 

and finally the company’s wealth. This parameter’s affection will be explained analytically in Assumption 2 (see next 

sub-section). 

Consequently, we consider the problem of maximizing with respect to  1k kp p the performance criterion 

                                              
0

1

/
0

1 1

2 2

N

w k k k k k k N N N
k

w Q w p R p w Q w


  



 
  

 
E .                                              

(2.2)  

Subject to the stochastic dynamic system of the wealth function  

                                                                  1 ,( , )k k k k k k k k k kw a w m Z p f w p       ,                                                

(2.3)
 

where 1 1,  ,k k k k k k km V p Z V p     ,  ,  ,  : ,n m q n m q n

k k k kw p f      and ,  ,  ,  ,  k N k k kQ Q R a Z are 

matrices of appropriate dimensions and .n

km   Since market’s average premium is stochastic the elements of factor 

kZ  are stochastic parameters and km is also stochastic.  

778



5 

 

In other words          1 1,  .k k k k k k k k km V p Z V p m      E E E E E
 

2.3   Assumptions 

The following assumptions are made: 

Assumption 1:  ( , ) ( , , )k k k k k k kf w p f w p E  is zero for all ,  ,  0,....., 1n m

k kw u k N    . There is no loss of 

generality in assuming ( , ) 0k k kf w p  because appropriate choices of ka , kZ , km  will model any mean value of kf

which is linear in ,k kw p . 

Assumption 2:  ( , ) ( , , ) ( , , )k k k k k k k k k k kF w p f w p f w p   E exists and is a general quadratic function of ,k kw p  for 

0,...., 1.k N   

That is ( , )k k kF w p  has the representation  

0

1

1 1
( , )

2 2

n
i i T i i i T i

k k k k k k k k k k k k k k k k k k

i

F w p B B w C w p N w p M p w g p h


  



 
      

 
 , 

where , , ,i i i i

k k k kB C N M are matrices of appropriate dimensions ,i n i m

k kg h  and , ,i i i

k k kB C M  are symmetric 

0,.....,i n , where  1 / 2n n n     . 

The income elasticity of non-life insurance measures the responsiveness of the demand for general insurance con-

tracts to a change in the income of the people demanding them ceteris paribus (all other factors held constant). Lee et 

al [18] conclude that insurance, like other developed financial services, has grown in quantitative importance as part 

of the general advancement of financial sectors and that there is a relationship between non-life insurance premiums 

and real income. According to their study income elasticity of non-life insurance premiums are larger than one. This 

means that non-life insurance is a luxury good.  

A frequent reason given for the lack of depth in non-life insurance markets in developing countries is that consum-

ers perceive insurance as a luxury item. Insurance penetration is clearly related to a country’s income level. The link 

between a country’s aggregate demand for insurance and level of gross domestic product (GDP) is clear, but the forc-

es driving the demand for insurance at the micro level are not. The insurance-as-luxury assumption implies that in-

come distribution in developing countries is such that insurance can only be consumed in small quantities. This is 

common sense after all, spending money to protect against losses is not feasible unless income is reasonably high and 

consumers have possessions to which they have title, and an interest in protecting them. The key is to determine when 

the income levels pass the ‘reasonably high’ mark, and when consumers believe that they have amassed enough prop-

erty to merit protection. Traditional thinking holds that, especially in developing countries, personal insurance ser-

vices are of interest largely to the top economic groups and, because this demographic is minuscule, the insurance 

market should be minuscule as well.  

Moreover inflation can change dramatically company’s wealth since inflation reflects a reduction in the purchas-

ing power per unit of money or loss of real value in the medium of exchange and unit of account within the economy. 

A chief measure of price inflation is inflation rate. In fact, inflation rate is disadvantageous to the development both of 

life and non-life insurance in that it is detrimental to individual’s purchasing power. 

Several studies have documented the impact of inflation, especially on the property-liability insurance industry. 

Some of them are mentioned indicatively. D’Arcy [7] finds that both the underwriting profit margin and insurance 

investment returns were negatively correlated with the inflation rate during the period 1951-1976. Krivo [16] deter-

mines that although inflation and the underwriting profit margin were not significantly correlated over the subsequent 

period 1977-2006, investment returns and the year-to-year change in underwriting profit margin were both significant-

ly negatively correlated with inflation over that period. Lowe and Warren [21] describe the negative impact of infla-

tion on property-liability insurers’ claim costs, loss reserves and asset portfolios. They express concern that most cur-

rent actuaries, underwriters and claim staff have never experienced of severe inflation, so could be slow to adapt to 

any change in the economic environment. In other words, property-liability insurers are impacted by inflation in sev-

eral ways. The clearest impact is the cost of future claims on current policies according to Ahlgrim and D’ Arcy [1]. 

A critical factor that affects demand for non-life insurance and indirectly premium and wealth is the number of 

consumers in the market. As more or fewer consumers enter the market this has a direct effect on insurance contracts 

that consumers are willing and able to buy. An increase in the number of people means that there are more potential 

customers or in other words more individual demand curves to add up to get the general insurance demand curve, so 

markets demand increases. An increase in demand shifts the demand curve to the right so at each premium, the quanti-

ty of contracts demanded increases. The excess demand causes the premium to rise and equilibrium is restored at a 

different point. 

Another variable that affects wealth function and premium is the financial risk of the market. Studies have docu-

mented a correlation between financial development and the development of the insurance market. Lorent [20] indi-

cates that insurance and banking are increasingly intricate and Billio et al.[3] also show that the insurance sector has 

over time become highly interrelated with other sectors in financial system such as banks, hedge funds etc due to the 
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involvement of insurance companies in non-core activities such as credit defaults swaps, derivatives trading and in-

vestment management.  

As it has been already mentioned, the reputation of the company affects the product’s demand and consequently 

the optimal premium and company’s wealth as well. The reputation of a business is essential to its survival. The trust 

and confidence of the client can have a direct and profound effect on a company’s bottom line. While an intangible 

concept, having a good reputation can benefit a business in a multitude of ways including consumer preference, sup-

port for an organization in times of crisis or controversy and the future value of an organization in the marketplace. 

Finally, the future expectation of consumers concerning the premiums can also affect how many contracts one is 

willing and able to buy. The expectations that clients have, concerning the future premium, are assumed constant 

when a demand curve is constructed. Clients' expectations are one of five demand determinants that shift the demand 

curve when they change. It is important to realize that clients (buyers) make buying decisions based on a comparison 

of current and future premiums. They are motivated to purchase a non-life insurance contract at the lowest possible 

price. If that lowest price is the one existing today, then they will buy today. If that lowest price is expected to occur 

in the future, then they will wait until later to buy. Thus, if a potential client thinks next month’s premium will be 

higher than he had initially expected, he may buy an insurance contract today and not next month. That means that the 

demand for general insurance contracts today will increase. 

Assumption 3:  ( , ) 0, ,n m

k k k k kF w p w p   
 

Assumption 3 is necessary (hence not all restrictive) in order that ( , )k k kF w p  be a covariance matrix for each 

, .n m

k kw p  The optimal control sequence  kp is to be drawn from sequences of closed loop controllers i.e. of 

the form    0 1;  , ,......,k k k k kp D W W w w w where : ; 0,...., 1n k m

kD k N    . Note that because k  is a 

sequence of random variables independently disturbed in time, knowledge of kw is equivalent to knowledge of kW so 

that the sequences of closed loop controllers can be written  ;  0,...., 1k k kp D w k N   .
 

Assumption 4: There is positive price-elasticity of demand, i.e. if the market as a whole begins underwriting as a 

whole begins underwriting at a loss, any attempt by a particular insurer to maintain profitability will result in a reduc-

tion of his volume of business. 

Assumption 5: There is a finite time horizon. 

Assumption 6: Demand in year 1k   is assumed to be proportional to demand in the preceding year .k  
 

3    Main Results  

Let’s define first 

   1 1

1

1

2

n
i i

k k k k k

i

C S tr S B C


 



 ,    1 1

1

1

2

n
i i

k k k k k

i

N S tr S B N


 



 ,    1 1

1

1

2

n
i i

k k k k k

i

M S tr S B M


 



 , 

   1 1

1

1

2

n
i i

k k k k k

i

g S tr S B g


 



 ,    1 1

1

1

2

n
i i

k k k k k

i

h S tr S B h


 



 , and 

                                                             1 1

T

k k k k k k kR R Z S Z M S  E E E ,                                             (3.1) 

                                                               1 1

T

k k k k k ka Z S a N S  E E ,                                                    (3.2) 

                                                         1 1 1

T T

k k k k k k k km Z S m Z d h S   E E E E .                                      (3.3)
 

Where  

                 1

1 1 ,
T T

k k k k k k k k k k N NS Q a S a C S a R a S Q

       E E E E                        (3.4) 

                                           1

1 1 1 , 0T T

k k k k k k k k k k k Nd a S m a d g S a R m d

       E E E E E                        (3.5) 

                              0 1

1 1 1 1

1 1 1
, 0

2 2 2

T T T

k k k k k k k k k k k k Ne tr S B m S m d E m e m R m e

        E E E E E E  .     (3.6) 

Theorem 1. 

                                                        0 0,...., 1 ,kIf R for all k N  E                                                 (3.7) 

 the optimal closed loop controller is          

                                                            * 1 ;  0,...., 1k k k k kp R a w m k N     E E E ,                                   (3.8) 
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and the maximum value is given by 

                                                                         0 0 0 0 0 0

1

2

T Tw S w d w e  .                                                           (3.9) 

Proof. Let’s define 

                                              
1

1

/
.....

1 1
max

2 2k
k N

N
T T T

k k w N N N
p p

J w w Q w p R p w Q w     
 





 
  

 
E .                            (3.10) 

The optimal performance criterion satisfies Bellman equation 

                   
1

1

/
..... 0

1 1
max

2 2k
k N

N
T T T

k k w k k k k k k N N N
p p k

J w w Q w p R p w Q w






 
  

 
E , 

                
1

1

/
..... 0

1 1
min

2 2k
k N

N
T T T

k k w k k k k k k N N N
p p k

J w w Q w p R p w Q w






 
    

 
E , 

                     
1

/ 1 1
.....

1 1
min

2 2k
k N

T T

k k w k k k k k k k k
p p

J w w Q w p R p J w


 

 
    

 
E , 

                                         
1

/ 1 1
.....

1 1
min

2 2 k
k N

T T

k k k k k k k k w k k
p p

J w w Q w p R p J w


 

 
    

 
E ,                          (3.11) 

and 
1

( ) .
2

T

N N N N NJ w w Q w  We now show by induction that  

                                                                      
1

( )
2

T T

k k k k k k k kJ w w S w d w e                                                       (3.12) 

solves (3.11), by noting that (3.12) is true for k N , assuming that (3.12) is true for 1k   and proving that is true for 

k .Substituting the assumed expression for  1 1k kJ w  into the right hand side of (3.11) yields 

/ , 1 ,

1 1
min{ ( , ) ( , )

2 2 k
k

TT T

k k k k k k w k k k k k k k k k k k k k k k k k
p

w Q w p R p a w Z p m f w p S a w Z p m f w p 
                  E  

/ 1 , 1( , ) }
k

T

w k k k k k k k k k kd a w Z p m f w p e 
       E  

       1 1

1 1 1
min{

2 2 2k

T T T T T T

k k k k k k k k k k k k k k k k
p

w Q w p R p w a S a w p Z S a w         E
 

           1 1 1

1

2

T T T T

k k k k k k k k k k k k kp Z S Z p m S a w m S Z p     E E E E E

        0

1 1 1 1

1 1 1
( )

2 2 2

T T T

k k k k k k k k k k k k km S m tr S B w C S w p N S w      E E

            1 1 1 1 1 1 1

1
}

2

T T T T T T

k k k k k k k k k k k k k k k k k k kp M S p w g S p h S d a w d E Z p d E m e               

   1 1 1 1 1

1
min{ ( ) ( ) ( ) ( ) ( )

2k

T T T T T

k k k k k k k k k k k k k k k k
p

w Q a S a C S w w a S E m g S a d    
                  

 

             0

1 1 1 1

1 1 1
}.

2 2 2

T T T T T

k k k k k k k k k k k k k k k ktr S B m S m d m e p R p p a w p m         E E E E E E       (3.13) 

Because of (3.7), the control that maximizes (3.13) is given by (3.8). When this is substituted into (3.13), we obtain

      1

1 1

1
( ) ( )

2

T T T

k k k k k k k k k kw Q a S C S a R a w

 

          
E E E

 

       1

1 1 1( ) ( ) ( )T T T T

k k k k k k k k k k kw a S m g S a d a R m

  
       
 

E E E E  

           0 1

1 1 1 1

1 1 1
( )

2 2 2

T T T

k k k k k k k k k k ktr S B m S m d m e m R m

   

 
      
 

E E E E E E  
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       1

1 1

1
( ) ( )

2

T T T

k k k k k k k k k k kw Q a S a C S a R a w

 

          
E E E  

       1

1 1 1( ) ( ) ( )T T T T

k k k k k k k k k k kw a S m g S a d a R m

  
      
 

E E E E  

           0 1

1 1 1 1

1 1 1
( )

2 2 2

T T T

k k k k k k k k k k ktr S B m S m d m e m R m

       E E E E E E .

                    

(3.14) 

Using (3.1), (3.2), (3.3) in (3.14) yields the fact that (3.12) is true. Thus the proof by induction is complete.               

The next theorem shows that under certain reasonable conditions inequality (3.7) is satisfied. 

Theorem 2. Suppose that 0NQ  and that 0kQ  and 0kR  for all 0,........, 1k N   

                                               then  0
k

R  and
1

0; 0,......, 1.
k

S k N

                                                     (3.15)  

Proof. We prove this by induction. First we note that because of Assumption 3 and the equation ( , )k k kF w p  which is 

mentioned in Assumption 2 we have  

 1 0,k kM S   if 
1

0
k

S

 .                                                                (3.16) 

Now we proceed by induction. Clearly we have 
1

0
N

R

 and 0

N
S  . We now assume  

0, 1,.....,
i

S i k N   ,                                                                   (3.17) 

which implies  

1
0, 1,....., .

i
R i k N


                                                               (3.18)

 

Because 
1

0
k

S

 it follows from (3.16) and (3.1) that 0.

k
R 

 

This, by virtue of (3.4), permits the computation of , ,
k k k

S d e and (3.12) yields  

 
1

/
..... 1

1 1 1
( ) .max

2 2 2

N
T T T T T

k k k k k k k k w N N Nk
p pk N

J w w S w d w e w Q w p R p w Q w
     

 





 
      

 
E

         

(3.19) 

Now because of our assumption on ,  ,  ;  0,......, 1,
N k k

Q Q R k N  the right-hand side of (3.19) is nonnegative for all 

k
w  which implies 0

k
S  and hence it follows from (3.16) and (3.1) that 

1
0

k
R


  so that (3.17), (3.18) are true for 

,......,i k N  and the proof by induction is complete.                     

 

4 Discussion of main results  

According to the derived results so far, the optimal premium is calculated endogenously by the market and derived 

quite naturally using elements of dynamic programming. First, based on Pantelous and Passalidou’s [23] primary pric-

ing model, the optimal premium depends on the break-even premium, the company’s volume of business of the pre-

ceding year, the expectation of market’s average premium and the expectation of the stochastic parameter k . This 

stochastic parameter consists of all micro-macro parameters that affect company’s volume of business.  

The second model referred also to Pantelous and Passalidou [24] says that the optimal premium depends, as be-

fore, on the break-even premium, the volume of business of the previous year, the expected value of the average pre-

mium rate and also on the company’s reputation raised to a factor b  and the expected value of the natural exponential 

function of the stochastic parameter k . In this model the optimal premium can be calculated for both negative and 

positive prices of k . 

Concerning the new results of the present paper, at first it is essential to mention that the optimal premium is cal-

culated on three factors ,  ,  
k k k

R a m  which all include, among others elements, the parameter kZ . This parameter con-

sists of the three following factors: 

 The break- even premium, 

 The company’s volume of business of the preceding year,  

 The expectation of market’s average premium. 

These factors are also appeared to the optimal premium calculated in our previous papers, remaining consistent in 

our main philosophy and staying faithful to the way of confronting the problem. The expectation of market’s average 

premium is directly related to the market’s competition which affects company’s premium. Moreover the break-even 
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premium is directly related to the company’s profitability as well as its wealth and the company’s volume of business 

of the preceding year is indicative to the company’s volume of business and optimal premium as well.  

Except the parameter kZ , two other parameters are appeared to these three main factors ,  ,  
k k k

R a m from which the 

optimal premium is calculated on. These are 
1k

S


and i

kB . As we have mentioned earlier i

kB  denotes the income elas-

ticity of demand which affects every financial factor of every market and every business in it since both are all related 

directly or indirectly to the consumer’s income. The factor 
1k

S


is calculated based on the following: 

 The present day value factor, 

 The market’s inflation. 

These two economic factors play the most crucial role concerning company’s wealth on which optimal premium is 

depended on. The present day value factor is used to simplify the calculation for finding the present value of a series 

of values in the future. It is based on the discount interest rate and the number of periods. Inflation and interest rates 

are linked, and frequently referenced in macroeconomics. Inflation refers to the rate at which prices for goods and 

services rises. In general, as interest rates are lowered, more people are able to borrow more money. The result is that 

consumers have more money to spend, causing the economy to grow and inflation to increase. The opposite holds true 

for rising interest rates. As interest rates are increased, consumers tend to have less money to spend. With less spend-

ing, the economy slows and inflation decreases. 

These parameters are related to company’s wealth directly since the main difference between the optimal premium 

calculated in this paper and the ones mentioned above is that the optimal premium is related directly to the company’s 

wealth. 

As we have already mentioned the optimal premium is depended on company’s wealth and the parameters 

,  ,  
k k k

R a m . All these factors consists of parameters that are indicative to the financial conditions prevailing to a mar-

ket and affect the company’s wealth and consumer’s marginal utility. We mentioned earlier that all these three param-

eters rely on kZ ,
1k

S


 and i

kB . 

Analytically, the factor 
k

a depends also on: 

 The excess return of capital i.e. return on capital required by the shareholders of the insurer whose strategy 

is under consideration.  

 The financial risk that the markets confronts. 

Excess return on capital refers to principal payments back to "capital owners" (shareholders, partners, unit holders) 

that exceed the growth (net income/taxable income) of an insurance business or investment. As the financial risk in a 

market becomes higher the shareholders probably will ask for a higher excess return of capital. 

Moreover the optimal premium depends on the parameter 
k

m  which calculates on: 

 The parameter 
k

m which equals to the volume of business of the preceding year times market’s average pre-

mium, 

 The future expectation of the consumers concerning the company’s premium, 

 The parameter 
1k

d


 which is related to the reputation’s impact to the volume of business. 

Another crucial factor is the future expectations of clients. Buyers make buying decisions based on a comparison 

of current and future prices. They are motivated to purchase an insurance contract at the lowest price possible. If that 

lowest price is the one existing today, then they will buy today. If that lowest price is expected to occur in the future, 

then they will wait until later to buy.  

Moreover, firms with strong positive reputations attract better people. They are perceived as providing more value, 

which often allows them to charge a premium. Their customers are more loyal and buy broader ranges of products and 

services. Because the market believes that such companies will deliver sustained earnings and future growth, they 

have higher price-earnings multiples and market values and lower costs of capital.  

Finally the optimal premium depends on the parameter 
k

R  which calculates on: 

 The marginal utility of insurance contracts, 

 The number of the consumers. 

Consequently, the main parameters that were suggested to affect the optimal premium pricing policy are still ap-

peared to the present optimal premium calculation formula (break-even premium, previous year’s volume and the 

expectation of the market’s average premium). This formula is also enriched with company’s wealth and consumer’s 

utility which affection on the optimal premium depends on the three main parameters mentioned above. This optimal 

premium depends on many new introduced different parameters. Thus, the optimal premium is more close to the reali-

ty since take into consideration market’s financial factors which indirectly affects the company’s optimal premium 

strategy. 
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5 Application 

  
In order to illustrate the main theoretical finding of this paper, a simple numerical example is presented. Unfortu-

nately, that available real data in public are not analytic and several assumptions has to be made, thus the derived nu-

merical results are subjective and they just illustrate the applicability of the model. The following table present the 

main parameters needed to calculate a company’s optimal premium according this model. 

 

( ) 200kE p  €, 
0,2 1,2

0,2 1,2
kN

 
 
 
  

, 

1 1000kV   , 0,8ka  , 

60k  €, 1

2,1 4,1

3,2 4,2
kd 

 
  
 

, 

10 15

12 13
kR

 
  
 

, 
0 1

1 0
kh

 
  
 

, 

1

0,5 0,8

0,4 0,7
kS 

 
  
 

, 
1

1,2 1,5

1,4 1,6
kB

 
  
 

, 

6 6

6 6

10 1,5 10

1,2 10 1,7 10
kM

 
  

  
, 320.000kw  €. 

 

The expectation of market’s average premium can be found following Pantelous and Passalidou’s [23] two sug-

gested premium strategies.  

In the first premium strategy, the average premium is calculated considering all the competitors of the market, and 

their proportions regarding to the volume of business. In mathematical terms the expected average premium of the 

market is equal to   , ,

1

1 K

i n i n

i

p b p
m 

 E  where 

1

, , ,

1

K

i n i n i n

i

b V V





 
  

 
 and 

,

1

1
K

i n

i

b


  for every year n, ,i np
 
is the premi-

um of the company thi  for the year n; K is the number of the competitors (including also our company’s premium) in 

the insurance market and m  is the number of years for the available data (i.e. we assume that we have the uniform 

distribution for the weight of every year). 

According the second premium strategy the average premium is calculated considering the premiums of the top 

K
+
 competitors of the market (including the leading company of the market). In mathematical terms the expected av-

erage premium of the market is equal to   , ,

1

1 K

i n i n

i

p b p
m



 



 E , where 

1

, , ,

1

K

i n i n i n

i

b V V

 





 
  

 
 and ,

1

1
K

i n

i

b







  for every 

year n, ,i np

 
is the premium of the thi  top company for the year n; K

+
 is the number of the top competitors (including 

also our company’s premium) in the insurance market and m  is the number of years for the available data (i.e. we 

assume that we have the uniform distribution for the weight of every year). 

The volume of business of the previous year and net premium can be found by company’s own data.  

The matrix kR  shows the marginal utility of insurance contracts in year [ , 1)k k   for four different insured (cli-

ents) categories.  

The matrix 1kS  can be calculated on the present day value factor of company’s wealth, the market’s inflation and 

the known, from the previous year, parameter kS .  

The matrix kM denotes the number of consumers separated to four different group categories. Each element of 

matrix kM is a different category of possible clients. Thus, each element of the matrix kR denotes the marginal utility 

of insurance contract for each group category.  

The matrix kN denotes the financial risk of the market in year [ , 1)k k  . The elements of this matrix denote the 

possibility of a market to present increased financial risk. Positive values denote the existence of financial risk in the 

market and negative values the lack of it. The elements of this matrix can either derive from the market’s data or can 

be a combination of different future scenarios concerning the market.  

The factor ka denotes the excess return of capital i.e. return on capital required by the shareholders of the insurer 

whose strategy is under consideration and is set by each company. 

The matrix 1kd  can be calculated based on the reputation’s impact to the company’s volume of business and the 

known, from the previous year,  parameter kd .  
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The matrix kh  denotes the future expectations of the consumers. The element 1  means that clients expect that the 

premium is going to be higher to the near future and buy a general insurance contract today. On the other hand the 

element 0 means that clients expect that the premium is going to be smaller to the near future and do not buy a general 

insurance contract today. 

The matrix 
1

kB  denotes the income elasticity of demand concerning insurance contract in year [ , 1)k k  for each 

group category. 

After the calculations the optimal premium that comes up is calculated 
*

0,0047 0

0 0,0047
p

 
  
 

and since 
1p p

the optimal premium strategy is equal to 
* 212,76p  €. 

As we have mentioned earlier on important parameter that affects company’s optimal premium is company’s 

wealth. Table 1 and figure 1 presents the optimal premium for different levels of wealth ceteris paribus.  

 

Company's Wealth Premium 

310.000 € 250 € 

320.000 € 213 € 

330.000 € 189 € 

340.000 € 167 € 

350.000 € 149 € 

Table 1: Company’s premium for different values of wealth 

 

 

Figure 1: Company’s premium for different values of wealth 

As company’s wealth becomes bigger the optimal premium becomes lower. This is quite rational since companies 

with smaller wealth have to charge their clients a higher premium in order to maximize their wealth. On the other 

hand companies with higher wealth can charge a smaller premium in order to have more clients and though more new 

customers to maximize their wealth. 

 

6.     Conclusions  

Staying close to our original hypothesis that the company’s premium is also affected by market’s competition, we 

calculate a premium strategy which maximizes a quadratic performance criterion concerning a utility function, subject 

to a stochastic dynamic wealth function with a linear noise sequence provided only that the mean value of the random 

vector is zero and the covariance matrix of the random vector is a quadratic function of our control variables. In this 

covariance matrix, new parameters enrich our model, such as the income insurance elasticity of demand, number of 

consumers, inflation, market’s financial risk and consumers’ future expectations in addition to fame of company. 

The stochastic parameter k that was mentioned in our previous papers and affects the volume of business consists 

of many micro-macro parameters. These parameters are analysed and the way they affect directly or indirectly the 

optimal premium is explained. 

The contribution of this paper can be summarized on the following. First, the utility function that is maximized in 

order to find the optimal premium is a quadratic function in which expect from the present value of company’s wealth 
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that has mentioned to previous papers the marginal utility-premium ratio is also included. Second, the stochastic pa-

rameter that affects company’s volume of business is analysed into different micro-macro parameters which directly 

or indirectly affect the optimal premium. Finally, since the maximized criterion is quadratic the optimal premium 

found depends among other factors, on company’s wealth. 

Finally, using a simple example based on Pantelous and Passalidou [23] paper, the relation between company’s 

wealth and premium is shown. According to these results, as company’s wealth becomes bigger the optimal premium 

becomes lower. In other words companies with bigger wealth want to maximize wealth new clients that will attract 

them with smaller premium while companies with lower wealth want to maximize their wealth trying to maintain their 

customers and charge them with higher premiums. 
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Exponential Expansions for Perturbed
Discrete Time Semi-Markov Processes

Mikael Petersson

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
(E-mail: mikpe@math.su.se)

Abstract. We consider a discrete time semi-Markov process where the characteris-
tics defining the process depend on a small perturbation parameter. It is assumed
that the state space consists of one finite communicating class of states and, in ad-
dition, one absorbing state. Our main object of interest is the asymptotic behaviour
of the joint probabilities of the position of the semi-Markov process and the event
of non-absorption as time tends to infinity and the perturbation parameter tends to
zero. We give exponential expansions of these probabilities together with a recursive
algorithm for computing the coefficients in the expansions. As an intermediate result,
which is interesting in its own right, we obtain asymptotic power series expansions
for moments of first hitting times.
Keywords: Semi-Markov process, Perturbation, Asymptotic Expansion, Regenera-
tive process, Renewal equation, Solidarity property, First hitting time.

1 Introduction

The aim of this paper is to present a detailed asymptotic analysis of the long
time behaviour of non-linearly perturbed discrete time semi-Markov processes
with absorption.

We consider a discrete time semi-Markov process ξ(ε)(n), on a finite state
space, depending on a small perturbation parameter ε ≥ 0 in the sense that its
transition probabilities are functions of ε. It is assumed that these functions
are continuous at ε = 0 so that the process ξ(ε)(n) for ε > 0 can be interpreted
as a perturbation of the process ξ(0)(n). Furthermore, we assume that for ε
small enough, the state space can be partitioned into one communicating class
of states {1, . . . , N} and one absorbing state 0. The absorption time, that is,

the first hitting time of state 0, is denoted by µ
(ε)
0 . It will be assumed that

absorption may, or may not be possible, both for the limiting process and the
perturbed process.

We allow for smooth non-linear perturbations in the sense that certain
moment functionals of transition probabilities may be non-linear functions of ε
which up to some order k can be expanded in an asymptotic power series with
respect to ε.

Under assumptions mentioned above and some additional Cramér type con-
ditions on moments of transition probabilities and a non-periodicity condition

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST
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for the limiting semi-Markov process we obtain the following asymptotic rela-
tion:

Pi{ξ(ε)(n(ε)) = j, µ
(ε)
0 > n(ε)}

exp(−(ρ(0) + c1ε+ · · ·+ cr−1εr−1)n(ε))
→

π̃
(0)
ij

eλrcr
as ε→ 0, i, j 6= 0, (1)

where (i) n(ε) is a non-negative integer valued function of ε such that n(ε) →∞
and εrn(ε) → λr ∈ [0,∞) as ε → 0, for some 1 ≤ r ≤ k; (ii) π̃

(0)
ij are positive

constants given by explicit expressions; (iii) ρ(0) is a non-negative constant
which can be found at least numerically as the solution of a non-linear equation;
(iv) c1, . . . , cr are constants which can be calculated from a recursive algorithm.

In relation (1) we can separate between two types of asymptotics depending

on if the absorption time µ
(ε)
0 → ∞ in probability as ε → 0 or if µ

(ε)
0 are

stochastically bounded as ε → 0. In the former case we get so-called pseudo-
stationary asymptotics and in the latter case we get so-called quasi-stationary
asymptotics. The pseudo-stationary asymptotics have a simpler form. In this

case, ρ(0) = 0 and the constants π̃
(0)
ij do not depend on the initial state i and

are given by the stationary probabilities of the limiting semi-Markov process.

In order to prove (1) we use the theory of perturbed discrete time renewal
equations developed in Gyllenberg and Silvestrov[9], Englund and Silvestrov[7],
and Silvestrov and Petersson[18]. For the proofs of some intermediate results,
we will refer to Petersson[16] which is an extended report version of the present
paper.

Relation (1) is proved for continuous time semi-Markov processes in Gyllen-
berg and Silvestrov[10,11]. In Gyllenberg and Silvestrov[11] the result is also
extended to the case of initial transient states.

Results in the literature related to pseudo-stationary asymptotics are usu-
ally concerned with an asymptotic analysis of absorption times or other types
of first hitting times in various types of Markov and semi-Markov processes,
see for example Keilson[13], Latouche and Louchard[14], Avrachenkov and Ha-
viv[2], and Drozdenko[6].

