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Abstract. The paper presents an analytical method applied to the reliability evaluation  
of a multistate system subjected to a variable multistate operation process. A semi-
Markov process is applied to construct the multistate model of the system operation 
process considering the system reliability states changing process with memory about 

this process past states changing. Analytical linking of the system operation process 
model with the system reliability model is proposed to get a general reliability model of 
the complex system operating at varying in time operation conditions and to find its 
reliability characteristics. The results are illustrated by practical application to reliability 
evaluation of a port grain transportation system. 
Keywords: Multistate system, operation process, complex system, reliability, analytical 
modelling. 
 

1  Introduction 
 

The reliability analysis of a system subjected to a varying in time its operation 

process very often leads to complicated calculations, especially in the case when 

we assume the system multistate reliability model and the multistate model  

of its operation process [1-10,12]. On the other hand, the complexity of the 

systems’ operation processes and their influence on changing in time the 

systems’ reliability structures and their components reliability parameters are 

very often met in real practice [3,4,6,11,12]. Thus, the practical importance  

of an approach linking the system reliability models and the system operation 

processes models into an integrated general model in reliability assessment  
of real technical systems is evident. To get much more general solutions of the 

problem, we deal with the multistate reliability model of the system and 

multistate model of its operation process considering the system reliability states 

changing process with memory about this process past states changing. This 

general analytical model with memory is presented and applied to a port grain 

transportation system reliability characteristics determination. 
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2  System operation process 
 

We assume that a system during its operation at the fixed moment t, ,,0 t  

may be at one of ,  ,2  operations states ,bz  ,...,2,1, lb . Consequently, 

we mark by ),(tZ  ,,0 t  the system operation process, that is a function of 

a continuous variable t, taking discrete values at the set },...,,{ 21 zzz  of the 

system operation states. We assume a semi-Markov model [2,4] of the system 

operation process )(tZ  and we mark by bl  its random conditional sojourn 

times at the operation states bz , when its next operation state is ,lz  

,,...,2,1, lb  lb  .  

Consequently, the operation process may be described by the following 

parameters [6]: 

- the vector ,)]0([ 1 bp of the initial probabilities of the system operation 

process )(tZ  staying at the particular operation states ,bz  ,,...,2,1 b  at 

the moment 0t ; 

- the matrix ][ blp  of the probabilities of the system operation process )(tZ  

transitions between the operation states bz  and lz , ,,...,2,1, lb ;lb   

- the matrix )]([ tHbl  of the conditional distribution functions of the system 

operation process )(tZ  conditional sojourn times bl  at the operation states, 

lblb  ,,...,2,1,  . 

From the formula for total probability, it follows that the unconditional 

distribution functions of the sojourn times ,b ,,...,2,1 vb   of the system 

operation process )(tZ  at the operation states ,bz  ,,...,2,1 vb   are given by [2]- 

[3], [6] 

 

)(tHb  = 


v

l
blbl tHp

1

),(  ,,0 t  .,...,2,1 vb   (1) 

 

Hence, the mean values ][ bE   of the system operation process )(tZ  

unconditional sojourn times ,b  ,,...,2,1 vb   at the operation states are given by   

 

][ bb EM   = 


v

l
blblMp

1

, ,,...,2,1 vb   (2) 

 

where blM  are the mean values of the lifetimes bl .  

The limit values of the system operation process )(tZ  transient probabilities at 

the particular operation states )(tpb = P(Z(t) = bz ) are given by [1], [3], [6] 
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bp  = )(lim tpb
t 

= ,

1




v

l
ll

bb

M

M




 ,,...,2,1 vb   

(3) 

 

where ,bM  ,,...,2,1 vb   are given by (2)(2), while b  are the steady 

probabilities  of the vector  xb 1][  given in [6]. 

Lemma 1. If the distribution of sojourn times bl , are exponential of the form 

 

]exp[1)( ttH blbl  , ,,0 t  ,,...,2,1, lb  ,lb   (4) 

 

then the sojourn times ,b ,,...,2,1 vb   of the system operation process )(tZ  at 

the operation states ,bz  ,,...,2,1 vb   have distribution (1) of the form  

 

)(tHb  =  


v

l
blbl tp

1

]),exp[1   ,,0 t  ,,...,2,1 vb   (5) 

 

and the mean value ][ bE  and the varriance ][ bD   of the system operation 

process )(tZ  unconditional sojourn times ,b  ,,...,2,1 vb   at the operation 

states are given by 

 

bM  = ][ bE   = 


v

l bl

blp

1

,


 (6) 

][ bb DD   = 
   

.2

2

1
2

1
2 
















v

l
bl

bl
v

l
bl

bl
pp


 (7) 

 

If we denote by ),(tNb  ,...,2,1b , the conditional number of changes of the 

system operation process’ states before the moment t, ,,0 t  at the 

operation state ,bz ,...,2,1b , then considering Lemma 1 and Proposition 3.5c 

from [6], we get the following result.  

Lemma 2. If the distribution of sojourn times bl , are exponential of the form 

(4)(4), then the distribution of the conditional number ),(tNb  ,...,2,1b , of 

changes of the system operation process’ states before the moment t, 

,,0 t  at the operation state ,bz ,...,2,1b , is approximately given by  

 

,

//

)1(
))(( )1,0()1,0(




















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










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bb

b
N

bb

b
Nb

MtD

tkM
F

MtD

tMk
FktNP  (8) 
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where )(
)1,0(

tF
N

 is a standard normal distribution function and 
b

M and bD are 

determined respectively by (6)(6) and (7). 

 

3  Analytical approach to reliability evaluation of multistate 

complex system 
 

3.1  General theoretical backgrounds 
 

In the multistate reliability analysis to define the system with degrading 

components, we assume that: 

– n is the number of the system components,  

– Ei, i = 1,2,...,n, are components of a system, 

– all components and a system under consideration have the reliability state set 

{0,1,...,z}, ,1z  

– the reliability states are ordered, the reliability state 0 is the worst and the 

reliability state z is the best,  

– Ti(u),  i = 1,2,...,n,  are independent random variables representing the 

lifetimes of components Ei in the reliability state subset {u,u+1,...,z}, while 

they were in the reliability state z at the moment t = 0,   

– T(u) is a random variable representing the lifetime of a system in the 

reliability state subset  {u,u+1,...,z} while it was in the reliability state z at the 

moment t = 0, 

– the