For quasi-stationary asymptotics, almost all papers in the literature deals
with models without perturbations. In particular, a great deal of attention
has been given the study of so-called quasi-stationary distributions, see for ex-
ample Darroch and Seneta[4], Cheong[3], Flaspohler and Holmes[8], and van
Doorn and Pollett[5]. For models with perturbations, asymptotic expansions
of quasi-stationary distributions are given in Gyllenberg and Silvestrov[11] for
continuous time regenerative processes and semi-Markov processes, and in Pe-
tersson[15] for discrete time regenerative processes.

One of the most extensively studied models of perturbed stochastic pro-
cesses is the model of linearly perturbed Markov chains. In particular, asymp-
totic expansions of stationary distributions have been given for so-called nearly
uncoupled Markov chains. For some results and more references related to
this line of research we refer to Simon and Ando[19], Schweitzer[17], Stew-
art[20], Hassin and Haviv[12], Yin and Zhang[21], and Avrachenkov, Filar, and
Howlett[1].
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More references related to pseudo-stationary and quasi-stationary asymp-
totics can be found in the extensive bibliography given in Gyllenberg and Sil-
vestrov[11].

Let us finally briefly outline the structure of the paper. Section 2 presents
exponential expansions for perturbed discrete time regenerative processes. In
Section 3 we define perturbed discrete time semi-Markov processes. Section
4 presents some results for moment generating functions of first hitting times
which are essential for our results. Section 5 constructs asymptotic power
series expansions for moments of first hitting times. Finally, in Section 6 we
give exponential expansions for perturbed discrete time semi-Markov processes.

2 Perturbed Regenerative Processes

In this section we present exponential expansions for perturbed discrete time
regenerative processes. These expansions are obtained by applying a corre-
sponding result for discrete time renewal equations given in Silvestrov and
Petersson[18].

For every ε ≥ 0, let Z
(ε)
n , n = 0, 1, . . . , be a regenerative process on a

measurable state space (X , Γ ) with proper regeneration times 0 = τ
(ε)
0 < τ

(ε)
1 <

· · · . Furthermore, let µ(ε) be a random variable, defined on the same probability
space, that takes values in the set {0, 1, . . . ,∞}. Assume that for each A ∈
Γ , the probabilities P (ε)(n,A) = P{Z(ε)

n ∈ A, µ(ε) > n} satisfy the renewal
equation

P (ε)(n,A) = q(ε)(n,A) +

n∑
k=0

P (ε)(n− k,A)f (ε)(k), n = 0, 1, . . . ,

where
q(ε)(n,A) = P{Z(ε)

n ∈ A, µ(ε) ∧ τ (ε)1 > n}
and

f (ε)(k) = P{τ (ε)1 = k, µ(ε) > τ
(ε)
1 }.

Then, we call µ(ε) a regenerative stopping time.
Notice that f (ε)(n) are possibly improper distributions with defect given by

f (ε) = 1−
∑∞
n=0 f

(ε)(n) = P{µ(ε) ≤ τ (ε)1 }.
Let us define the following mixed power-exponential moment generating

functions:

φ(ε)(ρ, r) =

∞∑
n=0

nreρnf (ε)(n), ρ ∈ R, r = 0, 1, . . .

We also define φ(ε)(ρ) = φ(ε)(ρ, 0).
The solution of the following characteristic equation plays a crucial role in

what follows:
φ(ε)(ρ) = 1. (2)

Under conditions A∗ and B∗ given below, there exists a unique non-negative
solution ρ(ε) of Equation (2) for sufficiently small ε.

We will assume that the following conditions hold:
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A∗: (a) f (ε)(n) → f (0)(n) as ε → 0, for all n = 0, 1, . . . , where the limiting
distribution f (0)(n) is non-periodic and not concentrated at zero.

(b) f (ε) → f (0) ∈ [0, 1) as ε→ 0.

B∗: There exists δ > 0 such that (a) lim sup0≤ε→0 φ
(ε)(δ) <∞; (b) φ(0)(δ) > 1.

C∗: φ(ε)(ρ(0), r) = φ(0)(ρ(0), r) + a1,rε + · · · + ak−r,rε
k−r + o(εk−r), for r =

0, . . . , k, where |an,r| <∞, n = 1, . . . , k − r, r = 0, . . . , k.

D∗: There exists γ > 0 such that lim sup0≤ε→0

∑∞
n=0 e

(ρ(0)+γ)nq(ε)(n,X ) <∞.

For convenience we denote a0,r = φ(0)(ρ(0), r), for r = 0, . . . , k.
Furthermore, we define

Γ0 = {A ∈ Γ : q(ε)(n,A)→ q(0)(n,A) as ε→ 0, n = 0, 1, . . .}

and

π̃(0)(A) =

∑∞
n=0 e

ρ(0)nq(0)(n,A)∑∞
n=0 ne

ρ(0)nf (0)(n)
, A ∈ Γ.

The following result is proved in Silvestrov, Petersson[18] for a general re-
newal equation under conditions formulated in a slightly different way.

Theorem 1. Assume that conditions A∗–D∗ hold. Then:

(i) For sufficiently small ε, there exists a unique non-negative solution ρ(ε) of
the characteristic equation (2). Moreover we have the asymptotic expansion

ρ(ε) = ρ(0) + c1ε+ · · ·+ ckε
k + o(εk),

where c1 = −a1,0/a0,1 and for n = 2, . . . , k,

cn = − 1

a0,1

(
an,0 +

n−1∑
q=1

an−q,1cq

+

n∑
m=2

n∑
q=m

an−q,m ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

c
np
p

np!

)
,

and Dm,q is the set of all non-negative integer solutions to the system

n1 + · · ·+ nq−1 = m, n1 + · · ·+ (q − 1)nq−1 = q.

(ii) For any non-negative integer valued function n(ε) →∞ as ε→ 0 in such a
way that εrn(ε) → λr ∈ [0,∞) for some 1 ≤ r ≤ k, we have

P (ε)(n(ε), A)

exp(−(ρ(0) + c1ε+ · · ·+ cr−1εr−1)n(ε))
→ π̃(0)(A)

eλrcr
as ε→ 0, A ∈ Γ0.
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3 Perturbed Semi-Markov Processes

In this section we define perturbed discrete time semi-Markov processes.

For every ε ≥ 0, let (η
(ε)
n , κ

(ε)
n ), n = 0, 1, . . . , be a discrete time Markov

chain on the state space (X,N), where X = {0, 1, . . . , N} and N = {1, 2, . . .}.
We assume that the Markov chain is homogeneous in time and that the tran-
sition probabilities do not depend on the current value of the second compo-

nent. Thus, the process (η
(ε)
n , κ

(ε)
n ) is characterized by an initial distribution

p
(ε)
i = P{η(ε)0 = i}, i ∈ X, and transition probabilities

Q
(ε)
ij (k) = P{η(ε)n+1 = j, κ

(ε)
n+1 = k | η(ε)n = i}, i, j ∈ X, k ∈ N.

Let τ (ε)(0) = 0 and τ (ε)(n) = κ
(ε)
1 + · · · + κ

(ε)
n for n ≥ 1. Furthermore,

let ν(ε)(n) = max{k ≥ 0 : τ (ε)(k) ≤ n} for n ≥ 0. The semi-Markov process

associated with the Markov chain (η
(ε)
n , κ

(ε)
n ) is defined by

ξ(ε)(n) = η
(ε)

ν(ε)(n)
, n = 0, 1, . . .

For the semi-Markov process ξ(ε)(n), we have that κ
(ε)
n are the times between

successive moments of jumps, τ (ε)(n) are the moments of the jumps, and ν(ε)(n)

are the number of jumps in the interval [0, n]. Furthermore, η
(ε)
n is the embed-

ded Markov chain with transition probabilities given by p
(ε)
ij =

∑∞
k=1Q

(ε)
ij (k),

i, j ∈ X.

It is sometimes convenient to write the transition probabilities as Q
(ε)
ij (k) =

p
(ε)
ij f

(ε)
ij (k) where

f
(ε)
ij (k) = P{κ(ε)n+1 = k | η(ε)n = i, η

(ε)
n+1 = j}, i, j ∈ X, k ∈ N,

are the distributions of transition times.
Let us also define random variables for first hitting times. For j ∈ X, let

ν
(ε)
j = min{n ≥ 1 : η

(ε)
n = j} and µ

(ε)
j = τ (ε)(ν

(ε)
j ). Then, ν

(ε)
j is the first

hitting time of the embedded Markov chain into state j and µ
(ε)
j is the first

hitting time of the semi-Markov process into state j. Note that ν
(ε)
j and µ

(ε)
j are

both possibly improper random variables taking values in the set {1, 2, . . . ,∞}.
Throughout the paper, the following notation will also be used:

g
(ε)
ij (n) = Pi{µ(ε)

j = n, ν
(ε)
0 > ν

(ε)
j }, i, j ∈ X, n = 0, 1, . . . ,

and
g
(ε)
ij = Pi{ν(ε)0 > ν

(ε)
j }, i, j ∈ X.

Here, and in what follows, we write Pi(A) = P(A | η(ε)0 = i) for any event A.
Corresponding notation for conditional expectations will also be used.

We will assume that state 0 is absorbing, that is, p
(ε)
0j = 0 for all j 6= 0.

However, all our results hold also in the case when 0 is not an absorbing state.
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The reason for this is that we will only consider events whose probabilities do
not depend on transition probabilities from state 0.

In order to consider the process ξ(ε)(n), for ε > 0, as a perturbation of
ξ(0)(n), we will assume that the following continuity condition holds:

A: (a) p
(ε)
ij → p

(0)
ij as ε→ 0, for all i 6= 0, j ∈ X.

(b) f
(ε)
ij (n)→ f

(0)
ij (n) as ε→ 0, for all i 6= 0, j ∈ X, n ∈ N.

Furthermore, we will assume that {1, . . . , N} is a communicating class of
states for sufficiently small ε. This is implied by condition A together with the
following condition:

B: g
(0)
ij > 0, for all i, j 6= 0.

Transitions to state 0 may, or may not be possible, both for the limiting process
and the perturbed process.

4 Moment Generating Functions of First Hitting Times

In this section we present some properties for moment generating functions
of first hitting times. The proofs of the results given in this section can be
found in Petersson[16]. These proofs are based on techniques which is used in
Gyllenberg and Silvestrov[11] for proofs of corresponding results in continuous
time.

For i, j ∈ X we define the following moment generating functions:

φ
(ε)
ij (ρ) =

∞∑
n=0

eρng
(ε)
ij (n), ρ ∈ R; p

(ε)
ij (ρ) =

∞∑
n=0

eρnQ
(ε)
ij (n), ρ ∈ R.

Note that we can write φ
(ε)
ij (ρ) = Eie

ρµ
(ε)
j χ(ν

(ε)
0 > ν

(ε)
j ). By conditioning

on (η
(ε)
1 , κ

(ε)
1 ) we get

φ
(ε)
ij (ρ) = p

(ε)
ij (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ), i, j 6= 0. (3)

In what follows, it will sometimes be more convenient to work with matrices.
For each j 6= 0, we define column vectors

Φ
(ε)
j (ρ) =

[
φ
(ε)
1j (ρ) φ

(ε)
2j (ρ) · · · φ(ε)Nj(ρ)

]T
, (4)

p
(ε)
j (ρ) =

[
p
(ε)
1j (ρ) p

(ε)
2j (ρ) · · · p(ε)Nj(ρ)

]T
, (5)

and N ×N matrices jP
(ε)(ρ) = ‖jp(ε)ik (ρ)‖ where the elements are given by

jp
(ε)
ik (ρ) =

{
p
(ε)
ik (ρ) i = 1, . . . , N, k 6= j,

0 i = 1, . . . , N, k = j.
(6)
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Using (4), (5), and (6), we can write (3) in matrix notation:

Φ
(ε)
j (ρ) = p

(ε)
j (ρ) + jP

(ε)(ρ)Φ
(ε)
j (ρ), j 6= 0. (7)

The following lemma gives a necessary and sufficient condition for Φ
(ε)
j (ρ)

to be finite.

Lemma 1. Assume that for some ε ≥ 0 we have g
(ε)
ik > 0, for all i, k 6= 0.

Then Φ
(ε)
j (ρ) < ∞ if and only if p

(ε)
j (ρ) < ∞, jP

(ε)(ρ) < ∞, and the inverse

matrix (I− jP
(ε)(ρ))−1 exists.

We supplement Lemma 1 with a corresponding result for the moment gen-

erating functions φ̃
(ε)
ij (ρ) = Eie

ρµ
(ε)
0 χ(ν

(ε)
0 < ν

(ε)
j ), ρ ∈ R, i, j 6= 0. The vectors

Φ̃
(ε)
j (ρ) and p

(ε)
0 (ρ) used in this lemma are defined in analogue with Equations

(4) and (5).

Lemma 2. Assume that for some ε ≥ 0 we have g
(ε)
ik > 0, for all i, k 6= 0.

Then Φ̃
(ε)
j (ρ) < ∞ if and only if p

(ε)
0 (ρ) < ∞, jP

(ε)(ρ) < ∞, and the inverse

matrix (I− jP
(ε)(ρ))−1 exists.

We now introduce the following Cramér type condition on moments of tran-
sition probabilities:

C: There exists β > 0 such that:

(a) lim sup0≤ε→0 p
(ε)
ij (β) <∞, for all i 6= 0, j ∈ X.

(b) φ
(0)
ii (βi) > 1, for some i 6= 0 and βi ≤ β.

We close this section with a lemma that gives some asymptotic solidar-
ity properties for moment generating functions of first hitting times. These
properties are essential for the proof of our main result.

Lemma 3. Assume that conditions A, B, and C hold. Then there exist δ ∈
(0, β] and ε0 > 0 such that the following holds for all ε ≤ ε0:

(i) φ
(ε)
jj (δ) > 1, j 6= 0 and φ

(ε)
kj (δ) <∞, k, j 6= 0.

(ii) There exists a unique ρ(ε) ∈ [0, δ) such that φ
(ε)
jj (ρ(ε)) = 1 for all j 6= 0.

5 Expansions for Moments of First Hitting Times

In this section it is described how mixed power-exponential moments of first
hitting times can be expanded in power series with respect to the perturbation
parameter.

Let us introduce the following mixed power-exponential moment generating
functions:

φ
(ε)
ij (ρ, r) =

∞∑
n=0

nreρng
(ε)
ij (n), ρ ∈ R, r = 0, 1, . . . , i, j ∈ X.
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p
(ε)
ij (ρ, r) =

∞∑
n=0

nreρnQ
(ε)
ij (n), ρ ∈ R, r = 0, 1, . . . , i, j ∈ X.

Notice that φ
(ε)
ij (ρ, 0) = φ

(ε)
ij (ρ) and p

(ε)
ij (ρ, 0) = p

(ε)
ij (ρ).

It follows from conditions A–C and Lemma 3 that there exists ε0 > 0
such that for any i, j 6= 0, ε ≤ ε0, and ρ < δ, the functions p

(ε)
ij (ρ) and

φ
(ε)
ij (ρ) are arbitrarily many times differentiable with respect to ρ. Moreover,

the derivative of order r for p
(ε)
ij (ρ) and φ

(ε)
ij (ρ) are given by p

(ε)
ij (ρ, r) and

φ
(ε)
ij (ρ, r), respectively.

Recall that the moment generating functions of first hitting times satisfy
the following relation:

φ
(ε)
ij (ρ) = p

(ε)
ij (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ), i, j 6= 0. (8)

Differentiating both sides of relation (8) gives the following for all ε ≤ ε0
and ρ < δ:

φ
(ε)
ij (ρ, r) = λ

(ε)
ij (ρ, r) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ, r), i, j 6= 0, r = 1, 2, . . . , (9)

where

λ
(ε)
ij (ρ, r) = p

(ε)
ij (ρ, r) +

r∑
m=1

(
r

m

) ∑
l 6=0,j

p
(ε)
il (ρ,m)φ

(ε)
lj (ρ, r −m). (10)

Let us rewrite relations (8), (9), and (10) in matrix notation. For each
j 6= 0, we define column vectors

Φ
(ε)
j (ρ, r) =

[
φ
(ε)
1j (ρ, r) φ

(ε)
2j (ρ, r) · · · φ(ε)Nj(ρ, r)

]T
, (11)

λ
(ε)
j (ρ, r) =

[
λ
(ε)
1j (ρ, r) λ

(ε)
2j (ρ, r) · · · λ(ε)Nj(ρ, r)

]T
, (12)

p
(ε)
j (ρ, r) =

[
p
(ε)
1j (ρ, r) p

(ε)
2j (ρ, r) · · · p(ε)Nj(ρ, r)

]T
, (13)

and N ×N matrices jP
(ε)(ρ, r) = ‖jp(ε)ik (ρ, r)‖ where the elements are given by

jp
(ε)
ik (ρ, r) =

{
p
(ε)
ik (ρ, r) i = 1, . . . , N, k 6= j,

0 i = 1, . . . , N, k = j.
(14)

With these definitions we have

Φ
(ε)
j (ρ, 0) = Φ

(ε)
j (ρ), p

(ε)
j (ρ, 0) = p

(ε)
j (ρ), jP

(ε)(ρ, 0) = jP
(ε)(ρ). (15)

Using (8)–(15), we get

Φ
(ε)
j (ρ) = p

(ε)
j (ρ) + jP

(ε)(ρ)Φ
(ε)
j (ρ), j 6= 0, (16)
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and for r = 1, 2, . . . ,

Φ
(ε)
j (ρ, r) = λ

(ε)
j (ρ, r) + jP

(ε)(ρ)Φ
(ε)
j (ρ, r), j 6= 0, (17)

where

λ
(ε)
j (ρ, r) = p

(ε)
j (ρ, r) +

r∑
m=1

(
r

m

)
jP

(ε)(ρ,m)Φ
(ε)
j (ρ, r −m). (18)

Relations (16), (17), and (18) allows us to recursively calculate mixed power-
exponential moments of first hitting times for a fixed (sufficiently small) value
of ε.

In order to construct asymptotic expansions for these moments we will
assume that the following perturbation condition holds for some ρ < δ, where
δ is the number from Lemma 3:

D′: p
(ε)
ij (ρ, r) = p

(0)
ij (ρ, r) + pij [ρ, r, 1]ε + · · · + pij [ρ, r, k − r]εk−r + o(εk−r),

r = 0, . . . , k, i, j 6= 0, where |pij [ρ, r, n]| <∞, r = 0, . . . , k, n = 1, . . . , k−r,
i, j 6= 0.

For convenience we denote pij [ρ, r, 0] = p
(0)
ij (ρ, r), for r = 0, . . . , k.

To prepare for the next result, note that it follows from condition D′ that

the vectors p
(ε)
j (ρ, r) and matrices jP

(ε)(ρ, r), defined by relations (13) and
(14), respectively, have asymptotic expansions

p
(ε)
j (ρ, r) = p

(0)
j (ρ, r) + pj [ρ, r, 1]ε+ · · ·+ pj [ρ, r, k − r]εk−r + o(εk−r),

and

jP
(ε)(ρ, r) = jP

(0)(ρ, r) + jP[ρ, r, 1]ε+ · · ·+ jP[ρ, r, k − r]εk−r + o(εk−r),

where the vector coefficients pj [ρ, r, n] are given by

pj [ρ, r, n] =
[
p1j [ρ, r, n] p2j [ρ, r, n] · · · pNj [ρ, r, n]

]T
,

and the coefficients jP[ρ, r, n] = ‖jpik[ρ, r, n]‖ are N × N matrices where the
elements are given by

jpik[ρ, r, n] =

{
pik[ρ, r, n] i = 1, . . . , N, k 6= j,
0 i = 1, . . . , N, k = j.

The following theorem shows how we can construct asymptotic expansions

for the vectors Φ
(ε)
j (ρ, r). The proof can be found in Petersson[16] but let

us here briefly explain the idea of the proof. First note that it follows from

conditions A–C, Lemma 1, and Lemma 3 that Φ
(ε)
j (ρ) is the unique solution

of the system of linear equations (16) for sufficiently small ε. Using arithmetic
rules for asymptotic matrix expansions it follows from condition D′ that we
can construct an asymptotic expansion of order k for this solution. Then we
consider the system (17) for r = 1. Now using the coefficients in the expansion

of Φ
(ε)
j (ρ) and condition D′ we can build an asymptotic expansion of order k−1

for Φ
(ε)
j (ρ, 1). Continuing in this way we can successively construct asymptotic

expansions for Φ
(ε)
j (ρ, r), r = 0, 1, . . . , k.
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Theorem 2. Assume that conditions A, B, C, and D′ hold and fix some
j 6= 0. Then:

(i) The inverse matrix jU
(ε)(ρ) = (I− jP

(ε)(ρ))−1 exists for sufficiently small
ε and has the expansion

jU
(ε)(ρ) = jU[ρ, 0] + jU[ρ, 1]ε+ · · ·+ jU[ρ, k] + o(εk),

where

jU[ρ, n] =

{
(I− jP

(0)(ρ))−1 n = 0,

jU[ρ, 0]
∑n
q=1 jP[ρ, 0, q]jU[ρ, n− q] n = 1, . . . , k.

(ii) We have the expansion

Φ
(ε)
j (ρ) = Φj [ρ, 0, 0] + Φj [ρ, 0, 1]ε+ · · ·+ Φj [ρ, 0, k]εk + o(εk),

where

Φj [ρ, 0, n] =

{
Φ

(0)
j (ρ) n = 0,∑n
q=0 jU[ρ, q]pj [ρ, 0, n− q] n = 1, . . . , k.

(iii) For r = 1, . . . , k, we have the expansion

Φ
(ε)
j (ρ, r) = Φj [ρ, r, 0] + Φj [ρ, r, 1]ε+ · · ·+ Φj [ρ, r, k − r]εk−r + o(εk−r),

where the coefficients can be calculated recursively by the formulas

Φj [ρ, r, n] =

{
Φ

(0)
j (ρ, r) n = 0,∑n
q=0 jU[ρ, q]λj [ρ, r, n− q], n = 1, . . . , k − r,

where, for s = 0, . . . , k − r,

λj [ρ, r, s] = pj [ρ, r, s] +

r∑
m=1

(
r

m

) s∑
q=0

jP[ρ,m, q]Φj [ρ, r −m, s− q].

6 Exponential Expansions for Semi-Markov Processes

In this section we give exponential expansions for perturbed discrete time semi-
Markov processes with absorption. The results are obtained by applying cor-
responding results for perturbed regenerative processes given in Section 2.

Our main objective is to give a detailed asymptotic analysis of the proba-

bilities P
(ε)
ij (n) = Pi{ξ(ε)(n) = j, µ

(ε)
0 > n}, i, j 6= 0, as n→∞ and ε→ 0.

Let us assume that the initial distribution of the semi-Markov process
ξ(ε)(n) is concentrated at some state i 6= 0. Then ξ(ε)(n) is a regenerative
process with regeneration times being successive return times to state i. If
state 0 is an absorbing state, these regeneration times are possibly improper
random variables. In Section 2 it was assumed that the regeneration times
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were proper random variables. However, the probabilities P
(ε)
ij (n), i, j 6= 0,

do not depend on the transition probabilities from state 0. This means that
we can modify these transition probabilities without affecting the probabilities

P
(ε)
ij (n), i, j 6= 0. For example, if we take Q

(ε)
0j (n) = χ(n = 1)/(N + 1), j ∈ X,

then return times to any fixed initial state i 6= 0 can serve as proper regenera-
tion times. We can apply the results of Section 2 to this modified process and
then it follows that the results also hold for the process where 0 is an absorbing
state.

By using the regenerative property of the semi-Markov process at return
times to the initial state, we can for any i, j 6= 0 write the following renewal
equation:

P
(ε)
ij (n) = h

(ε)
ij (n) +

n∑
k=0

P
(ε)
ij (n− k)g

(ε)
ii (k), n = 0, 1, . . . ,

where h
(ε)
ij (n) = Pi{ξ(ε)(n) = j, µ

(ε)
0 ∧ µ

(ε)
i > n}. It follows that µ

(ε)
0 , the first

hitting time of state 0, is a regenerative stopping time for ξ(ε)(n).
For the model of perturbed semi-Markov processes, the characteristic equa-

tion takes the form
φ
(ε)
ii (ρ) = 1. (19)

Under conditions A–C, it follows from Lemma 3 that there exists a unique
non-negative solution ρ(ε) of the characteristic equation (19) for sufficiently
small ε which does not depend on the initial state i.

Furthermore, let us define

π̃
(0)
ij =

∑∞
n=0 e

ρ(0)nh
(0)
ij (n)∑∞

n=0 ne
ρ(0)ng

(0)
ii (n)

, i, j 6= 0.

It can be shown that if p
(0)
i0 = 0 for all i 6= 0, then the constants π̃

(0)
ij do not

depend on i and are given by the stationary probabilities of ξ(0)(n).
Let us formulate condition D′ for ρ = ρ(0):

D: p
(ε)
ij (ρ(0), r) = p

(0)
ij (ρ(0), r) + pij [ρ

(0), r, 1]ε + · · · + pij [ρ
(0), r, k − r]εk−r +

o(εk−r), r = 0, . . . , k, i, j 6= 0, where |pij [ρ(0), r, n]| < ∞, r = 0, . . . , k,
n = 1, . . . , k − r, i, j 6= 0.

Under conditions A–D, it follows from Theorem 2 that we for each i 6= 0
and r = 0, . . . , k have the asymptotic expansion

φ
(ε)
ii (ρ(0), r) = bi[r, 0] + bi[r, 1]ε+ · · ·+ bi[r, k − r]εk−r + o(εk−r),

where bi[r, 0] = φ
(0)
ii (ρ(0), r), r = 0, . . . , k, i 6= 0, and the coefficients bi[r, n],

r = 0, . . . , k, n = 1, . . . , k − r, i 6= 0, can be calculated from the recursive
formulas given in this theorem.

In order to guarantee non-periodicity of g
(0)
ii (n), it will be assumed that the

following condition holds:
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E: g
(0)
jj (n) is non-periodic for some j 6= 0.

We are now ready to formulate our result that gives exponential expansions

for the probabilities P
(ε)
ij (n).

Theorem 3. Assume that conditions A–E hold. Then:

(i) For sufficiently small ε, there exists a unique root ρ(ε) of the character-
istic equation (19) which does not depend on the choice of initial state i.
Moreover, we have the asymptotic expansion

ρ(ε) = ρ(0) + c1ε+ · · ·+ ckε
k + o(εk),

where c1 = −bi[0, 1]/bi[1, 0] and for n = 2, . . . , k,

cn = − 1

bi[1, 0]

(
bi[0, n] +

n−1∑
q=1

bi[1, n− q]cq

+

n∑
m=2

n∑
q=m

bi[m,n− q] ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

c
np
p

np!

)
,

and Dm,q is the set of all non-negative integer solutions to the system

n1 + · · ·+ nq−1 = m, n1 + · · ·+ (q − 1)nq−1 = q.

(ii) For any non-negative integer valued function n(ε) →∞ as ε→ 0 in such a
way that εrn(ε) → λr ∈ [0,∞) for some 1 ≤ r ≤ k, we have

Pi{ξ(ε)(n(ε)) = j, µ
(ε)
0 > n(ε)}

exp(−(ρ(0) + c1ε+ · · ·+ cr−1εr−1)n(ε))
→

π̃
(0)
ij

eλrcr
as ε→ 0, i, j 6= 0.

Proof. Throughout the proof, we let the initial state i 6= 0 be fixed. It will be
shown that conditions A–E imply that conditions A∗–D∗ hold for the functions

f (ε)(n) = g
(ε)
ii (n) and q(ε)(n,A) =

∑
j∈A h

(ε)
ij (n). Then, Theorem 1 can be

applied in order to prove Theorem 3.

Recall from Section 4 that the vector of moment generating functions Φ
(ε)
i (ρ)

satisfies the following system of linear equations:

Φ
(ε)
i (ρ) = p

(ε)
i (ρ) + iP

(ε)(ρ)Φ
(ε)
i (ρ). (20)

It follows from Lemma 3 that there exist ε0 > 0 and δ > 0 such that
Φ

(ε)
i (ρ) <∞ for all ε ≤ ε0 and ρ ≤ δ. Thus, we can use Lemma 1 to conclude

that the system (20) has a unique solution for ε ≤ ε0 and ρ ≤ δ given by

Φ
(ε)
i (ρ) = (I− iP

(ε)(ρ))−1p
(ε)
i (ρ). (21)

Using (21) and condition A it follows that Φ
(ε)
i (ρ) → Φ

(0)
i (ρ) as ε → 0 for

ρ ≤ δ and in particular

φ
(ε)
ii (ρ)→ φ

(0)
ii (ρ) as ε→ 0, ρ ≤ δ. (22)
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Relation (22) implies that for all n = 0, 1, . . . , we have g
(ε)
ii (n) → g

(0)
ii (n)

as ε → 0. Since φ
(ε)
ii (0) = g

(ε)
ii , relation (22) also implies that g

(ε)
ii → g

(0)
ii as

ε → 0. Furthermore, by condition B, the function g
(0)
ii (n) is not concentrated

at zero and under conditions B and E, we have that g
(0)
ii (n) is non-periodic.

Thus, the function g
(ε)
ii (n) satisfies condition A∗.

It follows from Lemma 3 that the moment generating function φ(ε)(ρ) =

φ
(ε)
ii (ρ) satisfies condition B∗.

It follows from Theorem 2 that condition C∗ holds for

φ(ε)(ρ(0), r) = φ
(ε)
ii (ρ(0), r), r = 0, . . . , k.

We now show that the function q(ε)(n,X) = Pi{µ(ε)
0 ∧ µ

(ε)
i > n} satisfies

condition D∗. Thus, we show that there exists γ > 0 such that

lim sup
0≤ε→0

∞∑
n=0

e(ρ
(0)+γ)nPi{µ(ε)

0 ∧ µ
(ε)
i > n} <∞. (23)

In order to do this, first note that

∞∑
n=0

eρnPi{µ(ε)
0 ∧ µ

(ε)
i > n} =

Eie
ρ(µ

(ε)
0 ∧µ

(ε)
i ) − 1

eρ − 1
, ρ 6= 0. (24)

By Lemma 3 there exist δ ∈ (0, β] and ε′0 > 0 such that Φ
(ε)
i (δ) <∞, for all

ε ≤ ε′0. Using this, Lemma 1 implies that for any ε ≤ ε′0, we have iP
(ε)(δ) <∞

and the inverse matrix (I− iP(ε)(δ))−1 exists. Moreover, since δ ≤ β, condition

C gives that there exists ε′′0 > 0 such that p
(ε)
0 (δ) <∞ for ε ≤ ε′′0 . By Lemma

2, it can now be concluded that Φ̃
(ε)
i (δ) < ∞ for ε ≤ min{ε′0, ε′′0}. Using this

we get

Eie
δ(µ

(ε)
0 ∧µ

(ε)
i ) = φ

(ε)
ii (δ) + φ̃

(ε)
ii (δ) <∞, ε ≤ min{ε′0, ε′′0}. (25)

Since ρ(0) < δ, we can choose γ > 0 such that ρ(0) +γ < δ. With this choice
of γ, relation (23) now follows from (24) and (25).

Applying Theorem 1 now shows that part (i) of Theorem 3 holds and that
part (ii) of Theorem 3 holds for all j 6= 0 for which we have

h
(ε)
ij (n)→ h

(0)
ij (n) as ε→ 0, n = 0, 1, . . . (26)

However, under condition A, relation (26) holds for all j 6= 0 since it is possible

to write h
(ε)
ij (n) as a finite sum where each term in the sum is a continuous

function of quantities given in condition A. This concludes the proof.
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Abstract. Operational risk is one of the core risks of every insurance company under the 

Solvency II framework and can be defined as the financial losses occurred due to 

incorrectly defined systems or processes; failures in IT system, human mistakes or other 

external processes. The research is performed in order to assess the capital to cover 

possible losses due to the occurrence of the operational risk sub-risks and nature of an 

operational risk. We have shown that operational risks can be modelled by skew t-copula 

and estimated tail dependence in each situation for modelling distributions with heavier 

tail area. The model is prepared on a non-life insurance company’s example and is based 

on the recorded data from loss database that encompasses historical information of five 

main operational sub-risks: legal, informational, organizational, human resources and 

expense risk.  

Keywords: Operational risk, skew t-copula, t-copula, tail dependence, modelling, 

solvency capital, insurance. 
 

1 Introduction 
 

The fact is that the requirements of the Solvency II Directive are not just about 

capital of an insurance company but about risk assessment through the 

implementation and enhancement of risk measurement and risk management.  

Also, the Solvency II regime requires higher capital compared with the 

requirements of the Solvency I Directive that should ensure the solvency and 

financial stability of each insurance company. Moreover, the new requirements 

of the Solvency II Directive, which will come in force from 1st January 2016, 

set a lot of challenges to every insurance company in the European Union 

member states in relation to the establishment of more sensitive and 

sophisticated risk coverage in order to ensure solvency and the safety of 

policyholders. Based on the requirements of the Solvency II Directive, the 
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insurance companies should hold the appropriate amount of capital that could 

ensure safety of policyholders and beneficiaries. The target of this research is to 

study the improvement possibilities of the operational risk measurement under 

the Solvency II regime. The object of this paper is measurement of operational 

risk. Operational risk is the change in value of capital needed caused by the fact 

that actual losses, incurred from inadequate or failed internal processes, people 

and systems, or from external events, including legal risk but excluding strategic 

and reputational risks Since 2001, when document about operational risks 

Sound Practices for the Management and Supervision of Operational Risk was 

published by Basel Committee on  Banking Supervision [2] operational risk has 

been in the centre of interest of mathematicians. Because needed capital for 

different risks in banks is estimated by risk measure VaR (what is 99.9% in 

banks and 99.5% in insurance), it seems natural to use the same measure for 

operational risk too. But the problem is that VaR measure is not a coherent risk 

measure: 

1 1

( ) ( )

n n

i i

i i

VaR R VaR R 

 

  , where iR , {1,2,..., }i n  are different 

risks. Therefore, different bounds for VaR of a portfolio of risks can be found in 

Chavez-Demoulin et al. [5] or improved bounds in Embrechts and Puccetti [10]. 

Further different copulas (Gumbel, Gaussian) were used for analysis of risk 

across a non-symmetric matrix of loss data in Embrechts and Puccetti [11]. 

Extreme value theory was used to evaluate operational risks in El-Gamal et al. 

[9], Chavez-Demoulin et al. [6]. Our aim in this paper is to show that skew t-

copula can be used to estimate VaR of portfolio of different operational risks 

including confidence intervals for such as risk measure like VaR and finally 

calculate estimates of tail dependence for risks and for portfolio. We have 

worked out our methodology using data basis of recorded operational risks 

during one year in one insurance company of Latvia. 

 

2 Construction of skew t-copula 
 

We are going to model the joint distribution of different risks via skew t-copula 

to show advantage of the last one. Usually operational risk data have univariate 

marginals with skewed distributions of different types. To construct a 

multivariate model with certain dependence structure and different marginals 

copula theory has been the only tool at hand so far. But most of the suggested 

copulas are symmetric. To join skewed marginals into a multivariate distribution 

it seems more natural to use a skewed multivariate distribution. There exist 

many different modifications and extensions of the standard multivariate t-

distribution. An overview of these distributions is given in Kotz and Nadarajah 

[15], Ch. 5. We have constructed skew t-copula based on the multivariate t-

distribution and skew t-distribution introduced in Azzalini and Capitanio [1] and 

corresponding copulas constructed using these distributions.  Notation ,pt   is 

used when we talk about density of the p -variate t -distribution with   degrees 
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of freedom and notation ,pg   is used for the density of the p -variate skew t -

distribution with   degrees of freedom. Similar notations are used for the 

distribution functions.  

DEFINITION 1. A p-dimensional random vector  1( ,..., )T
pX XX  is said to 

have p-variate t-distribution with   degrees of freedom, mean vector μ  and 

positive definite matrix Σ , if its density function is given by (Azzalini and 

Capitanio [1]): 

1 2

,
1

2 2

( ) ( )2
( , , ) 1

( )
2

p

T

p p

p

t















 
       

  
 
 

x μ Σ x μ
x μ Σ

Σ

.              (1) 

Next we give the definition of the p-dimensional skew ,pt  -distribution 

(Azzalini and Capitanio [1]). 

DEFINITION 2. A random p-vector 1( ,..., )T
pX XX  has p-variate skew t -

distribution with parameters μ , α   and Σ  , if its density function is of the form 

1

2
1

, , 1,( ; , , ) 2 ( ; , ) ( )T

p p p

p
g t T

Q
  









 
         

  

x μ Σ α x μ Σ α W x μ     ,           (2) 

where Q  denotes the quadratic form 

1( ) ( )TQ   x μ Σ x μ  

and W  is the p p  diagonal matrix ( )ij ij W , , 1,...,i j p , where ij  is 

the Kronecker delta. 1, ( )pT     denotes the distribution function of the central 

univariate t - distribution with p  degrees of freedom. 

The skew t-copula is introduced in Kollo and Pettere [13]. As marginal 

distributions of the business lines are skewed, a skewed copula will be a natural 

model to give a good fit with the data.  

DEFINITION 3. A copula ,pC   is called skew ,pt  -copula with 

parameters μ ,Σ , α , if 

1 1
, 1 , , 1 1 11 1 ,( ,..., : , , ) ( ( ; , , ),..., ( ; , , ), , , )p p p p p p p pp pC u u G G u G u         μ Σ α μ Σ α

where 1
, ( ; , , )p i i ii iG u    , {1,2,..., }i p  denotes the inverse of the univariate 

skew ,pt  -distribution function and ,pG  is the distribution function of p-

variate skew ,pt  -distribution with density (2). 

The corresponding copula density function is 
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1

1 1

, 1, 1 11 1 1,

,
1

1, 1,

[{ ( ; 0, , ), ..., ( ; 0, , )}; , , ]
( ; , , )

[ ( ; , , ); , , ]
p

i

p p pp p

p

i i ii i i ii i

g G u G u
c

g G u

  



 

   

     


 






μ Σ α
u μ Σ α   

where the density function , ( ; , , )pg   μ Σ α :
p

R R  is defined by (2) and 

function 
1

1, ;( , , )i ii ii
G u   


 is as in Definition 3. 

We are going to apply the skew t-copula in a special case when the shift 

parameter μ 0 . To find a model for our data we have to estimate the 

parameters Σ  and α . For that, we shall apply the method of moments. 

Parameters Σ  and α  are estimated from the first two sample moments (Kollo 

and Pettere [13]). Let X  and XS  denote the sample mean and the sample 

covariance matrix, respectively. Then the estimates are 

 

2
ˆ ( )

T




 XΣ S XX                                         (3) 

   

2 1

( )
ˆ

ˆ( )
T

b

b











β
α

X Σ X
 ,                                      (4) 

where 

11
ˆ ˆ

( )b 


β WΣ X ,                                        (5) 

 

with ˆ ˆ( )ij ij W , , 1, ...,i j p , where ij  is the Kronecker delta and 

1

2

1
( )

2( )

( )
2

b











 



 
  

. 

 

We have to assume in formula (4) that 2.    

Variable   is possible to estimate between every two variables using formula 

from Kotz and Nadarajah [15]: 

 

2

4 1 4 23 ( 2)( 4)( ( ) ( )) 0m X m X                        (6) 
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where 4 ( )im X  denotes the sample estimate of the fourth order moments of 

random variable iX  , {1,2}i . The estimates are closest integers to the 

solution of equation (6) and can be found for 4  . 

 

3 Tail dependence for skew t–distribution 
 

Let us assume that 
1 2( , )X X  is a two-dimensional vector with univariate 

marginal distributions functions 
1( )F x  and 

2 ( )F x . Then the upper tail 

dependence coefficient is  

1
lim ( )U U
u

u 


  

where 1 2( ) ( ( ) / ( ) )U u P F x u F x u    .  

Similarly is defined the lower tail dependence coefficient 

1
lim ( )L L
u

u 


  

where 1 2( ) ( ( ) / ( ) )L u P F x u F x u    .  

For symmetric elliptical distributions
 U L    , for normal distributions   

equals zero. For two-dimensional t-distribution with   degrees of freedom 

                          1,

( 1) (1 )
2

( 1)
T 

 




   
    

                                                  (7) 

where 1, (.)T   is the distribution function of standard t-distribution with   

degrees of freedom (see Demarta and McNeil [7])  

It is proved in Bortot [3] that it is sufficient to study the upper tail dependence 

as the lower tail dependence coefficient is determined by the upper one. To 

follow Bortot [3] let us denote by 

* 1 2
1

2 2

21 (1 )

  


 

 


  
  and * 2 1

2
2 2

11 (1 )

  


 

 


  
                           (8) 

Assume that * *

1 2   . Then 
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or 
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  (9) 

   

In the case of 
1 2     the tail dependence coefficient can be calculated 

using formula: 

1, 2

*

1, 1

( 2) ( 1)
2

2

( 1)
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T

T





 


 
 





   
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where *

2 2

(1 )

1 (1 )

 


 

 


  
 . 

 

The fact is that the difference of tail dependencies between t-distribution and 

skew t-distribution is determined by the ratio of univariate distribution functions 

of the t-distribution. It is shown in Bortot [3] that for the equal values of   the 

difference in tail dependence is not large. 

 

4 Description of the model and data 
 

The simulation model performed during the case study is based on five risks, 

but it can be used for any number of risks. The model includes the following 

operational sub-risks: 

 Legal risk (LR) means the possibility that lawsuits, adverse judgments 

from courts, or contracts that turn out to be unenforceable, disrupt or 

adversely affect the operations or condition of an insurer. The result 

may lead to unplanned additional payments to policyholders or that 

contracts are settled on an unfavorable basis, e.g. unrecoverable 

reinsurance.  

 Organizational risk (OR) means possible losses due to unclear 

organizational structure (unclear processes, unclear responsibilities 

split between units etc.). 

 Informational risk (IR) means possible losses due to failures in the IT 

system.  

 Human Resources risk (HRR) means losses due to changes or loss of 

personnel, deterioration of morale, inadequate development of human 

resources, inappropriate working schedule, inappropriate working and 

safety environment, inequality or inequity in human resource 

management or discriminatory conduct. 

 Expense risk (ER). The risk of a change in value caused by the fact that 

the timing and/or the amount of expenses incurred differs from those 

expected, e.g. assumed for pricing basis. 

The historical data is based on recorded data in relation to the five risk sub-risks 

of operational risk from the annual loss database. The loss database introduces 
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all incurred operational risk events with details about losses during a particular 

period and is important aspect of the understanding of interconnectivity of 

different operational sub-risks; thus is a prerequisite to controlling problems and 

assessing practices. 

Basically, the model is based on several main steps: 

1) data collection, 

2) determination of a marginal distribution of each operational sub-risk, 

3) simulation of 10 000 values of each risk  using skew t-copula,  

4) calculating VaR of each marginal,  

5) finding VaR for total portfolio of operational risk, 

6) repeating 30 times steps 3 to 5 and calculating descriptive statistics. 

Descriptive statistics of the marginal distributions of the above-mentioned risks 

are presented in Table 1.  

 

Table 1. Descriptive statistics of used data. 

 

All operational risks are skewed, but the largest maximum value has 

organizational risk. Risk with so large maximal value was chosen specially to 

check does model fit in such case too. Before fitting marginal distributions, the 

data were standardised and only then, the marginal distributions were 

approximated by exponential, gamma and normal distributions.  

The testing results are shown in Table 2. 

 

Table 2. Results of testing.  

Risks LR OR IR HRR ER 

Sample size 12 12 12 12 12 

Mean 7 564 45 618 5 425 1 747 2 308 

Median 3 700 1 610 960 18 0 

Standard deviation 11 151 143 207 9 342 4 490 6 655 

Largest value 41 278 500 010 31 010 15 001 43 000 

Skewness 2.92 3.45 2.21 2.82 3.24 

Risks Distribution used Parameters Test value 

LR Exponential   1.474 0.164 

OR Gamma   0.101  

0.169   3.139 

IR Gamma   0.227  

0.096   2.098 

HRR Gamma   0.152  

0.338   2.569 

ER Normal    3.352  

0.079    1.000 

807



Correlation matrix between risks (order of risks from left to right and from up to 

down is LR, OR, IR, HRR and ER) is the following: 

1 0.143 0.357 0.183 0.071

0.143 1 0.118 0.135 0.085

0.357 0.118 1 0.086 0.132

0.183 0.135 0.086 1 0.063

0.071 0.085 0.132 0.063 1

R



   

   

  

  

 
 
 
 
 
 
 

 

One can see that smallest correlations are between LR and ER (0.071) and HRR 

and ER (-0.063). 

Estimations of parameters were started by estimating degrees of freedom   

between each two pairs of variables by using formula (6) (see Table 3.) 

 

Table 3. Estimated values of   by formula (6). 

i OR IR HRR Ex 

LR 1.839313 1.816586 1.820098 1.833699 

OR 

 

1.831101 1.834072 1.845673 

IR 

  

1.809678 1.824871 

HRR 

   

1.828069 

 

Nearest possible integer in all cases are 2. Formula (6) is right only if 4   

and skew t-copula is possible to use from 2   . In our case formula (4) is 

possible to use only with 5   and therefore we have chosen 5  . 

Further parameters for copula were estimated using formulas (3), (4) and (5). 

The obtained Σ̂  matrix is: 

0.876 0.044 0.408 0.268 0.186

0.044 0.661 0.020 0.007 0.016

ˆ 0.408 0.020 0.736 0.060 0.022

0.268 0.007 0.060 0.691 0.044

0.186 0.016 0.022 0.044 0.674

 
 

 
 
 

 
 
 

Σ  

Estimated values of vector α  are   

(1.675 1.657 1.518 1.394 1.408) .T α  

The simulation is based on the simulation rule for the skew ,pt  -distribution  

(Kollo and Pettere [13]): 

1. Find the Cholesky decomposition A  of X
S , ( T  XAA S ). 

2. Simulate p independent values from N(0,1) and form p-vector z . 

3. Set vector  x A z . 

4. Simulate value w  from N(0,1). 
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5. Get realization of the skew normal vector y  putting 

.

T

T

if w

if w

 
 

 

x α x
y

x α x  

6. Simulate 2h  . 

7. Find vector 
/h 


y

t . 

8. Set vector u  so that every coordinate 1, ( ;0, , )i i ii iu G t   , 

[1,..., ]i p . 

9. Set vector 1 1

1 1( ( ),..., ( ))p pF u F u x  where ( )iF   is the marginal 

distribution function of the initial random variable iX . 

10. Repeat previous steps 10 000 times. 

 

5 Results 
 

Based on the performed simulations, it is possible to conclude that the obtained 

portfolio VaR by simulations is smaller than sum of VaR for different risks and 

it means that the necessary capital to cover these risks is less by 10.3%. The 

main findings and results of simulation are in Table 4 and Table 5. In order to 

understand the information presented in Table 4, the explanation of some values 

are provided:  

 The first line presents the 99.5% VaR for each sub-risk using inverse 

marginal distributions.  

 The next lines present characteristics of 99.5% VaR for each sub-risk 

and portfolio obtained from simulations. 

 

Table 4. 99.5% VaR of separate risks obtained using simulations and its 

characteristics. 

 

Risks LR OR IR HRR ER 

99.5% VaR from 

distributions 40 078 947 292 55 567 28 530 19 450 

Mean of 99.5% 

VaR 39 980 882 287 53 803 27 247 18 936 

Median 39 891 875 210 53 560 27 414 18 992 

Standard 

deviation 908 50 990 1 700 1 395 224 

Skewness 0.426 0.923 0.591 -0.023 -0.921 

Coefficient of 

variation (%) 2.27 5.78 3.15 5.12 1.18 
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The same characteristics for portfolio of risks as for each risk in Table 4 are 

shown in Table 5. 

 

Table 5. 99.5% VaR of portfolio obtained using simulations and its 

characteristics. 

 Sum of VaR Portfolio  VaR 

99.5% VaR from 

distributions 1 090 917  

Mean of 99.5% VaR 1 022 333 916 576 

Median 1 015 070 910 795 

Standard deviation 50569 44 408 

Skewness 0.938 0.937 

Coefficient of variation 

(%) 4.95 4.84 

 

Results in Table 4 and in Table 5 show us that simulation results from the skew 

t-copula are stable. Medians are close to means, skewness coefficients and 

variation coefficients are not large. Therefore, it is possible to assume 

approximate normal distribution of simulated mean and to calculate confidence 

intervals for portfolio VaR. Estimated confidence intervals for portfolio VaR are 

shown in Table 6. 

Additionally it is possible to see from Table 5 that gain of using copula 

approach is EUR 105 757 or 10% decreasing in capital needed. 

  

Table 6. Confidence interval of portfolio VaR. 

Confidence probability Portfolio VaR Lower limit Upper limit 

99.5% 916 576 895 693 937 459 

 

Calculated limits of confidence intervals show us that even upper limit for 99.5 

% confidence is lower than portfolio VaR obtained simply by adding different 

risk VaR. The tail dependence coefficient calculations for given risks using 

formulas (7), (8) and (9) are presented in Table 7 and in Table 8. Like it is 

possible to see from Table 7 and Table 8, tail dependence coefficients are not 

large but tail dependence exists. 

 

Table 7. Tail dependence coefficients between LR and other risks. 

Risks LR – OR LR – IR LR – HRR LR – ER 

  0.0183 0.0762 0.0486 0.0357 
*

1  0.7489 1.2772 1.1372 1.0294 
*

2  0.7324 1.1389 0.8822 0.7841 

1, 2T    0,9996 0.9998 0.9997 0.9997 

1, 1T    0.9385 0.9385 0.9385 0.9385 

U  0.0196 0.0812 0.0518 0.0380 
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Table 8. Tail dependence coefficients between other risks. 

Risks OR – IR OR – HRR OR – ER 

U  0.0215 0.0213 0.0241 

Risks  IR – HRR IR – ER 

U   0.0238 0.0206 

Risks   HRR – ER 

U    0.0252 

 

There is no possibility to calculate in direct way tail dependence for skew t-

distribution because in formula (9) is not the equality sign. Unique what is 

possible to do is to estimate tail dependence coefficients between each two risks 

using formula (9) and to have in mind that in reality it can be slightly larger. It is 

shown in Kollo et al. [14] that the upper tail dependence coefficient for skew t-

copula differs not much when skewness parameters have the same sign and 

when one of them has positive and another negative value, then skew t-copula 

can have much bigger tail dependence coefficient than the corresponding t-

copula. Because skewness parameters, which are presented by vector, α  are 

with same sign and close to each other, we can conclude that at least in this case 

tail dependence does not differ much from the calculated values. 

 

Conclusions 
 

Risk dynamic nature in the changing market conditions sets a lot of challenges 

to every company. Thus, it is necessary to implement new approaches to follow 

the nature of risks with the aim to understand their possible impact on financial 

stability and further development. Under Solvency II regime insurance 

companies like banks will need to evaluate necessary capital to cover different 

risks. The largest problem can be to evaluate operational risks because of lack of 

data. For that reason, many different methods are created to evaluate operational 

risks. Many methods are based on expert evaluations (see, for example, Durfee 

and Tselykh [8], Jonek-Kowalska [12] and Stepcenko and Voronova [17]). 

However, from another side it is very natural to evaluate operational risks by 

using statistical methods like all other insurance and banking risks. For that is 

necessary to record very carefully losses in each company. If such data basis 

exists, we have shown that needed capital for operational risks can be evaluated 

by different statistical methods. Many new books have appeared in latest years 

about evaluation of operational risks. Latest books, for example, are Cavestany 

et al. [4] and McConnell [16]. Privilege of that paper is using skew t-copula 

modelling necessary capital to cover operational risks. 

Advantages of the proposed method are:  

• the skew t-copula has a very simple simulation rule,  

• by choosing degrees of freedom is possible to find appropriate 

skewness of copula for simulation,  
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• possibility to calculate average measure of necessary characterstics,  

• possibility to estimate sensitivity of calculated measure, 

• possibility to calculate confidence interval of portfolio value at risk, 

• tail dependence can be evaluated between risks. 
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Abstract. The aim of our research work is to develop a European gas transmission 

system probabilistic model to analyse in a single computer model, the reliability and 
capacity constraints of a gas transmission network. The probabilistic prototype software 

ProGasNet, which is under our development, is based on generalization of the maximum 

flow problem for a stochastic-flow network model in which network elements can 

randomly fail with known failure probabilities. Concerning security of supply, network 
elements, for example gas storages and compressor stations, are expressed by a multi-

state system. To analyse the vulnerability of the gas network, various what-if supply 

disruption scenarios is necessary to analyse. However, the situation becomes more 

complex, when the gas network is large and when effects of various gas infrastructure 
project proposals (for example new LNG terminals) should be evaluated and compared. 

We present our experience with a statistical approach based on a risk ratio, which can 

help users with analysing of large number of probabilistic results.  

Keywords: energy security; network reliability; network resilience; gas transmission 
network modelling; Monte-Carlo methods 

1. Introduction 

Recent crisis (Russia, Ukraine, Libya) challenged security of gas supply to 

Europe and this stimulated to look at this issue from political, technological and 

research perspectives. The EU Regulation 994/2010 [1] highlights importance 

of security of gas supply in Europe and proposes a number of measures to 

improve the situation.   

From research point of view, reliability modelling of large networks became a 

popular subject for a number of researchers. A detailed review of network 

reliability methods is provided in [2]. The document deeply analyses properties 

of exact and simulation-based algorithms for key reliability modelling tasks. 

Reliability analysis of networks have been analysed from different perspectives. 

Reliability analysis of ternary networks by so called ternary spectrum is 

analysed in [3]. Ternary spectrum is a network combinatorial invariant, and if it 

is known that all components are statistically independent and identical, system 

failure probability can be computed by a formula. Authors also analyse a system 

of two or more interacting networks. A simulation-based framework for 

interconnected electricity and gas systems is presented in [9]. The book [5] 

presents a comprehensive, up-to-date description of multi-state system 

reliability as a natural extension of classical binary-state reliability. The graph 

theory approach for flow networks is described, for example, in [4], [6], [7] and 

[8]. This is far from a complete list of references in the field, but it represents 

diversity and complexity of the approaches and problems to be solved. 
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In this paper, probabilistic gas availability computations are performed by using 

a Monte Carlo simulation technique based on a distance-based approach of a 

stochastic network gas flow model [12], [13], [14]. The model assumes that 

priority in gas supply is given to the consumer nodes that are closer to the 

source nodes. This supply pattern is typical in gas transmission pipeline 

networks; however it can be changed by applying different demand measures in 

case of real crisis. The model works in such a way that in each Monte-Carlo 

simulation step, firstly component failures are sampled according to empirical 

probabilistic law assumed. In order to estimate the maximum of transmitted 

flow from source nodes to sink nodes under reliability and capacity constraints 

given by the stochastically imperfect elements, the maximum flow algorithm 

with multiple sources and multiple sinks is applied. Having collected large 

sample of network configurations and available flows, statistical estimations of 

available gas at demand nodes are provided.  

2. Monte-Carlo simulation technique for stochastic network 

model 

The reliability and capacity constraints of gas networks are analysed and 

discussed, for example, in [10] and [11]. The ProGasNet software, which is 

under our development, runs modified maximum flow algorithm [8] for each 

network configuration to distribute available gas from supplying nodes to 

consuming nodes taking into account both reliability and capacity constraints of 

network elements. The model is not running hydraulic gas flow computations, 

but uses results of hydraulic computations as a set of rules to define flow 

limitations. 

The ProGasNet simulates network facility failures (pipeline ruptures, failures of 

compressor stations, unavailability of LNG terminals and storages) by Monte 

Carlo method and each different network configuration is evaluated by modified 

maximum flow algorithm to evaluate available gas for each network consuming 

node. During the network supply analysis, the algorithm distributes the available 

gas to all demand nodes. In case the total network demand cannot be met by 

available supply sources, the nodes closer by distance to the supplying source 

are served first. Finally, the statistical results are obtained from at least 1 million 

of Monte-Carlo runs. 

The paper presents further development of the Monte-Carlo approach and 

provides a region wide benchmark analysis for probabilistic quantification of 

gas supply effects of a new LNG terminal. The presented gas network represents 

a real gas transmission network in Europe, but due to confidentiality, the 

geographical data is not provided. 

3. Modelling of gas transmission network components 

3. 1. Probabilistic model of a pipeline 

The pipeline failure is modelled by the reduction of the pipeline capacity to 

zero. According to the EGIG report [10], the average failure frequency of a 
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European gas transmission pipeline is 3.5 × 10
-4

 per kilometer-year. Let us 

assume that 10% of the reported failures cause complete rupture of a pipeline. 

As a result, we set pipeline failure probability as pf = 3.5 × 10
-5

 per kilometer-

year. In accordance to the GTE [11], a relationship between the pipeline 

capacity and the pipeline diameter can be approximated for gas transmission 

pipelines. Moreover, this model prediction can be tuned if prior information is 

available. For example, the maximum pipeline capacity at the cross border 

connection point together with the pipeline diameter can be taken from a 

transmission system operator (TSO) reports. 

3.2. Probabilistic model of a compressor station 

 It is assumed that a compressor station failure causes the reduction of the 

capacity of the surrounding pipelines. More precisely, a compressor station 

failure reduces the inlet pipeline and also the outlet pipeline capacity by 20%. 

This estimate is based on empirical estimations from known operational cases 

[14], but physical model simulations could serve as a confirmation for each 

specific situation.  

It is assumed that the annual failure probability of a compressor station is 0.25. 

This is a conservative estimation obtained by a reliability database from network 

operators. The compressor station are Nodes 11 and 12 in our model (see Figure 

1). 

3.3. Probabilistic model of gas storage 

In case of a gas storage failure, it is assumed that the capacity of the pipeline 

connected to the gas storage is reduced to zero [13]. According to expert 

knowledge [15], we set the annual failure probability of the gas storage to 0.10. 

Gas storage is Node 19 in our model (Figure 1). 

3.4. Probabilistic model of LNG terminal 

The LNG terminal is modelled as a special of the gas storage: the LNG terminal 

is modelled as a gas source that can randomly fail. In case of a LNG component 

failure, it is assumed that the capacity of the pipeline connected to the LNG 

terminal is reduced to zero. According to literature indications (e.g.[16]), we set 

the annual failure probability of the LNG terminal to 0.15. Node 10 is a LNG 

terminal. 

4. Definition of the case-study network  

4. 1. Model inputs 

Figure 1 shows the network topology of the test gas transmission network model 

used in our study. The test case is based on the real gas transmission network of 

three countries. The presented supply/demand data sets are realistic; however, 

its geographical topology is not disclosed. The network contains the following 

elements: pipelines, compressor stations and the LNG terminal (Node 10).  

Node 1 is a virtual gas source. In total, there are 3 supply nodes: 2, 10 and 19 

(see Table 1). All numbers are expressed in million of cubic meter per day 

(mcm/d).  
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Figure 1: Anonymized topology of the test gas transmission network. 

 

Table 1: Properties of the gas sources of the gas network. The physical limits 

(column limit) of gas sources are expressed in mcm/d. 

from To limit  

1 2 31 

1 10 10.5 

1 19 25 

 

Pipeline diameters and their lengths were obtained from the gas operators. 

Consequently, the respective capacities have been estimated from pipelines 

diameters according to the GTE report [11], as discussed in Section 2. 

Moreover, the estimation of the transmission pipeline capacities has been 

independently verified by the authors and is consistent with results published at 
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reference [17]. All the properties of the transmission gas pipelines are 

summarized in Table 2. As the capacity matrix and the length matrix are 

symmetric in our benchmark, only non-zero elements of the upper triangular 

matrices are shown in Table 2. 

Finally, Table 3 illustrates the properties of the demand nodes of the gas 

network.  Node 55 is a virtual sink node. Node demands have been estimated 

according to partial information obtained from the gas operators. The 'last mile’ 

is not modelled, as only transmission pipelines are represented in the model.  

As our benchmark aims at studying the reliability of the gas network, the 

demands at the nodes are deterministic. In order to simplify Figure 1, the virtual 

sink node with the relative connections is not shown. 

 

Table 2: Properties of connected elements of the gas network. Capacities are 

expressed in mcm/d; lengths are expressed in km. 

from to capacity length 

 

from to capacity length 

2 50 31 23 

 

18 23 49.16 43 

3 4 49.16 0.01 

 

18 34 2.83 43 

3 5 12.11 32 

 

18 40 5.05 148 

3 11 12.11 29 

 

19 20 12.11 60 

3 46 17.13 22 

 

19 23 12.11 0.01 

4 5 12.11 32 

 

20 21 49.16 90 

4 47 2 22 

 

20 22 12.11 0.01 

4 48 12.11 2 

 

21 22 12.11 90 

5 43 5.05 5 

 

21 28 12.11 86 

6 7 12.11 80 

 

22 23 7 60 

6 8 5.05 80 

 

22 24 12.11 86 

6 35 5.05 30 

 

24 25 0.83 86 

6 44 5.05 11.6 

 

25 26 12.11 46 

7 8 49.16 0.01 

 

25 27 49.16 100 

7 51 12.11 200 

 

27 31 5.05 0.01 

8 9 2.83 25 

 

27 32 5.05 70 

8 51 12.11 200 

 

28 29 49.16 50 

9 10 2.83 162 

 

29 32 49.16 195 

10 53 1.34 144 

 

30 31 5.05 70 

10 54 5.05 144 

 

30 32 0.47 0.01 

11 12 2 103 

 

30 33 0.47 60 

11 43 12.11 34 

 

32 33 2 60 

11 50 49.16 31 

 

33 38 5.05 60 
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12 13 49.16 85 

 

34 37 2.83 200 

12 17 49.16 62 

 

36 46 5.05 24 

12 52 12.11 10 

 

36 47 5.05 24 

13 14 30.6 0.01 

 

39 50 1.34 106 

13 53 2 30 

 

40 41 5.05 32 

14 15 5.05 85 

 

40 42 12.11 63 

14 54 5.05 30 

 

44 45 5.05 1 

15 16 12.11 62 

 

44 46 17.13 23 

15 43 12.11 132 

 

44 47 2 23 

16 17 25 0.01 

 

46 47 49.16 0.01 

16 34 4 24 

 

49 54 0.83 40 

17 34 12.11 24 

 

53 54 49.16 0.01 

18 19 12.11 43 

      

Table 3: Properties of demand nodes of the gas network.  Node demands are 

expressed by mcm/d; lengths are expressed in km.  

from to demand 

 

from to demand 

5 55 3.43 

 

33 55 0.4 

6 55 0.57 

 

34 55 1 

7 55 0.66 

 

36 55 1.74 

10 55 2.02 

 

37 55 1.3 

13 55 1.03 

 

39 55 1 

17 55 0.46 

 

41 55 0.4 

18 55 8.4 

 

42 55 0.5 

21 55 0.54 

 

43 55 1.06 

25 55 0.6 

 

44 55 2.82 

26 55 0.8 

 

47 55 0.68 

27 55 3.5 

 

48 55 1.17 

28 55 6 

 

51 55 7 

30 55 0.4 

 

52 55 0.98 

 

Length data are used for the calculation of the distance from source nodes, in 

order to model the priority of supply. The demand nodes close to the source are 

served first. Moreover, length data sets are used for computing pipeline failure 

probability.  

Moreover, the physical limits of gas sources, capacities of connected elements 

and node demands are used as constrains for the Maximum flow algorithm.  
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5. Disruption case studies 

In order to simulate the network reaction to LNG gas supply disruptions, the 

following scenarios are studied: 

 Case 1: No external disruption; i.e. input nodes 2 and 19 are supplied 

as contracted. The pipeline between Node 10 (LNG) and Node 53 is 

not considered in the model. There is no LNG at Node 10.  

 Case 2: LNG at Node 10 has upper limit 10.5 mcm/d. No external 

disruption, i.e. input nodes 2 and 19 are supplied as contracted. 

 

In these scenarios, we assume that the network components (pipelines, 

compressor stations and LNG terminal) might fail according to the probabilistic 

estimates discussed above.  

For each scenario, 1 million Monte-Carlo simulations were run. The analysis 

calculated the steady state of supply/demand estimated by the Maximum flow 

algorithm. The network component failures were simulated on a monthly basis. 

6. Results of Monte-Carlo simulations 

In order to the test reliability of the gas network, selected gas supply strategies 

were simulated with the Monte-Carlo approach. The results of simulations are 

statistically evaluated, in order to estimate reliability of gas supply for 

consuming nodes. This probabilistic quantification can be used as a tool for 

comparing, scoring and ranking different gas infrastructure projects. 

5.1. Quantification of probabilistic effects of a new gas infrastructure: a case of 

LNG terminal 

Let us analyse in more detail the probabilistic results of Cases 1 and 2, see Table 

4 and Table 5. The tables include the list of demand quantities (column D) and 

probabilities that the supply at node X will be zero, expressed by the symbol 

P(X=0), or less than 20%, 50%, 80% or 100% of the node demand. 

Both analysed cases represent a scenario without external disruption, i.e. input 

nodes 2 and 19 are supplied as contracted. Moreover, in Case 2, LNG is added 

at Node 10 with upper limit 10.5 mcm/d. Node 56 represents a virtual node 

(summary of supply). Adding the LNG source produces a decrease in P(X<D) 

from 1.24E-02 to 1.17E-02.  

Moreover, results of one million of Monte-Carlo simulations indicate that 

adding the LNG as redundant supply will diminish the gas delivery uncertainty 

for Nodes 13, 17, 34, 43 - see Table 5.  

However, the quantification of the effects of the addition of redundant LNG by 

direct comparison of the probabilities in Table 4 and Table 5 is not self-evident, 

due to size of the tables. For this reason, we created another table, which 

automatically highlights dissimilarities between Table 4 and Table 5:  see Table 

6. 

In our approach, the quantification of security of gas supply of the LNG gas 

infrastructure for node i of the gas network is provided by a risk ratio [18]. The 
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risk ratio is easy to interpret: the risk ratio (also called 'relative risk') for a ‘not 

enough gas event’ at Node i is the probability of having ‘not enough gas’ at 

Node i without the LNG infrastructure divided by the probability of having ‘not 

enough gas’ at Node i with the LNG: 

 

            
                                   

                                              
 

 

For example, if the risk ratio equals 5, it is 500 percent more likely to occur a 

‘not enough gas event’ at Node i when no LNG is assumed than in cases with 

the connected LNG, holding all other variables constant. On the contrary, a 

relative risk of one at Node i means that the LNG infrastructure has no effect on 

the Node i.  

5.2. Discussions of results 

As shown in Table 6, if we compare simulations with and without LNG, the risk 

ratio (expressed by the symbol “rr”) of having less than 80 % of the demand at 

Node 6 is, approximately, 97. Naturally, the largest effect of having the LNG 

infrastructure is directly visible at Node 10. Moreover, the positive effect of 

LNG is evident also for Nodes 5-7, 44, 47 and, partially, also for Node 36. The 

results appear to be realistic: As expected, the nodes showing positively effects 

are those geographically close to the LNG.  

Finally, the nodes with relative risk equal to one are not affected by the LNG. 

For Node 52, and, partially, for Node 36, the relative risk is close to 0.9, 

considering the inherent numerical approximation of the Monte-Carlo method. 

But it is not a supply gas problem, as the estimated non-delivery probabilities at 

these two nodes are very close to zero.  

 

Table 4: Results of Case 1: List of nodes with non-zero demands (D, mcm/d) 

and probabilities that the node supply will be zero or less than 20%, 50%, 80% 

or 100% of the node demand.  

Node D P(X=0) P(X<0.2D) P(X<0.5D) P(X<0.8D) P(X<D) 

5 3.43 2.00E-06 2.00E-06 1.39E-04 1.39E-04 1.39E-04 

6 0.57 3.05E-04 3.05E-04 3.90E-04 3.90E-04 3.90E-04 

7 0.66 3.90E-04 3.90E-04 3.90E-04 3.90E-04 3.90E-04 

10 2.02 2.27E-04 2.27E-04 2.27E-04 9.35E-04 9.35E-04 

13 1.03 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 

17 0.46 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 

18 8.4 5.00E-06 6.00E-06 7.00E-06 8.46E-03 8.46E-03 

21 0.54 8.46E-03 8.46E-03 8.46E-03 8.46E-03 8.46E-03 

25 0.6 8.46E-03 8.46E-03 8.46E-03 8.46E-03 8.46E-03 

26 0.8 8.58E-03 9.10E-03 9.10E-03 9.10E-03 9.10E-03 
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27 3.5 8.60E-03 8.60E-03 8.60E-03 8.60E-03 8.60E-03 

28 6 8.46E-03 8.46E-03 8.68E-03 8.68E-03 8.68E-03 

30 0.4 8.60E-03 8.60E-03 8.60E-03 8.60E-03 8.60E-03 

33 0.4 8.60E-03 8.60E-03 8.60E-03 8.93E-03 8.93E-03 

34 1 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 

36 1.74 2.13E-04 2.13E-04 2.13E-04 2.14E-04 2.15E-04 

37 1.3 9.04E-03 9.04E-03 9.04E-03 9.04E-03 9.04E-03 

39 1 3.61E-04 3.61E-04 3.61E-04 3.61E-04 3.61E-04 

41 0.4 8.99E-03 8.99E-03 8.99E-03 8.99E-03 8.99E-03 

42 0.5 9.08E-03 9.08E-03 9.08E-03 9.08E-03 9.08E-03 

43 1.06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 

44 2.82 1.39E-04 1.39E-04 2.13E-04 2.76E-04 2.76E-04 

47 0.68 1.39E-04 1.39E-04 1.39E-04 1.39E-04 1.39E-04 

48 1.17 7.00E-06 7.00E-06 7.00E-06 7.00E-06 7.00E-06 

51 7 3.90E-04 3.90E-04 3.90E-04 6.18E-04 6.18E-04 

52 0.98 3.20E-05 3.20E-05 3.20E-05 3.40E-05 3.40E-05 

56 48.46 2.00E-06 2.00E-06 3.00E-06 8.82E-03 1.24E-02 

 

Table 5: Results of Case 2: List of nodes with non-zero demands (D, mcm/d) 

and probabilities that the node supply will be zero or less than 20%, 50%, 80% 

or 100% of the node demand. 

Node D P(X=0) P(X<0.2D) P(X<0.5D) P(X<0.8D) P(X<D) 

5 3.43 0.00E+00 0.00E+00 3.00E-06 3.00E-06 3.00E-06 

6 0.57 3.00E-06 3.00E-06 4.00E-06 4.00E-06 4.00E-06 

7 0.66 7.40E-05 7.40E-05 7.40E-05 7.40E-05 7.40E-05 

10 2.02 4.00E-06 4.00E-06 4.00E-06 4.00E-06 4.00E-06 

13 1.03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

17 0.46 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

18 8.4 0.00E+00 0.00E+00 0.00E+00 8.48E-03 8.48E-03 

21 0.54 8.48E-03 8.48E-03 8.48E-03 8.48E-03 8.48E-03 

25 0.6 8.49E-03 8.49E-03 8.49E-03 8.49E-03 8.49E-03 

26 0.8 8.64E-03 9.14E-03 9.14E-03 9.14E-03 9.14E-03 

27 3.5 8.64E-03 8.64E-03 8.64E-03 8.64E-03 8.64E-03 

28 6 8.49E-03 8.49E-03 8.75E-03 8.75E-03 8.75E-03 

30 0.4 8.64E-03 8.64E-03 8.64E-03 8.64E-03 8.64E-03 
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33 0.4 8.64E-03 8.64E-03 8.64E-03 8.99E-03 8.99E-03 

34 1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

36 1.74 3.00E-06 3.00E-06 7.30E-05 2.26E-04 2.27E-04 

37 1.3 9.10E-03 9.10E-03 9.10E-03 9.10E-03 9.10E-03 

39 1 3.47E-04 3.47E-04 3.47E-04 3.47E-04 3.47E-04 

41 0.4 8.98E-03 8.98E-03 8.98E-03 8.98E-03 8.98E-03 

42 0.5 9.04E-03 9.04E-03 9.04E-03 9.04E-03 9.04E-03 

43 1.06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

44 2.82 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 

47 0.68 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 

48 1.17 6.00E-06 6.00E-06 6.00E-06 6.00E-06 6.00E-06 

51 7 2.28E-04 2.86E-04 3.21E-04 3.99E-04 3.99E-04 

52 0.98 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 

56 48.46 0.00E+00 0.00E+00 1.00E-06 8.64E-03 1.17E-02 

 

Table 6: Quantifications of probabilistic effects of an 10.5 mln/d LNG source. 

Positively affected demand nodes highlighted. 

Node D rr(X=0) rr(X<0.2D) rr(X<0.5D) rr(X<0.8D) rr(X<D) 

5 3.43 - - 46.3 46.3 46.3 

6 0.57 101.7 101.7 97.5 97.5 97.5 

7 0.66 5.3 5.3 5.3 5.3 5.3 

10 2.02 56.8 56.8 56.8 233.8 233.8 

13 1.03 - - - - - 

17 0.46 - - - - - 

18 8.4 - - - 1.0 1.0 

21 0.54 1.0 1.0 1.0 1.0 1.0 

25 0.6 1.0 1.0 1.0 1.0 1.0 

26 0.8 1.0 1.0 1.0 1.0 1.0 

27 3.5 1.0 1.0 1.0 1.0 1.0 

28 6 1.0 1.0 1.0 1.0 1.0 

30 0.4 1.0 1.0 1.0 1.0 1.0 

33 0.4 1.0 1.0 1.0 1.0 1.0 

34 1 - - - - - 

36 1.74 71.0 71.0 2.9 0.9 0.9 

37 1.3 1.0 1.0 1.0 1.0 1.0 
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39 1 1.0 1.0 1.0 1.0 1.0 

41 0.4 1.0 1.0 1.0 1.0 1.0 

42 0.5 1.0 1.0 1.0 1.0 1.0 

43 1.06 - - - - - 

44 2.82 46.3 46.3 71.0 92.0 92.0 

47 0.68 46.3 46.3 46.3 46.3 46.3 

48 1.17 1.2 1.2 1.2 1.2 1.2 

51 7 1.7 1.4 1.2 1.5 1.5 

52 0.98 0.9 0.9 0.9 1.0 1.0 

56 48.46 - - 3.0 1.0 1.1 

 

7. Conclusions and future work 

The ProGasNet tool provides probabilistic results of the gas network ability to 

meet its demand and such results can be used either as absolute values to 

compare among different networks or in qualitative terms to choose between 

better or worse options. The ProGasNet has been applied to test cases based on 

the real gas transmission network of selected EU countries. The results obtained 

indicate the benefits that might derive from the insertion of a new infrastructure 

(LNG terminal) to an existing network, and in particular to certain nodes. It is 

important to note that security of supply also depends on redundancy of supply 

sources, and that this can be quantified by the model proposed. 

The model will be expanded and improved in many directions in the future, in 

particular by integrating more results from physical flow models (important for 

larger networks containing many compressor stations) and optimizing the 

algorithm to handle more Monte-Carlo runs. 
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Abstract. In cognitive science there has been considerable interest in the understanding of ex-
pertise development. Models for exploring human complex skill development are often based
on comparisons between experts and novices, and use measurements of performance at dif-
ferent levels of skills as predictors. In this paper we study the development of expertise by
analysing video game telemetry data collected from a real-time strategy game. Data that relate
to cognitive-motor abilities, attentional and perceptual processes were collected from StarCraft
2 game players from seven levels of expertise. We develop an extended generalized additive
model for ordered categorical data to investigate the effects of predictors on skill development.
Keywords: ordered categorical, cognitive science, generalized additive models, skill learning.

1 Introduction

Thompson et al.[18] conducted a study exploring human complex skill development.
Their aim was to identify potential predictors of expertise in real-time strategy (RTS)
video games using the telemetric data collected from RTS StarCraft 2 game players.
StarCraft 2 is a popular video game which has millions of players worldwide. Thomp-
son et al.[18] examined measures that relate to cognitive-motor abilities, attentional
and perceptual processes. Using random forest classifiers, they disproved the assump-
tion that importance of variables across skill levels remains static. Moreover, they
argue that telemetric data can become a standard tool for studying human cognition
and learning. As different expert areas such as, e.g. chess, basketball, surgery, are ex-
pected to show sufficient consistency in development of expertise, many studies have
been devoted to exploring skill development in strategy games (Chase and Simon[8],
Charness[9], Ericsson and Charness[10]).

This paper proposes to investigate development of expertise using additive regres-
sion modelling. The paper develops an extended generalized additive model for or-
dered categorical data (Wood et al.[19]) to study the effects of predictors on skill
learning. Modelling categorical responses using smooth functions of predictors al-
lows us to confirm Thompson et al.[18] findings and to further investigate the effects
of predictors on skill development.
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2 Video game data

The telemetric data collected from 3,360 RTS StarCraft 2 game players from 7 levels
of expertise. The dataset is public available at UCI Machine Learning Repository
(Bache and Lichman[5]). For each player, the level of expertise measured by the
league in which they contend, serves as an ordered response Yi. Yi takes a value
from r = 1, 2, . . . , 7, indicating Bronze, Silver, Gold, Platinum, Diamond, Master,
and Professional leagues. There are eighteen predictor variables available including
measures of attentional control, perceptual process and cognitive-motor speed. The
examination of the data and preliminary modelling revealed 13 variables relevant to
skill development. Table 1 summarizes the predictors under study. The time at which
values of the predictors is recorded is in terms of timestamps in the StarCraft 2 replay
file. GapBwPACs, ActionLatency, NumberOfPACs, and ActionsInPAC are
four variables that refer to a certain period of time during which a player performs at a
specific location. Perception action cycle (PAC) was defined by Thompson et al.[18]
as screen fixations with one or more actions. For the complete information about the
variables used in the study, see Thompson et al.[18].

Table 1. Telemetric data characteristics

Name Description Min Max
APM Action per minute 22.06 389.83
SelectByHotkeys Number of unit or building selections 0 0.043

made using hotkeys per timestamp
AssignToHotkeys Number of units or buildings assigned 0 1.75· 10−3

to hotkeys per timestamp
UniqueHotkeys Number of unique hotkeys used per 0 10

timestamp
MinimapAttacks Number of attack actions on minimap 0 3.02· 10−3

per timestamp
NumberOfPACs Number of perception action cycles (PAC) 6.79· 10−4 7.97· 10−3

per timestamp
GapBwPACs Mean duration in milliseconds between 6.667 237.143

PACs
ActionLatency Mean latency from the onset of PACs 24.09 176.37

to their first action in milliseconds
ActionsInPAC Mean number of actions within each PAC 2.039 18.558
TotalMapExplored The number of 24x24 game coordinate 5 58

grids viewed by the player per timestamp
WorkersMade Number of SCVs, drones, and probes 7.7· 10−5 5.15· 10−3

trained per timestamp
UniqueUnitsMade Unique unites made per timestamp 2 13
ComplexAbilUsed Abilities requiring specific targeting 0 3.08· 10−3

instructions used per timestamp

826



3 Modelling approach

Many models have been proposed to analyze ordered categorical data which became
well-known by virtue of Cox[7] and Plackett[16]. The most appealing regression
models for ordered categories are cumulative logit (proportional-odds version of the
cumulative logit) models expressed in terms of a latent usually unobservable continu-
ous variable proposed by McCullagh[15], Anderson and Philips[4], Hastie and Tibshi-
rani[13]. McCullagh[15] and Anderson and Philips[4] introduced parametric regres-
sion models with ordered categorical responses, whereas Hastie and Tibshirani[13]
extended this to a non-parametric version. The parameter estimation for those models
is based on maximizing likelihood assuming independent multinomial observations
using Fisher scoring algorithm. The cumulative logit models were also discussed in
Anderson[3], Agresti[1], Agresti[2], Goodman[12]. Fahrmeir and Lang[11], Kneib
and Fahrmeir[14] developed a general class of semi-parametric additive regression
models for categorical responses from a Bayesian perspective.

Extended generalized additive model

The model proposed in this paper is within a new general framework to generalized ad-
ditive modelling for non-exponential family responses introduced by Wood et al.[19].
The framework of Wood et al.[19] proposes two methods for the generalized addi-
tive models (GAM) generalization: an extended GAM fitting for the cases with a
single linear predictor and a log likelihood expressed as a sum over the log likeli-
hood for each response datum; and a general model estimation when log likelihood
depends non-linearly on smooth functions of predictors. The first method includes
such distributions outside the exponential family as beta, zero inflated Poisson, nega-
tive binomial, Tweedie, scaled t distribution and ordered categorical data. The GAM
fitting method is extended for these models. The second extension requires different
approach for model fitting and general and reliable smoothing parameter estimation.
It covers such models as Cox proportional hazard (Cox[6]) and Cox process mod-
els, generalized additive models for location scale and shape proposed by Rigby and
Stasinopoulos[17] and multivariate additive models (Yee and Wild[21]). Below is a
brief description of modelling with ordered categorical responses within a new ex-
tended GAM.

Consider independent response observations, yi, that take values from r = 1, . . . , R,
where r is ordered category label. A latent variable ui = µi + ϵi is introduced with
the c.d.f. of ϵi being F. Then, given −∞ = α0 < α1 < . . . < αR = ∞, yi = r if a
latent variable ui is such that αr−1 < ui ≤ αr,

P (Yi = r) = F (αr − µi)− F (αr−1 − µi).

The usual choice for the c.d.f. of ϵ is the standard logistic or normal. For identi-
fiability reasons α1 = −1, so there are R − 2 extra unknown parameters. To impose
increasing ordering on the cutting points, αr are set as

αr = α1 +
r−1∑
j=1

exp(θj), 1 < r < R,
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so θj are parameters to be estimated. The mean value of the latent variable depends
on the predictor variable in the following way,

µi = Aiγ +
∑
j

fj(xji),

where A is a model matrix for the strictly parametric terms, γ is a vector of unknown
parameters, fj is an unknown smooth function of the predictor variable xj , where
xj can be vector valued. Each smooth term is represented by reduced rank spline
smoothers fj(xj) =

∑
k

βkjbkj(xj), where bkj are known spline basis functions, βkj

unknown coefficients. Then, the mean of the latent variable can be expressed as µ =
Xβ, with the model matrix X combining A and matrix of spline basis, and γ being a
part of β.

The log likelihood of the model can be written as

l =
n∑

i=1

li(yi, µi,θ),

where li is the log likelihood for each observation, θ is a (R − 2)−vector of the
extra parameters, θj , that control the thresholds. Then, the deviance corresponding
to the observation yi is defined in the standard way as Di = 2(l̃i − li), where li =
maxµi li(yi, µi,θ) is the saturated log likelihood. Given θ, the parameters β are
estimated by minimization of the penalized deviance

D(β,θ) =
∑
i

Di(β,θ) +
∑
j

λjβ
TSjβ,

where a quadratic penalty term βTSjβ measuring function smoothness is associ-
ated with each smooth fj and λj being a smoothing parameter. Penalized iteratively
re-weighted least squares (PIRLS) is applied for β estimation. Estimation of θ is
achieved by minimization of the negative Laplace approximate marginal likelihood
(LAML),

V =
D(β̂,θ)

2
− l̃(θ) +

log |XTWX+ Sλ| − log |Sλ|+
2

− Mp

2
log(2π),

where Sλ =
∑

j λjS
j and |Sλ|+ is the product of the positive eigenvalues of Sλ,

Mp is the number of zero eigenvalues of Sλ. Newton’s or a quasi-Newton’s method
is used for V minimization. Several issues with numerical instability have to be taken
into account to make the optimization procedure efficient and reliable. This is fully
covered in Wood et al.[19]. Generalized additive modelling with ordered categorical
data as well as other extensions are implemented in an R package mgcv available at
CRAN (Wood[20]).

Additive model for video game data

The preliminary backward selection, first in the framework of a generalized linear
model and then in the framework of an extended GAM, revealed thirteen covariates
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relevant to skill development (see section 2). The extended GAM for ordered categor-
ical data with R = 7 was fitted with the selected set of predictors using smooth terms.
We first consider a model with all selected predictors having non-linear effects on the
mean of the ordered categorical latent variable.

Model 1:

µi = f1(NumberOfPACsi) + f2(UniqueHotkeysi) + f3(WorkersMadei)

+f4(GapBwPACsi) + f5(ActionLatencyi) + f6(AssignToHotkeysi)

+f7(MinimapAttacksi) + f8(APMi) + f9(SelectByHotkeysi)

+f10(ActionsInPACi) + f11(TotalMapExploredi)

+f12(UniqueUnitsMadei) + f13(ComplexAbilUsedi),

where the model terms f1 − f13 are unknown smooth functions of the corresponding
predictors. Thin plate regression splines are used for their representations. The pre-
dictor values were preprocessed using square root or log transformation in order to
avoid gaps with very small amount of data that account for the Professional league.
There was a significant linear dependence of NumberOfPACs, UniqueHotkeys
and WorkersMade on the mean of the latent variable, so that it was sufficient to
add strictly parametric structure for these three predictors. The resulted model has the
following structure.

Model 2:

µi = β1·NumberOfPACsi + β2·UniqueHotkeysi + β3·WorkersMadei

+f1(GapBwPACsi) + f2(ActionLatencyi) + f3(AssignToHotkeysi)

+f4(MinimapAttacksi) + f5(APMi) + f6(SelectByHotkeysi)

+f7(ActionsInPACi) + f8(TotalMapExploredi)

+f9(UniqueUnitsMadei) + f10(ComplexAbilUsedi),

where β1, β2 and β3 are unknown parameters.
Including the bivariate smooth of the APM and the second most important vari-

able, SelectByHotkeys, gives better model in comparison with the model with
univariate effect of the APM. Moreover, constructing a tensor product interaction of
GapBwPACs and ActionLatency, with their main effects being included sepa-
rately further improves the model fit. The following additive structure for the mean
value of the ordered categorical latent variable was considered as the third model.

Model 3:

µi = β1·NumberOfPACsi + β2·UniqueHotkeysi + β3·WorkersMadei

+f1(GapBwPACsi) + f2(ActionLatencyi)

+f3(GapBwPACsi,ActionLatencyi) + f4(AssignToHotkeysi)

+f5(MinimapAttacksi) + f6(APMi,SelectByHotkeysi)

+f7(ActionsInPACi) + f8(TotalMapExploredi)

+f9(UniqueUnitsMadei) + f10(ComplexAbilUsedi),
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where all the predictors except for the first three have nonparametric smooth effects.
A tensor product interaction of GapBwPACs and ActionLatency, is used for rep-
resenting f3 with the main effects comprised in f1 and f2. .

4 Results and discussion

In addition to the above mentioned models, we fitted submodels with certain terms
omitted. The model selection procedure showed that the best model in terms of the
Akaike information criterion is the full model 3. Other model performance measures
such as generalized cross validation score, adjusted r2 and percentage deviance ex-
plained were also better for model 3 than for other considered models.

Figure 1 illustrates the estimated effects of the two bivariate smooths of model 3.
APM variable is used as a measure of cognitive speed. This variable is shown to have
the highest rank of the predictive importance Thompson et al.([18]) in distinguishing
Bronze-Professional classifier. The first decreasing trend of the APM (figure 1, right
panel) is due to the high correlation between the APM and SelectByHotkeys vari-
ables (higher values of the covariate effect correspond to higher league level). Both
predictors have increasing trends when considered separately as smooths of a single
variable.
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Fig. 1. Video game data: the estimated interactions between Gap Between PACs and Action
Latency variables, and between APM and Select By Hotkeys.
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The estimates of the univariate effects are shown in figure 2. As expected, the main
effects of the two characteristics of the PACs, GapBwPACs and ActionLatency,
are decreasing with increase in the skill level (panels (a) and (b)), while the other two
have increasing trends (panel (e) and the positive parametric effect of NumberOfPACs).
An adaptive smoother was used to estimate the effect of the ActionsInPAC, that
allowed the degree of smoothing to vary along the range of the predictor values.
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Fig. 2. Video game data: the estimated univariate smooth effects.

The strong increasing effect of the MinimapAttacks (fig. 2, panel (d)) which
is used as a measure of the attentional control, supports the hypothesis of Thompson
et al.[18] that more skillful players act on minimap more often. On the contrary the
TotalMapExplored has a decreasing trend (panel (f)), more skillful players view
the total map less often. Usage of hotkeys allows players to build and control game
units in more efficient way, so that the higher values of the AssignToHotkeys
variable would correspond to higher level of expertise (panel (c)). The estimated ef-
fects of the last two predictors do not have such monotonic features as for the other
smooths. Players in the highest leagues seem to use moderately abilities that require
particular targeting instructions (panel (h)), and keeping from the production of the
Unique Units (panel (g)). Whereas, the lowest league players make medium number
of units while avoiding complex abilities. The estimated monotone increasing trend of
the WorkersMade shows that to progress players must produce more workers. How-

831



ever, the importance of this variable diminishes for the highest league (Thompson et
al.[18]), which is explained by possible automatization of the worker production skill.
Moreover, to advance in skills, players are required to put more effort on managing
their learning and increasing cognitive demand, which is reflected by the positive lin-
ear trend of the UniqueHotKeys predictor.

This study supports Thompson’s et al. [18] proposition that telemetric data can
be used as a standard tool for studying human cognition and learning. Moreover, the
proposed model confirms the previous findings that the assumption that importance of
predictors across skill levels remains static is not correct. We showed that constructing
non-isotropic tensor product splines used to model smooth interactions improves pre-
diction of skill development. Modelling categorical responses using smooth functions
of predictors allows to capture skill learning in a continuous fashion.
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Abstract. Measurements of tree heights and diameters are essential in forest assessment and
modelling. Tree heights are used for estimating timber volume, site index and other important
variables related to forest growth and yield, succession and carbon budget models. However, the
diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree
height. Hence, models are needed that predict tree height from dbh, age and other covariates. In
this paper we develop unconstrained generalized additive models (GAM) and shape constrained
generalized additive models (SCAM) for investigating the possible effects of tree-specific pa-
rameters such as tree age, relative diameter at breast height, and site-specific parameters such
as altitude, index of aridity and sum of daily mean temperature during vegetation period, on
the height-diameter relationship for the current status of forests in Lower Saxony, Germany.
We use causal site parameters such as index of aridity to enhance the generality and causality
of the models and to enable predictions under projected changeable climatic conditions. We
demonstrate that the SCAM approach allows optimal regression modelling flexibility similar
to the standard GAM but with the additional possibility of defining specific constraints for the
model effects.
Keywords: height-diameter curve, Norway spruce, shape constrained additive models, impact
of climate change, varying coefficient models.

1 Introduction

Two of the main questions of forest management planning concern the current status
of forests and how forests will develop in future. To estimate forest stock and assort-
ment from sample forest inventories, for example, in forest districts or federal states,
single tree volumes have to be predicted and then summed up to get timber volume es-
timates for a considered forest area. A tree volume estimate is usually based on three
parameters: tree species, tree diameter and tree height. Since measuring tree diameter
at breast height (1.3 m) (dbh), is relatively cheap, but measuring tree height is cost in-
tensive, it is desirable to model tree height as a function of tree species, tree diameter,
tree age and other possible stand- and site-specific parameters. An important feature
of the height-diameter (h-d) relationship is that it develops over time and varies from

16thASMDA post conference publication in book, 30 June – 4 July 2015, Piraeus, Greece
c⃝ 2015 ISAST

833



stand to stand (Curtis[5], Lappi[20], Mehtätalo[22]). In Mehtätalo[23] it is noted that
trees reach maturity at different ages depending on site conditions. Hence, asymptotic
height and the height that is reached at any particular age differ significantly among
sites. The poorer the site conditions are, the lower the tree height will be for a certain
age and dbh, with the dbh itself depending on age, stand and site conditions, but also
on silvicultural treatments.

In this paper we develop site-sensitive longitudinal h-d models for forests in Lower
Saxony, Germany, with the main focus on modelling fixed effects via unconstrained
(GAM) and shape constrained generalized additive models (SCAM). Since climate
change has already affected forests in Central Europe and much heavier impact is
anticipated in the future, the models should be applicable for prediction of future tree
height development and able to quantify the impact of climate change. Therefore, to
achieve the necessary higher causality we use a combination of causal and proxy site
parameters as predictors.

In this study a general underlying modelling approach of a reparameterized ver-
sion of the Korf-function, that was developed by Lappi[20] is used as the principal
model. The reason for using this model is that the model parameters considered there
are less correlated and have biological meaning. Moreover, a heuristic fixation of the
‘non-linear’ parameters applied in this case linearizes the model, which makes the
generalized additive model approach reasonable to use for the estimation of the co-
variate effects on the original parameters. The model is then extended to include some
tree-specific and site-specific variables. As some of the covariate effects are supposed
to be monotone, a shape constrained additive modelling (SCAM) approach (Pya and
Wood[25]) is applied to account for influence of such variables as tree age, relative
diameter at breast height and altitude among others, and also of site variables that will
partially alter with expected climate change.

2 Data

The data analyzed here are observations from 23 145 sample plots of 29 324 Norway
spruce trees [Picea abies (L.) Karst.] and some site-specific variables from the first
cycle of the state forest enterprise inventories (district sample plot inventories) con-
ducted by the Lower Saxony forest planning agency (Tab.1). Lower Saxony is the
second largest federal state of Germany and is located in the north-western part. Ev-
ery year two or three state owned forest districts are inventoried. The data come from
inventories in the time interval 1996 – 2008. There are almost no consecutive inven-
tories during this period (no longitudinal data), but all forest districts are inventoried,
with the exception of a small area of the “Nationalpark Harz”.

Two types of covariates are considered: tree-specific and stand- and site-specific.
The tree-specific variables are tree diameter at breast height (dbh), tree age (age) and
relative diameter at breast height (rel.dbh). The relative diameter at breast height
is calculated as rel.dbh = dbh/mqd, where mqd is the mean quadratic diameter
of a sample plot. The rel.dbh is a measure of the rank of a tree within all trees in a
stand. A similar covariate is used by Eerikäinen[7] who used the tree’s dbh in relation
to the dbh of a stand’s dominant tree as predictor.

The second type of covariates, site-specific, can be differentiated into causal and
proxy site variables (Tab. 1). The proxy variables include altitude (alt), topex in-
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dex (topex.sw), and geographic location, easting (east) and northing (north)
in Gauß-Krüger coordinates referring to the 3rd meridian. The topex index describes
topographic exposure and terrain morphology in the South-West direction. It is cal-
culated as a sum of topographic exposure indices in the directions to the West, South-
West and South using a distance limit of 250 meters (see, e.g., Scott and Mitchell[28]).
A digital terrain model (DTM) with a resolution of 90 meters by 90 meters was used
for topex calculation. A tree located on a summit is highly exposed resulting in a
negative topex index. Positive topex indices belong to sites such as depressed areas
or valleys rectangular-orientated in the direction of the topographic exposure. Topex
indices of trees growing along the flat areas would be near zero. Since exposure to
the South-West might result in drought stress, the topex index is used as a proxy for
drought stress. Moreover, extra exposed sites will usually show a lower capacity of
available soil water due to higher percentage of rocks and lower depth to parent rock.

The additional causal site (climate) explanatory variables are temperature sum of
daily mean temperature during vegetation period (growing season) (temp.veg), and
De Martonne’s aridity index (ari). The aridity index is a fraction of annual precip-
itation in millimetres over mean annual temperature in degrees Centigrade plus ten
(P/(T+10)) (De Martonne[6], Thornthwaite[32]). The aridity index is calculated for
the entire year, since the precipitation during winter (non-growing season) could be
partially stored by the soil. Temp.veg and ari are retrospective simulation means
(Spekat et al.[31]) of the normal climate period 1961-1990 that were regionalized
from weather stations of the German weather service (DWD) using GAM with model
effects for the geographic location and altitude.

Table 1. Characteristics of Norway spruce trees and site parameters from the first cycle of all
state forest enterprise inventories in Lower Saxony. 29 324 Norway spruce trees from 23 145
sample plots were observed.

Min 25%qu. Median 75%qu. Max
Tree height [m] 3.7 14.6 21.8 27 47.3
dbh [cm] 7 16.8 30.5 37.9 104
Tree age [years] 20 41 54 77 199
Altitude [m] 0 90 307 475.2 947
Sum of topographic exposure indices [ox1000]
(DTM 90mx90m resolution) -84 560 -3108 1489 8135 89 208
Temperature sum during vegetation period [oC] 833.6 1716.4 1996.6 2196.5 2456.8
Aridity index 24.8 37 44.8 54.6 87.5

3 Modelling approach

3.1 Additive model for tree height

A difficulty with the h-d relationship is that it is not constant but rather varies from
stand to stand and develops over time (Lappi[20], Mehtätalo[22]). In this paper we use
an approach to modelling the longitudinal h-d relationship proposed by Schmidt[26]
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that combines the principal h-d-model of Lappi[20] with (unconstrained) generalized
additive model technology as a starting point. The development of the h-d model con-
sists of three steps: 1) initial specification of the h-d relationship as a log-linear mixed
model with random stand effects, 2) ‘a priori’ determination of non-linear model pa-
rameters, and 3) developing unconstrained and shape constrained generalized additive
models for investigating potential tree and site specific effects on the original param-
eters of the modified Korf function (Lappi[20]).

The initial steps, 1) and 2), of the model development are briefly described in
Appendix A, as the main focus of this paper is on modelling fixed effects of causal
and proxy variables via shape constrained generalized additive models. One of the
model requirements is to predict actual and future tree heights of a forest stand. Since
every stand has different characteristics, effects of site and stand variables should be
incorporated into the h-d model in combination with an age effect that describes the
developmental stage of the trees within a stand. Since the proportion of structured and
multi-aged stands in Lower-Saxony is constantly increasing we use single tree age as
a covariate. The additional tree- and site-specific effects on the original parameters
A and B of the Korf function (see appendix A) that are partially sensitive to climate
change, are assumed to be non-linear. Then, based on the principal h-d model

log(µki) = ηki = A−B × xki, (1)

where µki = E(Hki) and Hki is the height of tree i on sample plot k, the mean tree
height can be modelled as a function of tree age and additional tree and site parameters
using GAM (Hastie and Tibshirani[9], Wood[36])

Model h1: unconstrained additive model

log(µki) = f1a(ageki) + f2a(rel.dbhki) + f3a(topex.swk) (2)
+f4a(temp.vegk) + f5a(arik) + f6a(eastk,northk)

+p0b × xki + p1b × ageki × xki + p2b × altk × xki,

where xki is the re-parameterized dbh of tree i on sample plot k introduced at the
initial step of the h-d model development (appendix A). Hki is assumed to follow
a Gaussian distribution. The preliminary modelling showed that Gaussian models
with the log link function performed better in terms of the Akaike information crite-
rion (AIC) than Gamma models. The model terms f1a()–f5a() are unknown smooth
functions of the corresponding predictor variables. We also added a spatial smooth
function f6a(east,north) of easting and northing, since there is a spatial correla-
tion in the residuals. This unconstrained model assumes a linear combination of the
covariate effects and due to the log-link, the effects act multiplicative exponentially
on tree height. In the above mentioned case the effects of age and altitude on the slope
B of the h-d curve were assumed to be linear. Now, suppose that both predictors have
non-linear effects on B. Then the following model may be considered:

Model h2: GAM with varying coefficients

log(µki) = f1a(ageki) + f2a(rel.dbhki) + f3a(topex.swk) (3)
+f4a(temp.vegk) + f5a(arik) + f6a(eastk,northk)

+p0b × xki + f1b(ageki)× xki + f2b(altk)× xki,

836



where the non-linear effects of age and altitude are represented by the smooth func-
tions f1b(age) and f2b(alt). Model h2 is referred to as a ‘variable coefficient model’
(Hastie and Tibshirani[10], Wood[36]).

The drawback of modelling with GAM is that it may result in insufficiently smooth
effects of the covariates. Moreover, it is biologically plausible to expect that the ef-
fects of such covariates as age, rel.dbh, topex.sw, temp.veg and ari on
the original parameter A will be monotone, which is not guaranteed for the GAM fit.
Therefore, we propose to impose additional constraints on the univariate smooth terms
by applying a SCAM approach (Pya and Wood[25]) described in the next subsection.

3.2 Modelling non-linear effects using SCAM

The first shape constrained model (model h3) considered is simply h1 as given in (2)
with monotonicity restrictions described below on univariate smooth components,

Model h3: shape constrained additive model

log(µki) = m1a(ageki) +m2a(rel.dbhki) +m3a(topex.swk) (4)
+m4a(temp.vegk) +m5a(arik) + f6a(eastk,northk)

+p0b × xki + p1b × ageki × xki + p2b × altk × xki.

To distinguish from unconstrained smooths, smooth terms under monotonicity con-
straints are denoted by mja. The effect of age on the original parameter A in (1) is
supposed to be increasing, since for any constant vector of model predictors, the level
of the h-d curve, that is the expected log(Hki) of a tree with dbh = 30 cm (see Ap-
pendix A), is assumed to be increasing with increasing age. The effect of rel.dbh
on the original parameter A is expected to be monotone decreasing, since lower val-
ues of the rel.dbh correspond to a lower rank of a tree within a stand. Within the
same stand a tree with a lower rank has on average a greater competition pressure
compared to a tree with a higher rank. While struggling for the light, suppressed trees
have to invest more into height than diameter growth. Hence, trees will be taller with
the value of rel.dbh decreasing given fixed values of dbh, age and the additional
covariates. Trees with high values of rel.dbh are dominant trees that are usually
more exposed to the wind and consequently, they have to invest more into diameter
than height growth for stability reason. The effect of topex.sw on the original pa-
rameter A should be monotone increasing, since an exposure to the South West might
result in drought stress as it was explained in section 1.1. We assume a monotone in-
creasing netto assimilation with increasing temp.veg under the climatic conditions
of Lower Saxony (if not limited by the deficit of other resources). The lower site in-
dices of Norway spruce, that are partially observed on warmer sites of Lower Saxony,
are, for instance, assumed to result from limited water and lower nutrient supply. The
effect of temp.veg must not be confused with optimum curves that are observed
under varying temperature values in experiments. The effect of ari on the original
parameter A is expected to increase with increasing humidity. The lower site indices
of Norway spruce that are partially observed on very humid sites in higher altitudes of
the uplands, are assumed to be a result of limited temperature sums. Next, we consider
the shape constrained version of the variable coefficient model h2 as model h4.
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Model h4: SCAM with varying coefficients

log(µki) = m1a(ageki) +m2a(rel.dbhki) +m3a(topex.swk) (5)
+m4a(temp.vegk) +m5a(arik) + f6a(eastk,northk)

+p0b × xki +m1b(ageki)× xki +m2b(altk)× xki,

where the non-linear effects of age and alt on the slope B are represented by the
smooth functions m1b(age) and m2b(alt). Increasing effects of both m1b(age) and
m2b(alt) on the h-d relationship are assumed in this model. It is well known that the
slope of the h-d relationship increases with the developmental stage of a stand (e.g.,
Mehtäatalo[22]). In our investigation age serves as a covariate that describes the de-
velopmental stage of a stand. Therefore, when fitting a varying coefficient model for
the age effect on B, it should be monotone increasing. However, the gradient of the
actual tree heights that are predicted in applications is also affected by the dbh val-
ues that are used to initialize the model. The direction of the monotonicity of effect
m2b(alt) remains unspecified at this point and will be defined later based on the
results of the unconstrained model variant. Moreover, for all the monotonicity con-
straints a validation of the assumptions will be conducted based on the corresponding
unconstrained model effects.

When fitting model with monotonicity constraints on the effects of temp.veg
and of ari, we noticed some possibly artificial sharp changes in the corresponding
estimated smooths (see sec. 4.2). To avoid these limitations the shape constrained
model is enhanced by concavity constraints on the smooth terms of temp.veg and
of ari. We propose model h5 as a variable coefficient model since the performance
of model h4 was shown to be better than of model h3 in terms of AIC and GCV scores.

Model h5: SCAM with concavity constraints

log(µki) = m1a(ageki) +m2a(rel.dbhki) +m3a(topex.swk) (6)
+mc4a(temp.vegk) +mc5a(arik) + f6a(eastk,northk)

+p0b × xki +m1b(ageki)× xki +m2b(altk)× xki,

where now mc4a, mc5a are subject to both monotone increasing and concavity con-
straint. The following basic initial model with only age effect on the original param-
eters A and B was used as a reference model which all the considered models were
compared with.

Model h.ref:

log(µki) = f1a(ageki) + p0b × xki + p1b × ageki × xki. (7)

3.3 Model estimation

To estimate the SCAM models (4), (5) and (6) we employ the penalized regression
spline approach which can be split into two stages: representation of smooth model
terms via penalized unconstrained and constrained regression splines along with spec-
ification of the smoothness/wiggliness penalty followed by model coefficients esti-
mation by penalized log likelihood maximization along with smoothness parameter
selection by minimization of a prediction error criterion such as AIC or GCV. Shape
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COnstrained P-splines (SCOP-splines) (Pya and Wood[25]) were used for represen-
tation of the shape constrained smooth model terms. Since the bivariate function
f6a(east,north) is a function of geographic coordinates, it was represented by
a thin plate regression spline (Wood[36]). Combining the model matrices of each
smooth column-wise into one model matrix and absorbing identifiability constraints
result in the expression of the SCAM model as log(µki) = Xkiβ, where X is the
combined model matrix of strictly parametric model components and smooth basis
functions and β is a vector of unknown coefficients.

After setting the penalties on each smooth model term which are expressed as
quadratic forms of the full coefficient vector, β, the penalized log likelihood maxi-
mization can be written as lp(β) = l(β)− βTSβ/2, where l(β) is the log likelihood
of the model, S =

∑
k λkSk, and Sk are the smooth penalty matrices enlarged by

zeros to be expressed in terms of the full vector of the model coefficients, λk are
smoothing parameters. The model coefficients, β, are estimated by lp(β) maximiza-
tion given the values of the vector of smoothing parameters, λ. Optimization of the
lp(β) is achieved by a Newton method which shares several features with a penal-
ized iteratively re-weighted least squares scheme standard for GLM estimation. The
smoothing parameter vector λ is estimated by minimizing the generalized cross vali-
dation score (GCV), Vg = nD(β̂)/(n− τ)2, where D(β̂) = 2

{
lmax − l(β̂)

}
σ2 is

the model deviance, lmax is the saturated log likelihood, and τ is the effective degrees
of freedom. Confidence intervals for the model smooth terms are obtained through
the distributional results for β̂. The Bayesian approach to interval estimates for the
smoothing spline models proposed by Wahba[33] and Silverman[30] was extended
to generalized additive models by Lin and Zhang[21] and Wood[35]. SCAM adopts
this approach with an addition for establishing the approximate distribution of the

exponentiated β, resulting in the normal distribution β̃|y ∼ N(
ˆ̃
β,Vβ̃), where the

expression for the covariance matrix Vβ̃ as well as all tedious details of the model
parameters estimation can be found in [25]. The SCAM approach is implemented in
an R package scam available at http://CRAN.R-project.org/.

To fit the unconstrained models h1 and h2 we use the penalized regression spline
approach (Wood[36]). The univariate functions f2a–f5a of (2) and (3) and also the
unconstrained effects f1b and f2b of model h2 (3) are represented by P-splines (Eil-
ers and Marx[8]) whereas an isotropic two dimensional thin plate regression spline
(Wood[36]) was used for representation of f6a. The standard penalized iteratively
re-weighted least squares (PIRLS) scheme is applied for the model parameter estima-
tion. The multiple smoothing parameter is selected by minimizing the GCV score in
outer iterations. The Newton method is used for optimizing the GCV to update the
smoothing parameter. The interval estimates for the component smooth functions of
models h1 and h2 are obtained using the Bayesian approach to uncertainty estimation
(Wahba[33], Silverman[30], Wood[37]).

4 Results

4.1 Model selection

All covariates considered in the h-d models revealed their relevance to the tree height
modelling. In addition we estimated possible submodels, where one at a time smooth
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effect were dropped (Tab. 2). The adjusted r2, the percentage deviance explained and
GCV scores are included into the table. The last columns of the table show the per-
centage of improvement in the Akaike information criterion (AIC.diff) in comparison
with the reference model, h.ref, calculated as follows

AIC.diff =
AICh.ref − AIChi

AICh.ref
× 100,

where AICh.ref is the AIC of the reference model and AIChj of the model under
consideration.

Table 2. Comparison of statistics for different height-diameter-models including the uncon-
strained additive model (h1), unconstrained additive model with varying coefficients (h2), shape
constrained additive model (h3), shape constrained additive model with varying coefficients
(h4), additive model with concavity constraints (h5) and base model with only age effects
(h.ref). For all models the result of dropping single model effects on different model statis-
tics are presented.

Model adj r2 Dev.expl. GCV AIC.diff Model adj r2 Dev.expl. GCV AIC.diff
h1 .909 90.9 5.798 4.79 h3 .909 90.9 5.805 4.77
h1−f2a .907 90.8 5.883 4.49 h3−m2a .907 90.8 5.887 4.48
h1−f3a .908 90.8 5.846 4.63 h3−m3a .908 90.8 5.851 4.61
h1−f4a .908 90.8 5.842 4.64 h3−m4a .901 90.1 6.290 3.11
h1−f5a .908 90.8 5.848 4.62 h3−m5a .908 90.8 5.866 4.55
h1−f6a .900 90.0 6.324 2.99 h3−f6a .901 90.1 6.316 3.02
h2 .909 90.9 5.784 4.85 h4 .909 90.9 5.778 4.87
h2−f2a .908 90.8 5.87 4.54 h4−m2a .908 90.8 5.867 4.55
h2−f3a .908 90.8 5.832 4.68 h4−m3a .909 90.9 5.812 4.75
h2−f4a .908 90.8 5.83 4.68 h4−m4a .902 90.2 6.2582 3.21
h2−f5a .908 90.8 5.837 4.66 h4−m5a .908 90.8 5.838 4.66
h2−f6a .901 90.1 6.311 3.04 h4−f6a .899 89.9 6.382 2.81
h2−f1b .907 90.7 5.916 4.38 h4−m1b .907 90.8 5.895 4.45
h2−f2b .909 90.9 5.811 4.75 h4−m2b .907 90.7 5.914 4.39
h5 .907 90.7 5.877 4.52 h5−f6a .900 90.0 6.406 2.73
h5−m2a .906 90.6 5.93 4.33 h5−m1b .906 90.6 5.96 4.22
h5−m3a .907 90.7 5.865 4.56 h5−m2b .908 90.7 5.86 4.58
h5−mc4a .901 90.1 6.302 3.07
h5−mc5a .907 90.7 5.860 4.58 h.ref .885 88.5 7.309 0

The best selected model in terms of the AIC is the shape constrained varying
coefficients model h4 with all initial smooth effects included. The measures of the
model performance of the model h2 are only slightly worse than those of h4. Adding
the variable coefficients proposed in the GAM model h2 improves the unconstrained
model h1, although to a lesser extent that it does in case of the SCAMs. Dropping
either of the effects from any of the five considered models increases the AIC. The
other measures of the model performance also give worse results than those of the
full models h1-h5, when dropping any single effects. The spatial effect improves the
model significantly: e.g., the models without spatial effect result in much higher GCV
than the corresponding full model (about 24% difference in the GCV in case of h2).
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Introducing stricter concavity constraints in model h5 leads to a slight increase in
AIC, GCV and model deviance, and correspondingly to a poorer model fit. It should
be noted that there are only marginal differences in the performance criteria between
the unconstrained GAM models h1 and h2, and their constrained counterparts, SCAM
models h3-h5.

4.2 Interpretation of unconstrained effects and validation of their monotone
counterparts

Overall, the monotonicity constraints on the univariate smooth terms result in less
wiggly pattern compared to the unconstrained effects (see Fig. 2 versus Fig. 1). It
should be noticed that the estimated effects of the shape constrained smooths are not
centered as they are in the case of the unconstrained GAM, as different identifiability
constraints were applied.

The estimated unconstrained effect of age on the original parameter A of model
h1 is increasing with a decreasing gradient for almost the whole data range (Fig.1a).
However, for high ages, above 150 years, the effect is implausibly decreasing. This
pattern probably occurred due to an unbalanced data structure for the combination of
site index and age. It is typical for forests and especially managed forests that ‘old
stands grow on poor sites’, since trees need longer production periods to reach mer-
chantable timber dimensions. The proposed h-d models cover some site factors, e.g.
temp.veg. However, a certain proportion of the variability in site quality probably
remains unquantified, which presumably leads to the implausible decreasing effect for
high ages. The effect of age of model h3 is assumed to be monotone increasing, so
that at high ages the estimated smooth tends to a constant guaranteeing a plausible
pattern over the whole data range (Fig. 2a).

The estimated unconstrained effect of rel.dbh of model h1 (Fig.1b) supports
the imposition of a monotone decreasing constraint on the function f2a(rel.dbh)
when constructing model h3. The confidence intervals of f2a near both boundaries of
the data range are very wide which suggest that the minor deviates of the estimated
smooth from monotonicity are not significant. The monotone effect of rel.dbh of
model h3 is linear with a negative slope which fulfills the imposed monotone decreas-
ing constraint (Fig. 2b). The effect of topex.sw on the original parameter A is not
very strong, which might be because the digital terrain model used for the topex cal-
culation has a low resolution of 90m x 90m (Fig. 1c). At the upper boundary of the
range of topex.sw the estimated smooth is considerably decreasing, but has a wide
confidence interval. Hence, the assumption of a monotone increasing effect made in
model h3 need not to be rejected (Fig. 2c).

The unconstrained effects of temp.veg and ari of model h1 (Fig. 1d, e) are
both increasing over almost the whole data ranges except for the boundaries with not
many data available. The corresponding constrained effect of temp.veg of model
h3 (Fig. 2d) is monotone increasing with a weak effect below temp.veg = 1400, a
stronger effect above 1500 and with a slight tendency of a decreasing gradient. The
constrained effect of ari (Fig. 2e) is approximately linear with a steep slope below
the value of ari around 70 and nearly constant above that value, indicating almost no
further impact of increasing humidity. Compared to the other shape constrained effects
the constraint effects for temp.veg and ari might be thought as still implausible to
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Fig. 1. The estimated smooth terms of the unconstrained model without varying coefficients, h1.
The labels of the vertical axes for the univariate smooths denote the smooth model components
with the corresponding covariate and estimated degrees of freedom (edf) given in brackets.

a certain extent. The weak effect of temp.veg at its small values can be considered
as implausible, since the marginal utility of a unit increase of the temperature sum
should be high especially under the condition of low temperature. Furthermore, the
sharp change in the gradient of m4a(temp.veg) at around 1400 seems to be arti-
ficial. The plateau part of the estimated effect of ari (Fig. 2e) is observed at very
humid site conditions only which also could be validated as implausible. Additionally,
the sharp change in the gradient seems to be spurious. Fig. 3 shows the estimated ef-
fects of the two terms with both monotone increasing and concavity constraints, mc4a
and mc5a. This figure reveals now more convincing and reasonable smooth curves of
the sum of daily mean temperature during vegetation period and aridity index. The
other smooth terms of model h5 have similar effect to those of model h3.

The estimated varying coefficients smooths of the unconstrained h2 and shape
constrained h4 models, are illustrated in Fig. 4 and Fig. 5 correspondingly. From
an expert view the unconstrained non-linear structure of the effects of age and alti-
tude on the original parameter B is too flexible (Fig. 4). The unconstrained effect of
age supports the assumption of an increasing slope of the h-d curve with increasing
developmental stage, since generally the effect of age on B is increasing. Only for
high ages the effect is decreasing. The unconstrained effect of altitude, f2b(alt),
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Fig. 2. The estimated shape constrained univariate smooths of model h3. The labels of the ver-
tical axes denote the smooth terms with the corresponding covariate and edf given in brackets.
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Fig. 3. Model h5: the estimated smooth terms with both monotonicity and concavity constraints.

shows a weak increasing tendency, and the overall amplitude of the effect is small in
comparison with the age effect. The corresponding confidence intervals are very large.

However, the two plots of the constrained version (Fig. 5) show the plausible
monotone effects of age and altitude, although the non-linear structure of m2b(alt)
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Fig. 4. The estimated varying coefficients effects of the unconstrained model h2. Left panel:
estimate of f1b(age); right panel: of f2b(alt). The labels of the vertical axes denote the
smooth terms with the corresponding covariate and edf given in brackets.
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Fig. 5. The estimated shape constrained varying coefficients effects of model h4. Left panel:
estimate of m1b(age); right panel: of m2b(alt). The labels of the vertical axes denote the
smooth terms with the corresponding covariate and edf given in brackets.

is not very strong. Additional information about monotonicity of the effects narrowed
the confidence intervals. The variability of the smooth estimates decreased as our
beliefs in the shape of the effects were appended to the h-d relationship.

Fig. 6 shows the spatial effect of the model h5. The effect was similar for the other
considered models. The spatial smooth can be interpreted as a proxy of additional
predictors such as available water capacity of the soil, nutrient supply of the soil, etc.,
which were not at our disposal. The southern medium mountain area has better soil
condition, therefore the trees are taller and slender in this part (light grey), compared
to the worser conditions in the flat lands (silver) which have mainly glacial (sandy)
type of soil. The conditions are even worse in terms of height growth near the North
Sea coast (dark grey) due to the higher wind speed.
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Fig. 6. An illustration of the non-linear effect of the spatial smooth f6a(east,north) of
model h5, all other covariates were set to their mean values. The coordinates are Gauß-Krüger
coordinates referring to the 3rd Meridian. The black dots mark the locations of inventory plots
and give an impression of the state owned forest area. Light grey indicates high values of
log(E(Hki)), silver medium, and dark grey small values.

5 Discussion

The presented framework and software allow the inclusion of a combination of shape
constrained and unconstrained smooth terms of one or more covariates as well as in-
clusion of strictly parametric model components and varying coefficient terms. The
smoothing parameter selection is integrated with the SCAM parameter estimation pro-
cedure which is a great advantage. The model estimation scheme also provides inter-
val estimates of the smooth terms which does not incur any additional simulations.

The previous approach that was used as a starting model (Schmidt[26]) used un-
constrained GAM for modelling fixed effects on tree height development which re-
sulted in some non-monotonic effects that are scientifically implausible. Based on the
foregoing justification for the monotonicity of such model components, it is claimed
that the observed non-monotonicity is a result of unmeasured and unknown covariates
and insufficient observations and collinearity of covariates. Not only does this limit the
interpretability and usage of the scientific model, but it also leads to underestimating
the variation associated with prediction of tree height. The specification of appro-
priate monotonicity constraints allows for an optimal combination of flexibility and
expert knowledge to guarantee for a more robust modelling. This is especially useful
in models using causal covariates applied to the prediction of future forest status.

The properties of the finally selected model (h5) can be summarized as follows:
1) The model comprises significant non-linear effects of covariates.
2) The plausibility of non-linear effects of covariates is enforced by the integration of
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monotonicity constraints.
3) The plausibility of some non-linear effects of covariates is enforced by the addi-
tional integration of concavity constraints.
4) The implementation of expert knowledge via constraints is enabled because the
original parameters of the principal h-d model have a biological meaning.
5) The present autocorrelation in the large scale data base is covered by a 2-dimensional
surface fitting as a function of coordinates.
6) The causality and generality of the model for prediction purposes is improved by
use of causal site variables like sum of daily mean temperature during vegetation pe-
riod and index of aridity.

None of the height-diameter-models referenced in the introduction chapter cover
all these aspects simultaneously. Most models assume linear effects of covariates
(e.g., Lappi[20], Eerikäinen[7], Calama and Montero[3], Mehtätalo[22]). However,
sometimes transformations of covariates are employed to achieve approximately lin-
ear effects (Eerikäinen[7]). At least in our case the estimated effects are significantly
non-linear. Moreover, there is a qualified need for constraining the non-linear ef-
fects because particularly at the boundaries of data ranges effect pattern resulted that
conflict with expert knowledge. Hofner et al.[11] presented a structured additive re-
gression model for ordered categorical data of the breeding distribution of Red Kite
that employs monotonic penalized splines. As in our application they emphasize the
optimal combination of flexibility and expert knowledge that is enabled by use of
the monotone P-Splines. Schmidt et al.[27] modelled non-linear effects of covariates
via penalized regression splines but monotonicity resulted directly from the model fit
without specifying constraints. Moreover, since the original parameters of their prin-
cipal height-diameter model (“Näslund function”, see e.g. Kangas and Maltamo[17])
have no clear biological meaning, there would not be biological expert knowledge
that could be included in the model selection as in our case. Data from large scale
forest inventories typically show spatial autocorrelation of residuals that could not be
related to fixed effects when conducting regression analyses. In h-d-modelling often
a mixed model approach is used to assess between-plot covariance structures (Jayara-
man and Lappi[15], Mehtäatalo[22]). However, in this approach it is disregarded that
random effects of sample plots are usually not spatially independent themselves, but
show some similarity due to effects of unobserved covariates like soil properties. As
a solution to the problem Brezger and Lang[2] separate the overall spatial trend into
a spatially correlated (structured) and an uncorrelated (unstructured) effect. The lat-
ter one accounts for local correlation, in the case of h-d modelling of trees of the
same sample plot or stand. Only the unstructured spatial effect should be modelled by
uncorrelated random effects. Structured spatial effects can be modelled via a Gaus-
sian Markov random field, i.e. spatially correlated random effects are estimated for
discrete spatial units (Kammann and Wand[16]) or via 2-dimensional surface fitting
by applying specific generalized additive models based on e.g. penalized regression
splines with thin plate basis (Wahba[34], Wood[36]). We use the latter approach since
our observations are exactly localized via coordinates. More simple approaches for
describing structured spatial effects in h-d-models are dummy variables for territo-
rial units (Huang et al.[13], Jayaraman and Lappi[15], Calama and Montero[3]) or
univariate linear effects of coordinates (Hökkä[12], Mehtäatalo[22]). However, these
approaches disregard either the large scale autocorrelation between units or would as-
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sume at least in our case unrealistically simple pattern of the structured spatial effect
(Fig. 6). A more detailed analysis is presented by Nanos et al.[24], who fitted ordi-
nary mixed models but applied Kriging methods to the estimated random effects to
account for spatial correlation. Hence, a structured spatial effect is modeled but in a
2 step procedure. We did not model random effects on plot level to account for local,
hence unstructured spatial effects because for most sample plots only one height was
measured (Table 1). Causal site variables have not been widely used as predictors in
h-d modelling. Many approaches use no site variables at all or only proxy site vari-
ables like altitude or coordinates (Hökkä[12]). Huang et al.[13] use ecoregions as a
proxy for large scale site conditions. Mehtäatalo[22] combined causal variables like a
longtime mean cumulative temperature sum and a soil type classification with proxy
site variables as we did. For this specific application of modelling the height-diameter
relationship of Norway spruce, we have shown that the implementation of shape con-
strained smooths ensures a robust biologically meaningful interpretation with only
marginal loss of prediction accuracy and no increase in prediction bias.
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18. E. Kublin, J. Breidenbach and G. Kändler. A flexible stem taper and volume prediction
method based on mixed-effects B-spline regression. European Journal of Forest Research,
132(5-6), 983–997, 2013.

19. J. Laasasenaho. Taper curve and volume functions for pine, spruce and birch. Communica-
tiones Instituti Forestalis Fenniae, 108(74), 1982.

20. J. Lappi. A longitudinal analysis of height/diameter curves. Forest science, 43(4), 555–570,
1997.

21. X. Lin and D. Zhang. Inference in generalized additive mixed models by using smoothing
splines. Journal of the Royal Statistical Society: Series B, 61381–400, 1999.

22. L. Mehtätalo. A longitudinal height diameter model for Norway spruce in Finland. Can. J.
For. Res., 34(1), 131–140, 2004.

23. L. Mehtätalo. Height-diameter models for Scots pine and birch in Finland. Silva Fennica,
39(1), 55–66, 2005.

24. N. Nanos, R. Calama, G. Montero, and L. Gil. Geostatistical prediction of height/diameter
models. Forest Ecology and Management, 195(1-2), 221–235, 2004.

25. N. Pya and S.N. Wood. Shape constrained additive models. Statistics and Computing, 25(3),
543–559, 2015.

26. M. Schmidt. Ein standortsensitives, longitudinales Höhen-Durchmesser-Modell als eine
Lösung für das Standort-Leistungs-Problem in Deutschland. Available from http :
//sektionertragskunde.fvabw.de/and2010/Tag2010 14.pdf , 2010.

27. M. Schmidt, A. Kiviste, and K. Gadow. A spatially explicit height-diameter model for Scots
pine in Estonia. European Journal of Forest Research, 130, 303–315, 2011.

28. R. Scott and S. Mitchell. Empirical modelling of windthrow risk in partially harvested stands
using tree neighbourhood and stand attributes. Forest Ecology and Management, 218, 193–
209, 2005.

29. M. Sharma and J. Parton. Height-diameter equations for boreal tree species in Ontario us-
ing a mixed-effects modeling approach. Forest Ecology and Management, 249, 187–198,
2007.

30. B.W. Silverman. Some aspects of the spline smoothing approach to nonparametric regres-
sion curve fitting. Journal of the Royal Statistical Society: Series B, 47, 1–52, 1985.

31. A. Spekat, W. Enke, and F. Kreienkamp. Neuentwicklung von regional hoch aufgelösten
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A Initial model development

The following briefly describes the initial steps of the h-d model development pro-
posed by Schmidt[26]. A data base for the whole of Germany was applied for this
‘a priori’ estimation of specific model parameters. As a starting point, the following
height-diameter model known as the Korf function is used for the description of the
relationship between tree height and diameter (Lappi[20]):

log(Hki) = Ak −Bk (dbhki + λ)
−C

+ ϵki, (8)

where Hki is a height of tree i on sample plot k, dbhki is the diameter at breast
height of tree i on sample plot k; ϵki are Gaussian errors; Ak, Bk, λ, and C are
parameters of the model. Height-diameter curves differ for different plots and for
different points of time, however, the measurement occasion effect was not included
in the considered model. The reason behind it was the lack of computer memory
as the whole data base contains several thousands of sample plots with on average
only very few height measurements per measurement occasion. Therefore, the model
parameters vary only over plots. Since parameters Ak and Bk are highly correlated, it
is suggested to reparameterize dbh as follows (Lappi[20]):

xki =
(dbhki + λ)−C − (30 + λ)−C

(10 + λ)−C − (30 + λ)−C
.

The model (8) can now be written as

log(Hki) = Ak −Bkxki + ϵki, (9)

where Ak and Bk are not highly correlated and have biological meanings. Ak is the
expected value of the log height of trees with dbh = 30 cm for sample plot k; and Bk

is the expected value of the difference in the log(Hki) between trees of dbh = 30 cm
and 10 cm for sample plot k. These interpretations are important since the parameters
will be described as functions of additional tree, stand and site-level covariates in the
second step of the model development.

The model (9) is linear with respect to Ak and Bk. Taking into consideration the
random stand effect, these parameters can be represented at the first stage as Ak =
A + αk, Bk = B + βk, where A and B represent fixed effects which have to be
estimated; αk and βk are random stand level effects with zero means and constant
variance. It may be noted that (9) is overparameterized. Moreover, a model of that
specification cannot be linearized with respect to the parameters λ and C. Therefore,
it is suggested firstly to estimate λ and C. These parameters were selected by testing
a variety of combinations of λ and C when fitting a linear mixed model

log(Hki) = A−Bxki + αk + βkxki + ϵki,

The combination of the parameters with the lowest error variance was λ = 7 and
C = 1.225. There were no clear trends found in λ and C over different mean stand
age and the models were not very sensitive to the value C.

849



850



_________________ 

16th  ASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece 
 

© 2015 ISAST                               
 

Methods for estimating the number of older high-risk 

drug users  
 

 

Clive Richardson
1
 and Argyro Antaraki

2
 

 

 

1  Department of Economicc and Regional Development, Panteion University of Social 

and Political Sciences, Athens, Greece  
     (E-mail: crichard@panteion.gr) 
2 Greek REITOX Focal Point, University Mental Health Research Unit, University of 

Athens Medical School  

    (E-mail: aandaraki@ektepn.gr) 
 

 

Abstract. It is important to know the size of the population of high-risk drug users 

(HRDU), for whom services must be provided. As direct ascertainment (e.g. by a general 
population survey) is impossible, indirect methods of estimation are employed, notably 

capture-recapture methods. These are based on identifying individual users in one or 

more sources of data (such as treatment services or records of arrests by the police). The 

data take the form of an incomplete contingency table. We examine issues in applying 
indirect methods to the particular problem of estimating the number of older HRDU, who 

are now becoming an important segment of the population for which special provision 

must be made by planners. Capture-recapture analysis by fitting Poisson log-linear 

models based on the analysis of incomplete contingency tables may face difficulty 
because of relatively sparse data, especially when separate estimates are required for 

specific subgroups. For older drug users in Greece, this is overcome in the present 

analysis by fitting a single model to data for each year from 2004 onwards and both age 

groups (50-59 years and 60+). We also examine the application of single-source methods 
(fitting truncated Poisson distributions), multiplier methods and multiple indicator 

methods.  

Keywords: incomplete contingency tables; capture-recapture method; Poisson 

regression; truncated Poisson distribution; multiple indicator methods 

 

 

1  Background 

 
Because of the importance of the problem of drug use, the European Union 

maintains the European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA: www.emcdda.europa.eu) to report on trends and developments in 

the drug situation across the EU. One of the five Key Indicators on which its 

reporting is based is the High-Risk Drug Use Indicator, which aims to provide 

numerical estimates of how many high-risk drug users (HRDU) there were in 
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each Member State in a given year. ‘High-risk’ use is defined by the EMCDDA 

as ‘recurrent drug use that is causing actual harms (negative consequences) to 

the person (including dependence, but also other health, psychological or social 

problems), or is placing the person at a high probability/risk of suffering such 

harms’. It is important to have good estimates of the prevalence of HRDU in 

order to monitor the drug-use problem and plan the appropriate provision of 

treatment and other services. 

 

Western societies are not used to seeing many old drug users. However, not 

many people succeed in stopping drug use, which means that rapidly increasing 

numbers of older HRDU are appearing now, as the people who started drug use 

as adolescents or young adults in the 1970s and 1980s are now over 50 or 60 

years old. After many years of drug use, these people tend to have multiple 

severe health problems. They place heavy demands on health care services 

which may be different from the needs of younger adults. It is therefore 

becoming increasingly important to have separate estimates of the size of the 

population of HRDU in older age groups, whereas the EMCDDA continues to 

place the emphasis on younger users by reporting estimates in the age ranges 

15-24, 25-34 and 35-64 years. 

 

The size of a hard-to-reach population such as HRDU cannot be ascertained 

directly (e.g. by a general population survey). Indirect methods must be 

employed. In particular, capture-recapture methods are often used, as described 

in the following section. 

 

 

2  Estimation by capture-recapture methods 
 

Capture-recapture or multiple records methods are based on analyzing the 

“captures” of individual drug users in one or more sources of data, usually 

within one calendar year. Examples are attending a treatment service or being 

arrested by the police. It is necessary to be able to identify the individual and 

this is usually done by employing an anonymized identification code. Given k 

sources, let an individual capture history be denoted by the k-vector x where xi 

takes the value 1 if the individual was recorded in source i, 0 otherwise. The 

data on all recorded individuals form an incomplete 2
k
 -1 contingency table C. 

An individual who has been recorded in at least one source within the reference 

year appears in one of the cells of this table. Members of the population of drug 

users who were not recorded in that year, corresponding to x = (0,0….0), make 

up the cell that is missing from the full 2
k
 table. An estimate of this “hidden 

population” can be extrapolated from a model fitted to the observed cells of the 

table C. 

 

Model fitting is simplified because of the well-known equivalence between 

multinomial and Poisson log-linear models - see, for example, Lang [1]. A 

standard package can be used to fit a Poisson regression model to the observed 
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cell counts, where the linear predictor will include main effect terms for 

presence (capture) in the separate sources as well as possible interaction terms 

between sources. Let the fitted mean for cell J corresponding to capture history 

xJ  be 

ˆˆln J Jz   

where the vector z denotes x augmented by any necessary interaction terms. 

Then, because all the elements of zK are zero in the missing cell K, an estimate 

of the hidden population is obtained as 

0
ˆ

ˆ
K e

   

where 0̂ is the estimated constant term in the linear predictor. Frequentist 

confidence intervals may be obtained using the usual standard error or 

alternatively by a profile likelihood method (Regal and Hook [2]). Modelling 

and estimation by a Bayesian approach can be carried out very conveniently 

using an R package provided by Overstall and King [3]. 

 

The essential idea of capture-recapture modelling is to exploit the information 

that is provided by the overlaps between data sources: that is, the numbers of 

individuals who appear in more than one source. If the overlaps are very small, 

capture-recapture modelling will be unsuccessful. Inspection of the data from 

the three sources that are employed in Greece to obtain annual HRDU estimates 

showed a severe problem for the older age groups that are the focus of interest 

here. In the 50-59 years age group, the total number of individuals who 

appeared in more than one source in the same year was never more than four 

until 2010 and never exceeded ten. In the 60+ age group, the total of the 

overlaps was zero or one in every year. Consequently, separate estimation in 

each year was impossible. 

 

To resolve this problem, the five-way contingency table with dimensions 2 x 2 x 

2 x 2 x 10 was constructed, corresponding to the three sources (present/absent), 

age (50-59 and 60+) and year (2004 up to 2013). Twenty cells are missing, 

corresponding to the hidden population in each age group in each year. Initial 

examination of values of the deviance, AIC and parameter estimates suggested 

the model 

Main effects + S2.S3 + S1.Year + Year.Age 

 

which contains, in addition to the five main effects, the 2-way interactions 

between Sources 2 and 3 (this interaction is consistently found in the separate 

fits to annual data for younger age groups), between Source 1 and Year, and 

between Year and Age. Values of the deviance from fitting selected Poisson 

log-linear models to test the significance of the remaining interaction terms are 

shown in Table 1. Although the contingency table is sparse, it is generally 

accepted that the chi-squared approximation holds for changes in deviance 

between nested models. Consequently, the S2 by S3 and S1 by Year interactions 

should definitely be included in the model, but the case for Year by Age is 
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marginal (P = 0.03). The Bayesian analysis (Overstall and King [3]) attached 

highest posterior probability to the model without this interaction (0.29 

compared to 0.21 for the model that included it). Its inclusion makes very little 

difference to fitted values and their confidence intervals. Subsequent results are 

shown from the model that includes it. 

 

 

Table 1. Changes in deviance on omitting interaction terms from the basic 

model identified for the five-way incomplete contingency table. 

 

 

Basic model 

Term 

omitted 

 

Deviance 

 

d.f. 

Change in 

deviance* 

 

d.f. 

Main + S2.S3 +S1.Year 

+ Year.Age  

 101.4 107   

  -S2.S3 118.9 108 17.5 1 

 -S1.Year 143.1 116 41.7 9 

 -Year.Age 119.9 116 18.4 9 

*from basic model 

 

Table 2 shows annual estimates of the total population of HDRU in the two age 

groups. As might be expected given the generally low frequencies, the 

confidence intervals are wide, with the upper limit typically twice as large as the 

lower. The hidden population is much greater than the observed number of 

individuals; using the point estimates, the ratio of hidden to observed is about 

6:1 after the first two years, increasing to 9:1 in 2013. In separate annual 

estimates for all age groups, the corresponding ratio is about 4:1. 

 

 

Table 2. Estimated total HDRU population sizes (observed plus hidden) by age 

group and year, with 95% confidence intervals in parentheses. 

 

 50-59 60+ 

Year Observed Total Observed Total 

2004 50 123 (72 - 287) 9 22 (12 - 58) 

2005 48 180 (100 - 385) 4 15 ( 7 – 45) 

2006 78 462 (291 - 772) 15 89 (50 - 171) 

2007 70 521 (326 – 866) 10 74 (39 - 154) 

2008 72 559 (355 - 910) 17 132 ( 75 - 245) 

2009 137 1312 (899 - 1948) 20 191 (115 - 330) 

2010 178 1402 (974 - 2058) 22 173 (107 - 292) 

2011 228 1641 (1157 - 2376) 17 122 ( 74 - 213) 

2012 254 1582 (1123 - 2283) 20 125 ( 78 - 210) 

2013 220 2253  (1596 - 3221) 28 287 (182 - 464) 
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3  Single source methods 
 

The capture-recapture method as presented above does not use information on 

repeated captures of an individual in the same source, such as repeated arrests 

within the same year. If only one source exists, however, it may be possible to 

use this information to estimate population size. An obvious approach is to 

assume that the number of captures of an individual follows a Poisson 

distribution. Let if  be the frequency of individuals captured exactly i times. 

The zero class, with frequency 0f , is unobservable – the hidden population. Let 

the unknown total population size be N and 
1 2n f f    the number of 

individuals observed. Then a Horvitz-Thompson estimator of N is in general 

0

ˆ
1

n
N

p



                                                 (1) 

where 
0p  is the probability of no captures, which is e   for the Poisson 

distribution. An estimate of μ could be obtained by fitting the zero-truncated 

Poisson distribution to the counts  : 1,2if i  but an alternative is usually 

adopted. Writing  |Po i  for the Poisson probability of exactly i captures, 

observe that 

   ( 1| ) | 1Po i Po i i      

This suggests the simple estimator   11 i ii f f of μ for suitable i. In particular, 

taking 1i  and substituting in equation (1) gives Zelterman’s estimator 

2 1

ˆ
1 exp( 2 / )

Z

n
N

f f


 
 

of the population size N (Zelterman [4]). The advantage of this estimator is 

robustness against heterogeneity in the distribution of the number of captures. 

Bohning & van der Heijden [5] show how covariates can be introduced into the 

estimation. 

 

Table 3 gives estimates obtained using Zelterman’s estimator for the year 2013. 

The numbers of individuals aged over 45 years with more than one capture were 

too small to allow separate estimation. Point estimates are a little higher than the 

corresponding estimates obtained from the three-sample capture-recapture 

analysis that is usually applied in order to obtain the annual estimates for 

Greece. For example, the capture-recapture estimate of the total population is 

17415 (15316 – 19883).  The confidence intervals of the single-source estimates 

are much wider than those derived from the capture-recapture analysis. 

 

Because of the wide confidence intervals, there is no reason to use the single-

source estimates in place of the capture-recapture ones in general. However, 

there is interest in using them in cases where reasonable capture-recapture 

estimates have not been obtained. As noted above, this is particularly liable to 
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happen when the overlaps between sources are low. For this reason, it has not 

been possible so far to obtain separate annual estimates of population sizes for 

older HRDU. However, the same problem arose with the single source 

estimates: only five out of 280 people aged 45 years and above were recorded 

more than once.  

 

 

Table 3. Estimated numbers ˆ
ZN  of HRDU (users of any opioids) in Greece in 

2013, obtained by Zelterman’s method, with 95% confidence intervals. (Data: 

Greek Reitox Focal Point.)  

 

Population n f1 f2 ˆ
ZN  95% c.i. 

Total 1737 1649 82 18348 14392 – 22304 

Gender      

Male 1453 1382 66 15951 12116 – 19785 

Female 284 267 16 2514 1286 – 3740 

Age*      

15-24 98 86 12 402 181 – 624 

25-34 770 718 46 6386 4552 – 8220 

35-44 591 570 19 9164 5051 – 13277 

Place      

Athens 690 668 21 11323 6488 – 16158 

Thessaloniki 361 331 27 2378 1490- 3267 

Other 686 650 34 6886 4581 - 9191 

*For age groups for which estimates could be obtained 

 

 

 

4  Other methods of estimation 

 
Consider a two-source capture-recapture analysis. Let n1 be the number of 

individuals captured by the first source and n2 the number captured by the 

second, while n12 denotes the number captured by both. Then, the fraction of the 

total population N that has been captured in the first source is of course 1n N . 

Similarly the proportion of the individuals from the second source who have 

also been captured in the first is 12 2n n . Under the assumption of independence 

of the two sources, these two proportions can be equated, giving the Petersen 

estimator of population size 

1 2

12

ˆ
P

n n
N

n
  

in which the size of Source 1 has been multiplied up the factor 2 12n n in order to 

estimate N. This estimator is rarely applied to the estimation of the numbers of 

drug users because the independence assumption, which cannot be checked, is 
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unlikely to hold true. However, it connects to a range of other multiplier 

methods which are sometimes used (EMCDDA [6]). 

 

For example, suppose that Source 1 comprises the HRDU who died in the 

reference year: let this number be D.  Thus the annual mortality rate is D/N. If it 

is known from other studies (for example, a follow-up study of a cohort of 

users) that a fraction d of HRDU dies annually, then equating the fractions d and 

D/N can be used as above to give the mortality multiplier 1/d and the final 

estimator 

ˆ
D

D
N

d
  

In Greece, drug-related deaths have fallen from a peak of D = 343 in 2005 to 

only 77 in 2012.  Assuming a value of 1.5% for d , which is comparable to 

values that have been reported from other countries, would give an estimated 

HRDU population of 22867 in 2005. This is broadly compatible with other 

estimates. However, the corresponding estimate of 5133 for 2012 is 

unbelievable, so consistency can be obtained only if d has fallen substantially. 

This is probably true, because of the effect of methadone substitution 

programmes, for example, but no current estimate of d is known. Therefore this 

method cannot be applied in Greece. Furthermore, the low frequencies involved 

would lead to large standard errors of estimation. The problem would become 

even worse in subgroups, such as the older users.  

 

Another method which has the potential to overcome deficiencies in data is the 

multiple indicator method (EMCDDA [6]).This regression method can be used 

to obtain estimates of the number of HRDU in cities or other geographical areas 

for which capture-recapture or other estimates have not been obtained, as long 

as they have been obtained in some places and given that there exists a set of 

predictors that are expected to be correlated geographically with high-risk drug 

use (for example, the unemployment rate and other socio-economic indicators, 

and crime rates). Regressing the rates of HRDU on the predictors in the set of 

places with known rates, gives an equation which can be used to predict HRDU 

rates in the places with unknown rates. This method could potentially be applied 

in Greece to provide estimates for cities or regions. The problem is that, so far, 

separate estimates have been obtained only for Greater Athens and Thessaloniki, 

which is insufficient for the application of the method. Attempts to estimate 

HRDU numbers in, say, Iraklion and elsewhere have not yet been successful, 

because of the problem of low frequencies as mentioned earlier.  

 
 

Conclusions 
 

Estimating the size of the population of HRDU is a matter of great practical 

importance to which statistical modelling makes an essential contribution. The 

relevant data are not only difficult to collect, but are often sparse, especially 
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when the focus falls on particular subgroups of the population, such as HDRU 

in a particular city or in older age groups. Although a wide variety of statistical 

methods has been proposed in the literature, the lack of data may make them 

unusable or lead to very imprecise estimates.  

 

The capture-recapture modelling employed in the present paper produced 

reasonable estimates for the older HDRU who have not previously been 

considered much but are becoming increasingly important. The method adopted 

here enabled results to be derived for the 60+ age group, which could not have 

been obtained otherwise. The results indicate that there are likely to be at least 

2000 HRDU over the age of 50 years in Greece. They represent more than 10% 

of the total population and can be expected to continue to increase substantially 

in the next few years. 
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Abstract. In manpower planning mathemathical models, based on estimations of
transition probabilities between groups of employees, are used to predict future staff
compositions. Although the quality of the model depends on the division of the staff
in groups, this classification has been neglected in literature.
The present paper investigates whether decision tree learning can be used as a classi-
fication technique in manpower planning. The paper presents a method for dividing
the population according to the available data in the HR database. The approach will
improve predictions and validity of the model. Another advantage of our developed
method is that it can be automated and implemented in software.
Implementation of the method will make it possible for HR departments in a company
to use the models in practice. The approach will be illustrated on a real life human
resources database using statistical software such as R and WEKA.
Keywords: Decision trees, Manpower Planning, Homogeneity in groups, Human
Resources.

1 Introduction

In the domain of Human Resources transition behavior of employees is an im-
portant topic of study. In [12] two different approaches from Schneider and
Pfeffer are being discussed on how to analyze behaviour of employees. Schnei-
der’s emphasis is on using an understanding of individuals as a route to ex-
plaining phenomena in a company. Other theorists, like Pfeffer, say that the
demographic compositions of organizations influence many behavioural pat-
terns such as job transfers and promotions. Pfeffer considers that explanatory
factors are age, sex, race, socio-economic background and religion. Pfeffer
provides a discussion of the organization-level constructs of homogeneity and
cohesiveness and patterns of employee flows. In psychological and sociological
studies the total population is divided in groups, according to various charac-
teristics, e.g. grade, age, sex,... For example, the population can first be split in
men and women, afterwards different categories can be made according to age.
It is said that these groups are homogeneous because of personal attributes of
the members [12]. In manpower planning aggregate analyses are made as well,
the definition of homogeneity in the context of manpower planning is however
different.
_________________ 
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2 Rombaut and Guerry

Manpower planning is a facet of Human Resources Management based on
mathematical models which are used to analyze staff within a certain firm.
It provides long term decision support regarding recruitments, redundancies
and internal staff mobility [1]. These mathematical models are used to predict
future staff compositions and make an aggregate analysis based on distinctive
groups in a company. In manpower planning these groups are called states.
A distinction is made between a push and a pull model since there can be
several underlying reasons why an employee would transfer to an other state.
For example, an employee can transfer to an other state because of a vacancy.
Here the employee is pulled towards another state, hence the name pull model.
On the other hand, if the transfer is due to for example an automatical flow
such as tranferring to a higher category because of seniority of the employee,
whether or not there is a vacant position, we say that the employee is pushed
towards an other state. In practice, a mix of push and pull transitions might
occur in the same personnel system [9]. Therefore De Feyter [8] introduced the
mixed push-pull manpower model, which allows modelling both types of flows
within a firm.
In the present paper we will restrict us to push models that are also time-
homogeneous, i.e. the flows among groups are characterized by time indepen-
dent transition probabilities. In these models the expected number of employees
at a certain time depends on the estimated transition probabilities.
For each state in the system transition probabilities are estimated. A divi-
sion of the personnel system in grades might not be sufficient to lead to a
‘good’ estimator. The goal is to get homogeneity with respect to the consid-
ered flows. Several approaches to obtain homogeneity are discussed in literature
[1,3,7,9,17]. Homogeneity can also be obtained by dealing with heterogeneity.
There are two types of heterogeneity which should be considered: heterogene-
ity within a group and heterogeneity between groups. Ugwuowo and McClean
give a review of methods that incorporate population heterogeneity into man-
power modelling in [17]. They put forward that it is not always possible nor
convenient to use a method of disaggregation. Since we may not know what
the individual causal factors are and even if we do know, we may not have the
proper data on each subgroup. Therefore they apply a semi-Markov model to
examine sources of heterogeneity within groups.
The problem arises of how to deal with heterogeneity due to latent sources, i.e.
sources for which there are no observations available. Guerry [9] introduces a
hidden Markov model that takes into account the specificity of a manpower
system and the fact that there are both observable and latent sources of het-
erogeneity in such a system. A distinction is made between deterministic and
stochastic variables, the first kind are variables that do not change over time
or that are determined by their evolution over time such as gender or age, the
second are variables based on probabilities such as position in the company. To
make an accurate prediction for the stochastic variables the population should
be divided in homogeneous subgroups in order to increase intra-homogeneity
and inter-heterogeneity.
In the present paper we will focus on dividing the population in homogeneous
subgroups as proposed by De Feyter [7], we will not deal with the latent sources
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of heterogeneity but use the observable data to reach homogeneity.
The division in subgroups in manpower planning mostly follows a certain
scheme which is explained accurately in [7]. First it is important to look at
the characteristic we are interested in. If predictions are to be made about e.g.
grade or salary, this has to be taken into account in the division in distinctive
groups. The second stage goes further into transitions between subgroups and
flows out of the system. Every introduction of an additional subdivision brings
the need for a new investigation of the degree of heterogeneity. In the third
and following stages the homogeneity of the created subgroups so far is inves-
tigated. Clearly homogeneity in manpower planning depends on similarity in
transition probabilities.
The splitting process goes on until homogeneity is reached for all possible tran-
sitions in all created subgroups. However, a very important trade-off should be
taken into account. The final homogeneous subgroups need to be large enough
to make reliable estimations and predictions. At some point a choice has to
be made between accepting a degree of heterogeneity in a subgroup or further
division with the risk of creating subgroups that are too small. The challenge
is to find an equilibrum between homogeneity and group size. Therefore De
Feyter proposed a stepwise splitting-up approach [7]. An advantage of this
approach is that it keeps an eye on the size of the subgroups, so a good bal-
ance between homogeneity and group size can be reached. Also the method
avoids making unnecessary splits when certain variables are correlated and one
variable might prove to be sufficient for a split. The biggest disadvantage of
the approach is that for each possible split, every variable and transition is
investigated seperately.

In the present paper we will examine decision tree learning as a methodology
to classify personel in homogeneous subgroups with the advantages that the
most explanatory variables are selected in the dataset, and that the selection
of the variables and the division according to the variables is not biased by
prior information. Moreover the tree will result in a division of the staff in
subgroups by a procedure that can be automated.

2 Push model

The push model was founded by Bartholomew and thoroughly described in
[1]. Consider a population where the members are divided in k homogeneous
groups, for example according to the grades in a company. Let nj(t) denote the
stock of people in grade j at time t, so the initial number of members in grade
j is nj(0). The number of new recruited employees in grade j at time t+ 1 will
be denoted as Rj(t + 1). A member of grade i moves to grade j within one
time interval with probability pij . The expected number of employees n̄j(t+1)
present in grade j at time t+ 1 can be expressed as

n̄j(t+ 1) =

k∑
i=1

pij n̄i(t) +Rj(t+ 1).
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4 Rombaut and Guerry

Better estimations for the transition probabilities will result in better esti-
mations for the flows and stocks. We will focus on a hierarchical, time-
homogeneous push model with at most one transition for every member in
every time interval. The aim is to determine the homogeneous subgroups that
define the states of the Markov model.

3 Split in manpower systems

When constructing a Markov model we typically use a Human Resources
database consisting of data from several years. In every year we have in-
formation on every employee in the system and whether or not the employee
was promoted from grade i to i + 1 during this year. We are interested in

Year ID Sex Marital Age Seniority Grade Work% Promotion
Status

2012 135 Male Single 41 15 2 100 No
2013 135 Male Single 42 16 2 100 Yes
2014 135 Male Single 43 17 3 100 No
2012 136 Female Divorced 35 9 1 80 No
2013 136 Female Divorced 36 10 1 80 No
2014 136 Female Divorced 37 11 1 80 No

Table 1. HR database example.

which characteristics are of influence on this promotion and how we can split
the population according to these characteristics. This type of problem led us
to the theory of decision trees. Decision trees were introduced in the area of
data mining and are used as a classification technique for all types of data.
A detailed outline on how a decision tree works is given in [15]. A decision
tree will not only select the most explanatory characteristics but will also give
the best possible split according to this characteristic. Note that for every
i = 1, . . . , k − 1, transitions from i to i+ 1 might have other explanatory vari-
ables for promotion. So we will use the decision tree splitting technique for
transition flows from i to i+ 1 for every i = 1, . . . , k − 1.

4 Decision trees

In this section we will give an overview of the basic principles of decison tree
learning and the applicability in manpower planning is presented. A decision
tree consists of nodes where the root node is the entire dataset, this root node
has branches to childnodes, which form a partition of the root node. If a
childnode has no outgoing branches, the child is called a leaf, otherwise the
child has outgoing branches to children that again form a partition of this node
[13]. The branches of the tree are created by making decisions based on the
available variables. About 30 years ago Breiman [5] introduced the CART
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(classification and regression trees) algorithm, which is a technique of recursive
partioning that consists of a two step search procedure [4]. In the first step of
the procedure the best split is selected for each variable. Secondly, after the
best split is determined for each characteristic, the best split is selected overall
which results in a first split of the dataset according to the best predicting
characteristic [4]. Many decision tree algorithms are based on CART. CART
itself still remains a very popular data analysis tool and has a high practical
value [4]. We will provide some details on both steps of the procedure in the
following two sections.
In the domain of data mining many classification techniques have been devel-
oped, among others CART, C4.5 and MLP [16], which have been implemented
in software tools such as WEKA. WEKA is an open source software which
has achieved widespread acceptance within academia and business circles and
has become a widely used tool for data mining research [10]. We will use the
WEKA software and choose the popular CART algorithm for our classification
problem.

4.1 Measures for selecting the best split

An important issue in choosing group divisions is looking at how to make a
‘best’ split. If we want to split a group according to for example sex the split
is straightforward: we make a binary split in men and women. The split is far
less evident if we want to split a group according to a continuous characteric,
for example, according to wages, age, etc. There exist two types of decision
trees: binary and non-binary. In a binary tree every node that is not a leaf
has two children. A non-binary tree might get complex really fast when char-
acteristics have many values, and every value leads to a branch. Researchers
therefore mostly prefer binary trees [5,6,15] (e.g CART and ID3 are binary
split methods). When the characteristic is binary, the split is evident. How-
ever if we consider nominal characteristics such as marital status which has
three distinct values (e.g. single, married, divorced), we need to group certain
values together. It becomes even more difficult when we consider continuous
characteristics.
In general a characteristic with k values leads to 2k−1 − 1 ways to create a
binary partition. For a continuous characteristic C the binary split can be
defined as C < v and C ≥ v. The decision tree should consider all possible
values for v and choose the one that leads to the best split. Which gives rise
to the following question. How can we obtain the best split?
In the theory of decision trees a split is based on predefined classes. In the
context of manpower planning we have a dataset of records where every record
consists of characteristics of an employee which belongs either to the class pro-
moted or the class non-promoted. We give an overview of the most used split
measures as described in [15]. We define p(i|t) to be the fraction of records
belonging to class i at a given node t. The measures for selecting the best split
are often based on the degree of impurity of the child nodes. The smaller the
degree of impurity, the better. Consider we have l classes, examples of impurity
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6 Rombaut and Guerry

measures are

Entropy(t) = −
l∑

i=1

p(i|t) log2 p(i|t)

Gini(t) = 1−
l∑

i=1

p(i|t)2

Classification error(t) = 1−max
i
p(i|t)

When all records belong to the same class we get the impurity measures result
in 0. The highest value for these functions is 0.5 for Gini and the classification
error, and 1 for Entropy. The CART algorithm is based on the Gini measure.
After the suitable impurity measure is chosen, a splitting criterion for the
decision tree can be defined. We denote i(N) as the impurity of the node N .
We can calculate the gain ∆ of making a split in the partition {C1, C2, . . . , Ck}
by

∆ = i(N)−
k∑

j=1

|Cj |
|N |

i(Cj),

where N is the parent node with children Cj . For a binary split k = 2. Decision
tree induction algorithms often choose a test condition that maximizes the gain
∆ [15]. Maximizing the gain is obviously equivalent to minimizing the weighted
average impurity measures of the child nodes because i(N) is the same for all
test conditions.

Example 1. We made a small dataset which might be extracted from an HR
database, on which we will illustrate the use of the splitting criterion.

Sex Marital Age Promotion
Status

Male Single 23 No
Female Married 35 No
Male Married 27 No

Female Single 45 Yes
Female Married 38 No
Female Divorced 48 No
Male Single 47 Yes
Male Divorced 36 No
Male Single 22 No
Male Married 50 Yes

Table 2. HR dataset example.

In the example each record contains the personal information of a staff
member with in the last column the characteristic promotion which gives a
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‘yes’ if the employee has received a promotion from i to i + 1 within a year,
a ‘no’ if the employee hasn’t. We construct a decision tree where every leaf
contains only employees who belong to the same class according to the latter
characteristic. Therefore when we calculate an impurity measure, it will be
based on the number of promoted and non-promoted employees. A first split
can be made according to the characteristic marital status which has 3 values:
single(S), married(M) and divorced (D). Since the aim is to make a binary split
we can do this in 3 (= 23−1 − 1) possible ways as described above.

Employees

S,M D

Employees

S,D M

Employees

S M,D

We choose the Gini impurity measure in our example. First we calculate the
impurity measure of the parent node, which is the entire dataset

i(employees) = 1−
(

3

10

)2

−
(

7

10

)2

= 0.42.

Next we calculate the gains for the different splits.

∆1 = 0.42−
[

8

10

(
1− 0.752 − 0.252

)
+

2

10

(
1− 0.52 − 0.52

)]
= 0.02

∆2 = 0.42−
[

6

10

(
1− 0.832 − 0.172

)
+

4

10

(
1− 0.52 − 0.52

)]
= 0.05

∆3 = 0.42−
[

4

10

(
1− 12 − 02

)
+

6

10

(
1− 0.52 − 0.52

)]
= 0.12

Since ∆3 is the biggest gain, we choose to make the third split.

In the previous example we needed to consider 3 possible splits, however if
we would like to split the dataset according to a continuous characteristic C,
it might take a lot of computations to consider every value v for making a
binary split C < v and C ≥ v . To reduce complexity we can first sort the
dataset according to the continuous characteristic. For example if we would
like to make a split according to the age in the previous example. We would
first order the data increasingly based on the age of the employees. Candidate
split positions are identified by taking the midpoints between two adjacent
sorted values [15], e.g. v = 22.5, 25, 31, . . .. But to reduce possible values
even more, we will only consider candidate split positions located between two
adjacent records with different class labels (in our example Yes or No for the
characteristic Promotion). So the only possible candidate split positions are
v = 41.5 or v = 47.5 or v = 49. We consider the splits where v = 41.5, v = 47.5,
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8 Rombaut and Guerry

Sex Marital Age Promotion
Status

Male Single 22 No
Male Single 23 No
Male Married 27 No

Female Married 35 No
Male Divorced 36 No

Female Married 38 No
Female Single 45 Yes
Male Single 47 Yes

Female Divorced 48 No
Male Married 50 Yes

Table 3. HR dataset example sorted according to age.

v = 49 and calculate the gain respectively.

∆1 = 0.42−
[

6

10

(
1− 12 − 02

)
+

4

10

(
1− 0.752 − 0.252

)]
= 0.27

∆2 = 0.42−
[

8

10

(
1− 0.752 − 0.252

)
+

2

10

(
1− 0.52 − 0.52

)]
= 0.02

∆3 = 0.42−
[

9

10

(
1− 0.782 − 0.222

)
+

1

10

(
1− 02 − 12

)]
= 0.11

Again we select the biggest gain, thus v = 41.5, resulting in the age partition
C1 = [22, 41] and C2 = [42, 50].
We now know how to select the best split for a characteristic. However in a
dataset there is often more than one characteristic present. As in the example
we gave above there are 3 different characteristics which might have an influence
on promotion. In the next section we discuss how the characteristic for the first
split is chosen.

4.2 Selecting the characteristic

When more than one characteristic is present, we need to select the variable for
the first split. In the example from the previous section we considered a split ac-
cording to marital status and a split according to age. For these characteristics
the biggest gain was 0.12 and 0.27 respectively. For the characteristic sex only
one split is possible, here the gain is 0.003. This means we will decide on mak-
ing a first split according to age which results in two nodes. For every node
we then consider the number of members in each class: non-promoted(NP),
promoted (P). The left node results in NP:6,P:0 and an impurity score of 0,
thus will turn into a leaf of the tree. The right node has NP:1,P:3, and an
impurity score of 0.375.
Since the left node is a leaf, we will now only investigate the right node and
calculate the impurity scores for possible splits. Splitting according to sex will
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give a gain of 0.125, to marital status will give 3 possible splits with gains 0.375
(SM and D), 0.125 (SD and M), 0.125 (S and MD), to age will give 2 possible
splits with gains 0.041 (v = 47.5) and 0.041 (v = 49). So we decide to split
according to marital status and put single and married employees together in
a node. After this last split, all nodes are pure, i.e. all records in a leaf belong
to the same class.

Employees

Age < 41, 5 Age ≥ 41, 5

single, married divorced

The splitting procedure will stop when all records in a leaf belong to the same
class. This might not always be a good criterion, especially when we want to
use the resulting groups of records we retrieve in a leaf in manpower planning.
In manpower planning we want a group to be homogeneous but also we want a
group to be large enough to make good estimations for transition probabilities.
So in our case we will predefine a minimum number of objects we want in every
leaf. The splitting procedure will stop if this minimum is reached or if a next
split would imply that the leafs turn out to be too small.
Note that the technique of decision trees is focused on trying to classify cases
according to a chosen characteristic. The highest gain will be reached when a
split is conducted that gives leafs that are most homogeneous according to the
chosen characteristic. In other words the maximal gain for a split will reach the
maximal intra homogeneity inside the leaf. In the case of manpower planning
we also want the resulting subgroups to be inter-heterogeneous as well. Thus
if the decision tree will provide us subgroups where the estimated transition
probabilities lie close together, we could merge the groups again.

5 Estimating probabilties depending on the sample size

We use a time-homogeneous Markov model i.e. the transition probabilities will
be constant over time. An estimator for the transition probability to transfer
from grade i to grade j will be

p̂ij =

∑T−1
t=0 nij(t)∑T−1
t=0 ni(t)

, (1)

where nij(t) denotes the number of people who moved from grade i to j in the
time interval [t, t+ 1] and T the number of years of available data [1]. In order

to make a reliable estimation the sample size
∑T−1

t=0 ni(t) should be big enough.
For every grade i we consider the probability of promoting to grade i + 1 or
staying in grade i. Let p̂i,i+1 be the probability of promoting to grade i + 1.
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10 Rombaut and Guerry

Then 1 − p̂i,i+1 is the probability of staying in grade i. This is a binomial

experiment that is conducted n times, with n =
∑T−1

t=0 ni(t).
If n is ‘large enough’ a confidence interval for the true probability pi,i+1 is given
by

p̂i,i+1 ± zα
2

√
p̂i,i+1(1− p̂i,i+1)

n
,

where zα
2

is the critical value of the normal distribution for a given error level
α [18]. For example if α = 0.05, then the critical value z0.025 will be 1.96.
The meaning of this critical value is that if the data is normally distributed
and α = 0.05, 95% of the data will be within the confidence interval and only
2.5% will be in each of the ‘tails’ outside [18]. From this confidence interval
Cochran’s sample size formula is derived [2] which gives a minimal value for
the sample size n for a reliable estimation. The sample size n should be at least

n∗ =
( z
m

)2
× p̂i,i+1(1− p̂i,i+1),

where z is a critical value (mostly 1.96 or 2.58 corresponding with an error
level of respectively 0.05 or 0.01) and m is the radius of the confidence interval
and thus the margin of error the researcher is willing to except (usually 0.025
or 0.01) [2]. Note that n∗ depends on the estimated probability, however the
estimated probability is unknown upfront and depends on the sample. We could
choose to set p̂i,i+1 = 1

2 , which results in the upper bound of n∗. However,
promotion probabilities are usually pretty small so this would result in a value
of n∗ that is unnecessary large.
Depending on the data we can calculate p̂i,i+1 for the entire grade i. This is
an average probability for every employee in grade i to transfer to i + 1, thus
we will choose to base the minimal number of members in the subgroups of
grade i on the probability p̂i,i+1. So the minimal number of members in the
subgroups of grade i will be

ns(i) =
( z
m

)2
p̂i,i+1(1− p̂i,i+1). (2)

We will choose common values for z and m: z = 1.96 and m = 0.025. However,
if the sample is big (e.g. > 10000) and the probability pi,i+1 small (e.g. < 4%)
the value 0.025 for m might not be a good choice for two reasons. First of all
choosing a margin of error to be 2,5% for a probability smaller than 4 % doesn’t
seem quite right. Secondly, if the sample is big and the probability small this
will lead to many subgroups with small differences in transition probabilities.
So in the case of a big sample and low probability, we set m = 0.01 [2].

6 Illustration

We use a real life database that contains the information on academic staff
from our university for the period of 1993-2013. There are 6 different grades:
the first grade consists of Phd researchers, the second of Post Doctoral Re-
searchers, the third till the sixth grade consist of different hierarchical grades
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of Professors (grade 3: assistent professor, grade 4: associate professor, grade
5: professor, grade 6: full professor). Every record in the dataset represents
one year for one employee (cfr. example in section 3). The dataset consists of
46317 cases from 1993 till 2013 and contains the following variables for every
employee on annual base: sex, age, seniority (sen), workpercentage, faculty
(fac), grade in the beginning of the year, grade at the end of the year, promo-
tion. There are 8 faculties in our university: ES, WE, IR, LW, LK, PE, RC, GF.

For each grade i we will construct a decision tree, where the tree will be sorted
according to the characteristic promotion having values 0 and 1, a 0 means
that the employee stayed in grade i (we do not consider employees who left
the company for making the split), a 1 means that the employee transfered to
grade i + 1. First we will apply the sample size formula (2) for every grade,
we present the results for the first and second grade. To create homogeneous
groups for grade 1, we need to look at the promotion probability from grade
1 to grade 2. In the first grade there are 21539 cases with 794 promotions,
so p̂1,2 = 3.69%. Since this is a small probability and a large sample, we will
choose m to be 0.01. The minimum size for the subgroups will be

ns(1) =

(
1.96

0.01

)2

0.0369(1− 0.0369) = 1365.

In the second grade there are 4149 cases with 738 promotions, so p̂2,3 = 17.79%,
resulting in a minimum subgroupsize

ns(2) =

(
1.96

0.025

)2

0.1779(1− 0.1779) = 899.

Other minimal sizes in our example are: ns(3) = 288, ns(4) = 360, ns(5) = 379.
Next we construct a decision tree using the CART algorithm. This results in the
following tree for grade 1. In the tree ‘fac1’ stands for the group of employees
of faculties WE, IR and LW, ‘fac2’ are the other faculties.

Grade 1

Sen < 3, 5

Age < 27.5 Age ≥ 27.5

Fac1 Fac2

Sen ≥ 3.5

Age < 37.5

Sen < 5.5

Fac1 Fac2

Sen ≥ 5.5

Age ≥ 37.5
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12 Rombaut and Guerry

The decision tree results in 7 leafs, from the outer left leaf to outer right
leaf: NP:6936,P:19 (0.27%), NP:2658,P:86 (3.13%), NP:3140,P:34 (1.07%),
NP:1472,P:153 (9.42%), NP:1572,P:61 (3.74%), NP:2374,P:339 (12.5%),
NP:2620,P:74 (2.75%). Between brackets we find the transition probability
for each leaf, i.e. for each homogeneous subgroup. Note that some leafs have
similar transition probabilties e.g. the second, fifth and last leaf, so we could
decide to take these leafs together to form one subgroup. We decide not to
do so, we will only take adjacent leafs together, since the results can be more
easily interpreted this way.
For the second grade we get the following tree.

Grade 2

Fac ∈ {PE,RC,LW,ES} Fac /∈ {PE,RC,LW,ES}

Sen < 8.5 Sen ≥ 8.5

The decision tree gives us 3 leafs, with from the outer left leaf to the outer right
leaf: NP:774,P:295 (27.6%), NP:1808,P:216 (10.67%), NP:829,P:227 (21.5%).
We did the same procedure for every grade, but will only give the results for
the first two.
The leafs of the decision trees result in homogeneous subgroups of employees.
A Markov model is built with these subgroups as states. This model will be
referred to as the ‘tree-method-model’. The goodness of fit of the model is
examined by an internal validation method [1]. The transition probabilities
are based on the dataset and equation (1). Next we use the Markov model
to predict the stocks for the time span of the dataset starting from the initial
stocks n(0) and compare the predicted stocks to the real stocks. The tree-
model-method is compared with the grade-only-model in wich the staff is only
divided according to grade (without considering any further split). In figure 1,
the lowest blue curve represents the real evolution of the stock in grade 1 and
2. The middle curve is the result from the tree-method-model and the upper
curve the result from the grade-only-model. Clearly the tree-method-model
gives better predictions. Finally we compute the AGFI (Adjusted Goodness-
of-Fit Index) measure to compare the goodness of a more complex model to a
base model. This value ranges between 0 and 1 with larger values indicating a
better fit [14]. It is computed by the formula

AGFI = 1− χ2
t/dft

χ2
g/dfg

.

Where χ2
g (resp. χ2

t ) is the chi-square of the grade-only-model (resp. tree-
method-model), and dfg and dft are the degrees of freedom of the corresponding
models [14], in our dataset this results to AGFI = 0.79.
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Fig. 1. Evolution of the stocks.

7 Future research

De Feyter [7] provided some preliminary ideas on techniques that could be used
for group division such as cluster analysis and logistic regression. Regression
methods have become an integral component of any data analysis concerned
with describing the relationship between a response variable and one or more
explanatory variables [11]. So regression analysis can be a key in searching
which characteristics have an influence on transition behavior of employees in
a company. Logistic regression can detect the importance of variables for pro-
motion and can be used to calculate an individual promotion probability for all
employees in a company. This technique will however not provide a division of
the staff in groups. So, more usefull would be to look at the use of multinomial
logistic regression, this way we can take wastage probabilities and non hierar-
chical probabilities into account and estimate the transition probabilities on an
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individual level instead of making an aggregate analysis. The predictions will
then be based on the estimations from the regression.
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Abstract. A complex warm standby system, subject to repairable and non-repairable 
failures, that evolves in discrete time, is modeled through a Markov process. The system 

is composed of one online unit and the rest in warm standby. The online unit can fail due 

to wear or external shocks. In both cases the failure can be repairable or non-repairable. 

The rest of the units can fail due to wear, all of them repairable failures. When the online 
unit undergoes a non-repairable failure, this one is replaced by a new and identical one. If 

any unit suffers a repairable failure, this one goes to the repair facility for corrective 

repair. The corrective repair time depends on the type of unit (online or warm standby 

unit). The online unit passes through several degradation levels while it is working on. 
This one is observed when a random inspection occurs. If the degradation level observed 

is major, then preventive maintenance is carried out. Interesting measures such as 

reliability and some conditional probabilities are worked out. The modeling has been 

calculated in an algorithmic form through matrix algebraic expressions. 
Keywords: Preventive maintenance, phase type distributions, Marked Markovian Arrival 

Processes. 

 

1  Introduction 
 

Redundant systems and preventive maintenance are of considerable research 

interest. Serious damage, financial losses and, possibly, total system failure can 

be provoked by poor reliability. Two approaches can be adopted to improve the 

reliability of a complex system: standby systems and preventive maintenance.  

Preventive maintenance is intended to improve system reliability and to 

increase profits.  Nakagawa [3] studied standard and advanced problems of 

maintenance policies for system reliability. Preventive maintenance has also 

been described for use in complex systems, with either a multi-state unit or with 

a general set of cold standby multi-state units (Ruiz-Castro [7],[8]).      

Nowadays, multi-state systems are of particular importance in ensuring 

reliability. Many real-life systems, termed multi-state systems, are composed of 

multiple components with different performance levels and incorporating 

several failure modes. Lisnianski et al. [2] has studied multi-state systems, 

presenting a variety of significant cases of interest to engineers and industrial 
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managers. Lisnianski and Frenkel [1] included Markov processes in the analysis 

of multi-state systems, highlighting the benefits of their application. 

When complex systems are modelled, intractable expressions are often 

encountered. Several methodologies have been proposed to analyse the 

behaviour of a multi-state system, and one such method is that of Markov 

process theory. One class of distributions that makes it possible to model 

complex systems with well structured results, thanks to its matrix-algebraic 

form, is the phase-type distribution, which was introduced and analysed in detail 

by Neuts [6]-[5], who pointed out its useful algorithmic properties.  

Many stochastic systems have inputs to the system over time that can be 

counted to control events, e.g. electrical systems at which electric shock waves 

arrive at random intervals. Multi-state systems that evolve over time may be 

subject to different types of failures, whether repairable or non-repairable, and 

benefit from measures such as preventive maintenance to enhance performance 

and economic results. The analysis of these systems requires a mathematical 

tool that can describe the input analytically and give rise to anumerically 

tractable model. The Markovian arrival process (MAP) class that was 

introduced by Marcel Neuts [4] counts the number of events in an underlying 

Markov chain.  

The aim of the present paper is to model a warm standby complex system that 

evolve in discrete time, is subject to different types of failure (repairable and 

non-repairable) and are protected by means of preventive maintenance. The 

evolution is analysed using a Markov model and a marked, batch-arrival MAP. 

A numerical example shows the versatility of the modelling, comparing two 

similar complex systems with and without preventive maintenance.  

 

2  The system 
 

We assume a system with N components, the online unit and the rest in warm 

standby, that evolves in discrete time. The online unit is subject to internal 

failures due to wear out and to external shocks (both repairable or non-

repairable). When an internal failure or an external shock is produced, this one 

can be repairable with probability pin_re and pex_re, respectively. Any warm 

standby unit can undergo only repairable failures due to wear. When one failure 

occurs, the unit goes to the repair facility with a single repairman for corrective 

repair. The online unit is a multi-state one where it passes through several 

performance states which are partitioned in minor (the first n1 states) and major 

(the rest). Preventive maintenance over the online unit is carried out as response 

to random inspections. The online unit goes to preventive maintenance only 

when one major state is observed under inspection. Corrective repair times and 

preventive maintenance are different according to the type of failure, from either 

the online place or standby. The order of the type of failure in queue keeps in 

memory. The system is subject to the following assumptions. 

Assumption 1.The internal operational time of the online unit is PH-distributed 

with representation (, T). The number of operational states is equal to n, and 
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these are partitioned in minors (the first n1 states) and majors states (states n1+1, 

…, n). The internal failure is repairable. 

Assumption 2. Internal failures are repairable with probability pin_re and non-

repairable with probability pin_nre= 1pin_re. The type of failure is independent of 

the failure time. 

Assumption 3. Events that produce failures of the online unit due to external 

shocks occur according to a phase type renewal process. If the online place is 

busy, this event produces the failure of the unit. The time between two 

consecutive events is PH distributed with representation (, L). The order of the 

matrix L is equal to t. 

Assumption 4. External failures are repairable with probability pex_re and non-

repairable with probability pex_nre= 1pex_re. The type of failure is independent 

of the failure time. 

Assumption 5. When the online unit undergoes a non-repairable failure then it is 

replaced by a new and identical one in a negligible time. 

Assumption 6. Any warm standby can fail at any time with probability p. 

Assumption 7. While the online place is busy by a unit, random inspections can 

occur. The time between two consecutive inspections is PH distributed with 

representation (, M). The order of the matrix M is equal to . 
Assumption 8. The corrective repair time for any warm standby that fails is PH 

distributed with representation (0, S0). The order of this matrix is equal to z0. 

Assumption 9. The corrective repair time when the online unit fails is PH 

distributed with representation (1, S1). The order of this matrix is equal to z1. 

Assumption 10. The preventive maintenance time is PH distributed with 

representation (2, S2). The order of this matrix is equal to z2. 

Assumption 11. The random times defined above are independent. 

The system is modelled through a marked Markovian arrival process with 

state-space formed of macro-states, E = {E
0
, E

1
, …, E

N
}, where E

k
 contains the 

phases when there are k units in the repair facility, for k=0,…N. The macro-state 

E
k
 is partitioned in several macro-states depending on the order of the units in 

the repair facility. Thus,  
1 2, , , ; 0,1,2, 1, ,

k

k

i i i lE E i l k   , k =1,…N, 

contains the phases when there are k units in the repair facility and the order of 

these units to repair is given by 1, , ki i  in lexicographical order; where 0 

indicates that the unit comes from warm standby, 1 indicates that the online unit 

undergoes a repairable failure and 2 indicates that the online unit is in the repair 

facility for preventive maintenance. The state-space by considering the different 

phases are given by 

  0 , , ;1 ,1 ,1E i j m i n j t m        ,  

  
1 1, , , , , ;1 ,1 ,1 ,1

ki i iE i j m a i n j t m a z          for, k =1,…, K1,  

and   
1 1, , , ;1 ,1

Ki i iE j a j t a z     , 

where i denotes the phase of the operational time of the online unit, j is the 

phase of the external shock time, m the phase of the inspection time and finally, 

r is the phase of the repair time. 
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3  The Modeling: Marked Markovian Arrival Process with 

arrivals in batch 
 

The system is modelled through a MMAP with arrivals in batch. Four types of 

events are distinguished: 

O: only warm standby units can fail at a certain time. 

A: the online unit undergoes a repairable failure (any unit in warm standby can 

fail). 

B: the online unit undergoes a major inspection (any unit in warm standby can 

fail). 

C: the online unit undergoes a non-repairable failure (any unit in warm standby 

can fail). 

When the events A, B and C have place at a certain time, the number of 

warm standby units that fail can vary from 0 to the total units in standby at the 

previous moment. We defined  D
Or

, D
Ar

,D
Br

 and D
Cr

, for r = 0,…, N1, as the 

matrices that contain the transition probabilities between any two phases 

described in the state space when the event O, A, B or C occurs, respectively, 

and r standby units fail. 

The system is modelled by the following MMAP, 

 0 1 , 1 0 1 , 1 0 1 , 1 0 1 , 1, , , , , , , , , , , , , , , .O O O N A A A N B B B N C C C N   
D D D D D D D D D D D D

 

3.1 The matrix blocks 
 

The matrices defined above are built in this section. Previously several vectors 

and matrices are defined. We denote by ea a column vector containing all 1 of 

order a (if the subscript is not noted, then the order of e is the appropriate for a 

correct product). Also, we denote as ea:b to the column vector composed of zeros 

excepting the range given (a:b) where the values are ones. The following 

auxiliary matrices, used when one inspection occurs, are defined as U1 and U2, 

and the element (i, j) of these matrices is given by 

  1

1

1 ;
,

0 ; otherwise

i j n
U i j

 
 


,   1

2

1 ; 1
,

0 ; otherwise.

i j n
U i j

  
 


. 

Blocks for the online unit 

While the online unit is operational, it can undergo internal failure, external 

shock and/or one inspection. These possibilities are considered in the definition 

of the following matrices that describe different transition probabilities for the 

online unit.  

The transition probability when the online unit changes of phase without 

failure or preventive maintenance by considering the corresponding phases is 

given by 0 1      0
H T L M U T L M η . If a repairable failure on the 

online unit takes place, it is given by  
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   

   

0 0 0

1 _ _

0 0

_     .

in re ex re

n ex re

p p

p

    

   0

H T α L L γ M η M

e T α L γ M η+M
 

The latter case when the only operational unit is the online, and at same 

transition time a repaired is not produced is given by

   ' 0 0 0 0

1 _ _ _in re ex re n ex rep p p        H T L L γ e e T L γ e .  

When one inspection occurs and a major state is observed then the unit goes to 

the repair facility to preventive maintenanceand it is given by 

 0 0

2 2 n   H U e T α L M η . When there is only one operational unit and a 

repaired is not produced at a certain time, the latter expression is given by 
' 0

2 2  H U T L M η . Finally, if a non-repairable failure on the online unit 

takes place then it is equal to  

   

   

0 0 0

3 _

0 0

_     .

in nre

n ex nre

p

p

    

   0

H T α L L γ M η M

e T α L γ M η+M
 

The warm standby units are introduced in the modelling in the following way. 

If r indicates the number of standby units which are broken at a certain time and 

l the number of units in the repair facility before that time, then we define the 

matrix whose elements are the transition probabilities among phases as 

 
1

, ,

1
1

K l rr

c l r c

K l
p p

r

    
  
 

H H , 

where c = 0,1,2 depending on the type of event (0: the online keeps on working; 

1: the online undergoes a repairable failure; 2: the online unit goes to preventive 

maintenance) and for l = 0,…, N1; r  Nl1. 

If the online unit goes to repair facility, all warm standby units fail and a 

repair does not occur then  
' 1 '

, , 1

K l

c l K l cp  

  H H , for c = 1, 2. 

The matrix blocks of the MMAP that models the system have been built by 

considering the matrices described above. Next, the matrix D
Or 

is shown. This 

matrix contains the transition probabilities when the online unit keeps on 

working and r warm standby units fail at a certain time. This fact depends on the 

number of units in the repair facility before and after the transition time. The 

block (l, k) of the following matrix corresponds to this transition between the 

macro-states E
l 
and E

k
. This matrix is given by 

0

00

0 0

10 11

0 0

21 220

0 0

1, 2 1, 1

0 0

, 1

O

O O

O O

O

O O

K K K K

O O

K K KK

   



 
 
 
 
 
 
 
 
 
 

D 0 0 0 0

D D 0 0 0

0 D D 0 0
D

0 D D 0

0 D D

, 

877



r = 1,…, K2, 

0

1 1, 1

2, 1 2, 2

2, 3 2, 2

1, 2 1, 1

,

Or

r

Or Or

r r

Or Or

r r

Or Or Or

K r K K r K

Or Or

K r K K r K



 

     

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 D 0 0 0

0 0 D D 0 0

0 D D 0

D 0 D D

0 D D 0

0 0 0 0 0 0 0

0 0 0 0

and 

, 1

0, 1

, 1

O K

K

O K







 
 
 
 
  
 

0 0 D 0

0 0 0 0
D

0 0 0 0

. 

The matrices Or

lkD  are composed by matrix blocks corresponding to the 

transition between macro-states 
1 , , li iE  and 

1 , , ki iE . The matrix block 

 1 1, , | , ,Or

lk k li i i iD  contains the transition probabilities described by 

considering the order in queue of failure types before and after transition. Then,  
0

00 0,0,0

O D H , 

     1'

0 1 0,0, 2,0, 1
, ,   ;   0, 1,...,   ;   1,..., 1

iOr

r r r r sr N
i i I i s r r N

 
      D H H β , 

    1

'

, 1 1 0, , 2, , 1
, , | , ,   ;   1, , 1

0, , 1

, 1,...,

0, 1,..., ,

Or

l l r l r l l r l r jr N l

s s

l s

i i j j I l N

r N l

i j s l

i s r

    



     
 

  

 

 

D H H S

 
      1

1

0

, 1 1 1 1 0, , 1 or 0 1, 0
, , | , , +   ;

iOr

l l r l r l l r j l r l r
i i j j I I       

 D H S β for

1

1, , 1

0, , 1

, 2,...,

0, 0,..., 1,

s s

l s

l N

r N l

i j s l

i s r





 

  

 

  

 

and 

    1

1

0 0

, 1 1 1 1 1, , | , ,   ;   , 2,..., ,
iOr

N N N N j s si i j j i j s N        D α L L γ η S β

   
1

0

, 1 1, , | , ,   ;   , 1,...,Or

K K N N j s si i j j i j s N    D L L γ S , 

where I{} is the indicatory function. 

The rest of the matrices can be worked out in a similar way. 
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Given the MMAP that governs the behavior of the system, the transition 

probability matrix associated to the Markov process is given as the addition of 

the matrices built above. Thus, 

 
1

0

K
Or Ar Br Cr

r





   P D D D D . 

The transient distribution of the model can be worked out from the transition 

probability matrix by considering the different matrix blocks. The probability 

that at time   the system is in the different states of the macro-state E
k
 is given 

by 

 

0

k

K

l lkE
l

p




ω D , 

where  0 1, , , Kω ω ω ω is the initial distribution. 

 

4  Performance measures 
 

Some performance measures have been calculated in an algorithmic form for the 

system described in this work. I focus on the mean times in each macro-state 

and on the mean number of events up to a certain time. 

4.1 Mean times 

 

Mean sojourn time in macro-state k up to a certain time 

It is well-known that the sojourn mean time at any macro-state k up to time  

can be worked out as 

0

k

m

k E
m

p





 e ,     for k = 0, 1, …, N. 

Mean working time on standby repairable failures up to a certain time 

The mean time that the repairman is working on standby repairable failures 

from the beginning up to time  is given by 

1 2
0 0

1

1:3 1:2 3
0 1 0

k k K N

N
m m

stby E nt z E tz
m k m

p p
 




  




  

  e e . 

Mean working time on online repairable failures up to a certain time 

The mean time that the repairman is working on repairable failures of online 

units from the beginning up to time  is given by 

   1 1 2 2
0 0 1 0 0 1

1

3 1:3 2 3 1:2 3
0 1 0

k k k K N N

N
m m

online E nt z nt z z E tz t z z
m k m

p p
 



 
    



     
  

  e e . 

Working mean time on preventive maintenance up to a certain time 

The mean time that the repairman is working on preventive maintenance from 

the beginning up to time  is given by 

       1 1 2 2
0 1 0 1 2 0 1 0 1 2

1

3 1:3 2 3 1:2 3
0 1 0

k k k K N N

N
m m

pm E nt z z nt z z z E t z z t z z z
m k m

p p
 



 
    



         
  

  e e . 
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4.2 Mean number of events 

 

The system is subject to several types of events; repairable and non-repairable 

failures and preventive maintenance. These events are happening by time and it 

is interesting to analyse the mean number of these ones up to a certain time. 

Thus, the mean number of repairable failures of the online unit up to a certain 

time  is  

1

1

m A

re

m


 



  ω P D e , 

where 
1

,

0

N
A A r

r





D D . 

Analogously, the mean number of non-repairable failures and major revisions of 

the online unit up to a certain time  is equal to these expressions respectively, 

1

1

m C

nre

m


 



  ω P D e  and 1

1

m B

pm

m


 



  ω P D e , 

where 
1

,

0

N
B B r

r





D D and 
1

,

0

N
C C r

r





D D . 

Finally, the mean number of warm standby units that fail up to a certain time  

is equal to 
1

1

1 1

N
m Or Ar Br Cr

stby

m r

r







 

       ω P D D D D e . 

 

5 Numerical example 

 

We assume a system with 3 units, the online one and the rest in warm standby. 

The objective of this study is to analyze the effectiveness of preventive 

maintenance in the behavior of the reliability system. The lifetime distribution 

for the online unit, the time distributions between two external shocks and two 

inspections, the preventive maintenance time distribution and the repair time 

distributions according to the types of failures are given in tables 1 and 2. When 

an internal failure occurs, this one is repairable with probability pin_re =0.8 and 

non-repairable with probability pin_nre=0.2. Any standby unit can undergo a 

repairable failure at any moment with probability p = 0.001 and a failure due to 

external shock is repairable with probability pex_re=0.7. 

The internal behavior of the online unit is composed of three phases (good, 

fair, poor). The inspections over this unit occur randomly with a mean time 

between two consecutive inspections equal to 10 units of time. In this case, the 

online unit is inspected and if phase three (poor) is observed then the unit goes 

to repair facility for preventive maintenance. The online unit is subject to 

external shocks. The mean time between two consecutive shocks is equal to 

143.16 units of time. 
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Lifetime distribution  

online unit 

Time distribution 

between two 

external shocks 

Time distribution 

between two 

consecutive 

inspections 

 1,0,0

0.995 0.005 0

0 0.95 0.05

0 0 0.95



 
 

  
 
 

α

T
 

 1,0

0.987 0.006

0.995 0.0005



 
  
 

γ

L
 

 1,0

0.8 0.1

0.5 0.4



 
  
 

η

M
 

Table 1. Time to events distributions 

 

Corrective repair 

distribution warm 

standby unit  

Corrective repair 

distribution on 

line unit 

Preventive maintenance 

time distribution 

 0

0

1,0

0.05 0.45

0.4 0.15



 
  
 

β

S
 

 1

1

1,0

0.7 0.26

0.6 0.1



 
  
 

β

S
 

 2

2

1,0

0.005 0.002

0.001 0.002



 
  
 

β

S
 

Table 2. Time to repair and preventive maintenance distributions 

 

Some measures associated to both systems, with and without preventive 

maintenance, have been compared to analyze the effectiveness of preventive 

maintenance. Table 3 shows the mean number of events occurred up to a certain 

time for both systems, with and without preventive maintenance, respectively.  

 

Time () 
re

   nre

  pm

  stby

  

50 0.2739 

(0.3004) 

0.1122 

(0.1188) 

0.0699 

(-----) 

0.0974 

(0.0974) 

100 0.5686 

(0.6682) 

0.2206 

(0.2546) 

0.1894 

 (-----) 

0.1940 

(0.1935) 

1000 5.8910 

(7.4237) 

2.3473 

(2.7328) 

2.3804 

(-----) 

1.9308 

(1.9199) 

5000 29.5461 

(37.4496) 

11.7594 

(13.7474) 

12.1188 

(-----) 

9.6501 

(9.5932) 

10000 59.1150 

(74.9819) 

23.5245 

(27.5155) 

24.2918 

(-----) 

19.2991 

(19.1848) 

20000 118.2528 

(150.0466) 

47.0548 

(55.0519) 

48.6378 

(-----) 

38.5973 

(38.3680) 

Table 3. Mean number of events (repairable and non-repairable failures of the 

online unit, major revisions inspected and standby failures) for both systems 

(without preventive maintenance between parentheses) up to a certain time 
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Abstract. In this paper we derive the analytical solutions to the American-style
Asian Options under jump-diffusion processes. The similar problem was studied by
Hansen and Jorgensen[4], but they studied the diffusion case. First of all we transform
the problem into one-state variable problem (the dual problem). To this new problem,
we find its general analytical solution by using theories from Hansen and Jorgensen
[4], Merton [8] and H. Pham [10]. Also we derive the analytical solutions to the
particular case, when the average is geometric. At the end of this paper we have
some numerical results comparing the earlier exercise boundaries in diffusion and
jump-diffusion cases.
Keywords: Dual problem, Diffusion processes, Jump-diffusion processes, Equivalent
measure, Lognormal jump sizes, American option, Asian option. .

1 Introduction

An Asian option is a financial derivative for which its payoff function is charac-
terized by involvement of a stock price average. These types of options reduce
the risk of manipulations of the stock price at maturity and they are cheaper
than standard European and American options. In this paper we will consider
the contract function with so called floating strike price i.e, the strike price is
an average of the stoke price. In addition we will consider the discontinuous
stoke price. Merton[8] studied the case of European call option for a simple
contract function (vanilla option) under jump-diffusion processes and he sta-
blished the general form of the solution for vanilla option and the particular
case, when the jump sizes follow the lognormal distribution. In a paper Huên
Pham[10], is studied the American put option for a simple contract function
under jump-diffusion model and there is stated the analytical solution to the
problem, the exercise boundary and their properties. Also Gukal[3] has consid-
ered the problem of option pricing under jump diffusion model using the idea
of Merton[8], and stated its analytical solutions.
In this paper, we will study the same problem as in Hansen and Jorgensen [4],
but considering it under jump-diffusion process, instead. So, to achieve our
results, we will use the results in a paper of Hanssen and Jorgensen[4], the the-
ory established by Merton[8] and the result of Pham[10] and other references.
Here we will find the general analytical solution of American-style Asian option
_________________ 
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under jump diffusion process, for the case of floating strike. Also we will study
the particular case, when the average is geometric. At the end we have some
numerical results.

2 The basic model

Let us consider a financial market consisting on two assets, the bond B(t) which
is a risk free asset, and a stock with price process S(t), defined by the dynamics

dB(t) = rB(t)dt, (1)

B(0) = 1, (2)

where r is the risk free rate. Then B(t) = ert, and S(t) satisfies following
stochastic differential equation,

dS(t) = µS(t)dt+ σS(t)dW (t) + (X − 1)S(t)dNt, S(0) = s, (3)

where,

1. µ is a drift of the process;
2. σ the volatility of the stock price;
3. W (t) is a standard Brownian motion;
4. Nt is a Poisson process with parameter λt;
5. X is a jump size in stock, if the a jump in the process Nt occurs;
6. X are i.i.d. random variables and X − 1 is an impulse function producing

a finite jump in S to XS ;
7. W (t), N(t), X are mutually independent.

Therefore, S(T ) = S(t) exp

{
(µ− 1

2
σ2)(T − t) + σ(W (T )−W (t))

} NT∏
k=Nt+1

Xk.

Before we consider the problem, when the average is geometric, let us first give
the general solution for any tipe of average. So, in the next section we will
discuss about the geral valuation of tyhe problem.

3 General valuation of the American-style Asian options
under jump-difusion processes

As in Hansen and Jorgensen[4], our goal is to give an analytical solution V (t, s)
to the Americas-style Asian options, where the contract function is given by,

pay − off = [ρ(S(t)−A(t)]+, (4)
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where ρ = ±1 and,

A(t) = exp{1

t

∫ t

0

lnS(τ)dτ} the geometric average.

But in in this paper we will consider this problem when the stock return
are descontinuous. In a paper of Merton[8] is provided a method to solve the
option pricing problems when the underlying stock returns are discontinuous
for the the vanila option. In a paper of Hansen and Jorgensen[4] is given
an analytical valuation for American-style Asian options. So, we will connect
these theories and the results from Pham[10] in order to find an analytical
valuation of American-style Asian options when underlying stock returns are
discontinuous .
By the result from Karout and Karatzas[6] and Pham[10], we have that the
solution of the free boundary problem is given

V (t) = ess sup
τ∈Γt,T

EQt
{

[ρ(S(τ)−A(τ))]+
}
, (5)

(6)

where Γt,T is a set of all stopping times taking values in [t, T ].
Now let

ξ(t) = e−rt
S(t)

S(0)
= exp{−1

2
σ2t+ σW (t)− λE[X − 1]t}

Nt∏
k=1

Xk. (7)

Therefore, using Girsanov’s theorem (see T. Björk[1] p. 164), let us intro-
duce a new equivalent measure Q′ such that dQ′ = ξ(T )dQ, thus, the process
WQ′ = WQ−σt (see Hansen and Jorgensen[4] or Karout and Karatzas[6]), is a
standard Brownian motion under Q′ and the stock price satisfies the stochastic
differential equation

dS(t) = (r + σ2 − λK)Sdt+ σdWQ′(t) + (X − 1)dY (t), (8)

where K = E[X − 1].

As in Hansen and Jorgensen[4] let us transform (5) changing the measure Q
into the equivalent measure Q′. Whence,

V (t) = ess sup
τ∈Γt,T

EQt

{
e−r(τ−t)[ρ(S(τ)−A(τ))]+

}
= ess sup

τ∈Γt,T
EQ

′

t

{
ξ(t)

ξT
e−r(τ−t)[ρ(S(τ)−A(τ))]+

}

= ess sup
τ∈Γt,T

EQ
′

t

{
S(t)

ert
e−r(τ−t)[ρ(S(τ)−A(τ))]+EQ

′

τ

[
erT

S(T )

]}
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= ess sup
τ∈Γt,T

EQ
′

t

{
S(t)

ert
e−r(τ−t)[ρ(S(τ)−A(τ))]+EQ

′

τ

[
erT

S(T )

]}

= ess sup
τ∈Γt,T

EQ
′

t

{
S(t)

ert
eτ

S(τ)
e−r(τ−t)[ρ(S(τ)−A(τ))]+

}
= ess sup

τ∈Γt,T
EQ

′

t

{
S(t)[ρ(1− A(τ)

S(τ)
)]+
}

.

Therefore, we have reduced (5) into

V (t) = ess sup
τ∈Γt,T

EQ
′

t

{
S(t)[ρ(1− x(τ))]+

}
(9)

where x(τ) = A(τ)
S(τ) . According to Harrisson and Kreps[5], V (t)

S(t) is a martingale.

Now let us derive the dynamics of x(t). Applying the Ito’s formula for a jump-
diffusion process given by Proposition 8.14 from Cont and Tankov [2]:

dx(t) =
dA(t)

S(t)
− (r + σ2 − λK)A(t)

S2(t)
dt+

σ2A(t)

S2(t)
dt−σA(t)

S(t)
dWQ′+

[
A(t− +∆t)

S(t− +∆t)
− A(t−)

S(t−)

]

dx(t) = x(t)

[(
d lnA(t)

dt
− r − σ2 + λK

)
dt− σdWQ′(t) + σ2dt+

∆[A(t)] + (1−X)A(t)

XS(t)

]
.

dx(t) = x(t)

[
µ(t, x(t))dt− σdWQ′(t) +

1−X
X

dNt

]
,

where µ(t, x(t)) =

(
d lnA(t)

dt
− r + λK

)
. Hence,

dx(t) = x(t)

[
µ(t, x(t))dt− σdWQ′(t) +

1−X
X

dNt

]
. (10)

Denote by Ṽ (t) the expression V (t)
S(t) , then problem (5) is reduced to the following

one-state variable problem (lets call it a dual problem) with strike price 1,

Ṽ (t) = ess sup
τ∈Γt,T

EQ
′

t

{
[ρ(1− x(τ))]+

}
, (11)

The optimal stopping time for this problem is τ∗t such that τ∗t = inf{τ ∈ [t, T ] :
x(τ) = b(τ)}, where b(τ) is a boundary of the continuation (or the exercise)
region. The regions has the following presentations:

1. Continuation region: C = {t ∈ [0, T ] : ρx(t) > ρb(t)};
2. Stopping region: D = {t ∈ [0, T ] : ρx(t) ≤ ρb(t)}.
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From now on, we will study the dual problem (11), since V (t) = S(t)Ṽ (t).
Then, by Theorem 1 in Hansen and Jorgengen[4], using the results of Merton[8]
and the results in Gukhal[3] or Pham[10], the solution of the dual problem (11)
will be given as follow

Ṽ (t) =
∞∑
n=0

∫ [ e−λ(T−t)(λ(T−t))n
n! ṽ(t, x(t)Zne

λKt) + ẽJ(t, x(t)Zne
λKt)

]
Fn(dz)−

− λEQ
′

t

{∫ T
t
E [g(J, x(s), b(s))] ds

}
,

(12)
where,

ẽJ(t, x(t)Zne
λKt) =

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
EQ

′

t,x(t)ZneλKt
{ρµ1(τ, x(τ))x(τ)1D} dτ,

g(J, x(s), b(s)) = Ṽ (Jx(s), s)− (1− Jx(s))1ρ{x(s)≤ρb(s),ρJx(s)>ρb(s)}

,

and ṽ(t) is defined in Theorem 1 in [4], Fn is a distribution function of

Zn =

n∏
k=1

1

Xk
=

n∏
k=1

Jk.

Let us adopt the following notation,∫
ṽ(t, x(t)Zne

λKt)Fn(dz) = En[ṽ(t, x(t)Zne
λKt)]

and∫
ẽJ(t, x(t)Zne

−λKt)Fn(dz) = En[ẽJ(t, x(t)Zne
λKt)].

So we have the following result:

Theorem 31 The solution to the dual problem (11) when the underlying stock
returns are discontinuous, is given by

Ṽ (t) =
∞∑
n=0

[
e−λ(T−t)(λ(T−t))n

n! En[ṽ(t, x(t)Zne
λKt)] + En[ẽJ(t, x(t)Zne

λKt)]
]
−

− λEQ
′

t

{∫ T
t
E [g(J, x(s), b(s))] ds

}
.

(13)

where the first part in the right hand side, is the value of the corresponding
European option with jumps, the second two terms correspond to the earlier
exercise premium (the bonus by exercising the option before the maturity time
T ). The earlier exercise premium is composed by two terms, the first of the
last two terms is a current value of the premium and the last one is the rebal-
ancing cost due to jumps from the exercise region into continuation region (see
Gukhal[3]). The last part of the right hand side, there is no an explicit form of
it.
Proof: Since we know that Ṽ is a martingale under the measure Q′, then in
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the continuation region C = {t ∈ [0, T ] : ρx(t) > ρb(t)} the function Ṽ must
satisfy the equation

dṼ = Ṽtdt+ Ṽxdx+ Ṽxx(dx)2. (14)

Therefore, from H. Pham [10] it is shown that, in a continuation region,

Ṽ =
∞∑
n=0

eλ(T−t)(λ(T − t))n

n!
En[ṽ(t, x(t)Zne

λKt)], (15)

and, Merton[8], have proved that the expression (15) is a solution to the prob-
lem, and by the martingale property in the continuation region

dṼ = dMQ′

1 , (16)

where M1 is a martingale under measure Q′.
In other hand, if x belongs to the stopping region D = {t ∈ [0, T ] : ρx(t) ≤
ρb(t)}, then Ṽ (t) = ρ(1− x(t)), hence by Pham[10],

dṼ = −ρµ1(x(t), t)x(t)dt+ λE[Ṽ (Jx, t)− (1−Xx)1{Jx>b(t)}]dt. (17)

From (16) and (17) we have

dṼ = {−ρµ1(x(t), t)x(t)dt+ λE[Ṽ (Jx, t)− (1− Jx)1{ρJx>ρb(t)}]dt}{ρx(t)≤ρb(t)} + dMQ′ ,
(18)

where MQ′ is a martingale part under measure Q′, and then the result follows.�

From Peskir[9] or Björk[1], we know that in the exercise region we have Ṽ (t) =
ρ(1 − x(t)), then the the exercise boundary must satisfy the following free
boundary equation:

ρ(1− b(t)) =
∞∑
n=0

[
e−λT (−t)(λ(T−t))n

n! En[ṽ(t, b(t)Zne
λKt)] + En[ẽJ(t, b(t)Zne

λKt)]
]
−

− λEQ
′

t,b(t)

{∫ T
t
E [g(J, x(s), b(s))] ds

}
.

(19)

When the jump intensity λ is small enough or if the jump sizes have a small
mean then, it will cause very small chances in the American option. So, the
cost term in the solution of American option should be very small (see Kou et
all[7]). Therefore, in this circumstances, the cost term is negligenciable.
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4 American-style Asian options under jump-diffusion
processes, when the average is geometric

To study this case, we will follow the previous theory taking in account that

A(t) = e

1

t

∫ t

0

lnS(τ)dτ
.

In this case,
dA(t)

A(t)
=

(
− 1

t2

∫ t

0

lnS(τ)dτ − lnS(t)

)
= −1

t
lnx(t)dt. Therefore,

the dynamics of the underlying asset x(t) will be defined by

dx(t) = x(t)
[
µg(t, x(t))dt− σdWQ′(t) + (J − 1)dNt

]
, (20)

where [µg(t, x(t)) = − 1
t lnx(t) − r + λK. Now, using Lemma 1 and Lemma

A3 from Hansen and Jorgensen[4] and Theorem 31 with strike price L = 1 we
prove the following Theorem:

Theorem 41 In the geometric average case, the solution to the problem (11),
is given by

Ṽ (t) =

∞∑
n=0

En

{
e−λ(T−t)(λ(T − t))n

n!
ṽn(t) + ẽJgn(t, xZne

λK(τ−t))

}
−λEQ

′

t,x

{∫ T

t

E [g(J, x(τ), b(τ))] dτ

}
,

where,

ṽn(t) = ṽ(t, xZne
λK(τ−t)) and

ẽJgn(t, xZne
λK(τ−t)) =

=

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
ρeαg(t,τ)+

1
2β

2
g(t,τ)[−(

αg(t, τ) + β2
g(t, τ)

τ
+r)Φ(−ρ

αg(t, τ) + β2
g(t, τ)− ln b(τ)

βg(t, τ)
)

+
βg(t, τ)

τ
φ(
αg(t, τ) + β2

g(t, τ)− ln b(τ)

βg(t, τ)
)]dτ , with x(t) = xZne

λK(τ−t)

4.1 The case when jumps sizes are i.i.d. lognormal random
variables

Here we will give the solution for the case of geometric average under lognormal
jump sizes. Let

S(T ) = S(t) exp{(r + λK − 1

2
σ2)(T − t) + σ(W (T )−W (t)) +

Nt∑
k=1

lnXk},

(21)
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where lnXk ∼ N(a, b2), , k = 1, 2, . . . , Nt. So, if in the interval [t, T ] we have
exactly n jumps, then we know that

(r +
1

2
σ2 − λK)(T − t) + na+

√
σ2 +

nb2

T − t
(W (T )−W (t)) ∼

N((r +
1

2
σ2 − λK)(T − t) + na, σ2(T − t) + nb2).

Whence,

S(T ) = S(t) exp{(r +
1

2
σ2 − λK)(T − t) + na+

√
σ2 +

nb2

T − t
(W (T )−W (t))}

(22)

and hence

lnS(T ) ∼ N(lnS(t) + (r +
1

2
σ2 − λK)(T − t) + na, (σ2 +

nb2

T − t
)(T − t).

(23)

Therefore, given A(T ) = e

1

T

∫ T

0

lnS(u)du
. Then,

lnA(T ) =
1

T

∫ T

0

lnS(u)du =
1

T

∫ t

0

lnS(u)du+
1

T

∫ T

t

lnS(u)du

=
t

T
lnA(t)+

1

T

∫ T

t

(
lnS(t) + (r +

1

2
σ2 − λK)(u− t) + na+

√
σ2 +

nb2

u− t

∫ T

t

dW (τ)

)
du

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

+
1

T

∫ T

t

√
σ2 +

nb2

u− t

∫ u

t

dW (τ)du

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

+
1

T

∫ T

t

∫ T

τ

√
σ2 +

nb2

u− t
dudW (τ)

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T
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+
1

T

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)
dW (τ),

where,

θ(T, τ, t) =

∫ T

τ

√
σ2 +

nb2

u− t
du− T

√
σ2 +

nb2

T − t
. Hence it leads us to the fol-

lowing result,

Lemma 42 Let S(t) satisfying the jump diffusion equation

dS(t) = (r + λK + σ2)S(t)dt+ σS(t)dW (t) + S(t)(X − 1)dYt,

with lnX ∼ N(a, b2) and define A(t) = e
1
t

∫ t
0
lnS(τ). Then for T > t, lnA(T )

conditioned to Ft and n jumps follows a normal distribution with mean and
variance given by

E[lnA(t)] =
t

T
lnA(t) +

T − t
T

lnS(t) + ((r− 1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

and

V ar[A(t)] =
1

T 2

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)2

dτ .

Now let us find the distribution of lnX(T ). Since X(T ) = A(T )
S(T ) then,

lnX(T ) = lnA(T )−lnS(T ) = t
T lnA(t)+T−t

T lnS(t)+((r− 1
2σ

2−λK) (T−t)2
2T +

na(T−t)
T

+
1

T

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)
dW (τ)− lnS(t)− (r+

1

2
σ2−λK)(T − t)

−na−
√
σ2 +

nb2

T − t

∫ T

t

dW (τ)

= lnx(t)−
(
r − λK +

σ2

2

)
(T 2 − t2)

2T
− nat

T
+

1

T

∫ T

t

θ(T, τ, t)dW (τ).

And so, we have proved the following lemma,
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Lemma 43 Let T > t then lnx(T )|(Ft ∧Nt = n), follows a normal distribu-
tion with mean and variance given by

αn(T, t) = E[x(T )] = lnx(t)−
(
r − λK +

σ2

2

)
(T 2 − t2)

2T
− nat

T

and

β2
n(T, t) = V ar[x(T )] =

1

T 2

∫ T

t

θ2(T, τ, t)dτ.

According to Lemma 43 and Lemma A3 from Hansen and Jorgensen[4],

Theorem 44 The solution to the problem (11), in the geometric average case,

under lognormal jump sizes, is given by Ṽ (t) =
∞∑
n=0

{
e−λ(T−t)(λ(T − t))n

n!
ṽn(t) + ẽJgn(x, t)

}
−

λEQ
′

t

{∫ T

t

E [g(J, x(τ), b(τ))] dτ

}
,

where,

ṽn(t) = ρ

{
Φ

(
−ραg,n(t, T )

βg,n

)
− eαg,n(t,T )+ 1

2β
2
g,n(t,T )Φ

(
−ρ

αg,n(t, T ) + β2
g,n(t, T )

βg,n(t, T )

)}
,

and,

ẽJgn(t) =

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
exp{αg,n(t, τ) +

1

2
β2
g,n(t, τ)}×

×[−ρ

(
αg,n(t, τ) + β2

g,n(t, τ)

τ
+ r

)
Φ (−ργg,n(t, τ)) +

βg,n
τ
φ (γg,n(t, τ))]dτ .

5 Free boundary and stopping region

The free boundary b(t) is a smooth function (see Pham[10]) satisfying the
following properties,

1. Ṽ (t, b(t)) = ρ(1− b(t)), ∀t ∈ (0, T ];

2. If ρx(t) ≤ ρb(t) (stopping region) then Ṽ (t, x(t))) = ρ(1− x(t));

3. If ρx(t) > ρb(t) then solution Ṽ (t, x(t)) satisfies the partial differential

equation in the free boundary problem and Ṽ (t, x(t)) > ρ(1− x(t));
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4. For a fixed time t, for all λ1, λ2 ≥ 0 such that, λ1 < λ2 then ρbλ1
(t) ≥

ρbλ2
(t) (see for example, Figure (a));

5. For a fixed time t, for all a1, a2 such that, a1 < a2 then ρba1(t) ≥ ρba2(t)
(see for example, Figure (b));

6. Contrary to the standard American options, in the American-style Asian
options, b(t) can be greater than the strike price (see Hansen and Jor-
gensen[4]).

6 Numerical results

Here we will get some numericall results for the free boundary b(t). Hour goal
here is to comprare the results from the diffusion and jump-diffusion cases. So,
let us consider the case when jump intensity (λ) is small anough. So, we can
negligenciate the cost term. Therefore, to solve the equation (19), we use the
trapezoidal rule for the integral part.

In general for American-style Asian put options (call options) with floating

(a) Exercise boundary for
diffusion and jump diffusion
cases, for an American-style
Asian put option with σ =
0.2, T = 7/12, r = 0.05.

(b) Exercise boundary for
jump diffusion case, for an
American-style Asian put op-
tion with σ = 0.2, T = 7/12,
r = 0.05.

strike, the exercise boundary in a jump-diffusion process is greater or equal (less
or equal) to the exercise boundary in a diffusion process case. This property
gives the investor to have no much hope to get good profit at the start of
time, but the hope increases when the time increase and from certain time, the
investor starts again to lose a hope of getting a good profit.
The picture above is the result from the simulation of b(t), by setting ρ to be
equal to −1. In this case we have a call option for the dual problem (11) which
corresponds to the American-style Asian put option with floating strike, under
diffusion processes. It shows us the behaviour of the earlier exercise boundary
when the values of the parameter λ (figure (a)) and the average of jump sizes
(figure (b)) change. So it is possible to see that, the exercise boundary as a
function of jump intensity λ (figure (a)), is a nondecreasing function in the
case of American-style Asian put option and nonincreasing function for an
American-style Asian call option, with floating strike price.
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From picture (b) we can see that, the exercise boundary as a function of
the jump-size is nondecreasing (nonincreasing) function for the American-style
Asian put (call) option with floating strike price.

7 Conclusion

In this paper we extend the Analytical valuation of American-style Asian option
studied by Hansen and Jorgensen[4], to the case of jump-diffusion processes.
This extension have never been considered anywhere before.
In our studies we derive the general solution for the American-style Asian
options under jump-diffusion processes by solving the dual problem (the one-
state variable problem). In a geometric average case we find that the one-
state variable is a geometric Brownian motion and directly using the results
of Merton[8], Hansen and Jorgensen[4], and Pham[10], we derive its analytical
solution. And in the case of lognormal jumps, we derive a simplified solution
to the problem. At the end we have some numerically results for the early
exercise boundary in a diffusion as well as jump-diffusion processes cases. We
find that the continuation region increases in jump-intensity λ and jump-size.

References

1. Björk, T., Arbitrage Theory in contiuous time, third edition. New York, ( 2009)
2. Cont, R., Tankov, P., Financial modelling with jump processes. Chapman & Hal-

lICRC, USA (2004)
3. Gukhal, C. R., Analytical Valuation of American Options on Jump-Diffusin Ppro-

cesses. Mathematical Finance, Vol. 11, No. 1 (January 2001), p.97-115.
4. Hansen, A.T., Jorgensen, P.L., Analytical Valuation of American-style Asian Op-

tions. Management Science, Vol. 46, No. 8 (Aug., 2000), pp. 1116-1136 .
5. Harrison and Kreps, Martingales and Arbitradge in Multperiod Securities Markets.

Jornal of economic theory, 20:381-408.
6. Karout, N.E., Karatzas, I., The Optimal Stopping Problem for a General American

Option
7. Kou, S., Petrella, G., Wang, H., Pricing Path-dependent Options With Jump Risk

Via Laplace Transform. The Tokyo Economic Review, 74(1):1-23 (June 2005)
8. Merton, R. C., Option Pricing when the underlying Stock Returns are Discontin-

uous. Journal of Financial Economics 3 125-144 (1976).
9. Peskir, G., and Shiryaev, A., Optimal Stopping and Free-Boundary Problems.

Birkhauser Verlag, Switzerland (2006)
10. Pham, H., Optimal Stopping, Free Boundary, and American Option in a Jump-

Diffusion Model. Appl Math Optim 35:145-164 (1997).

894


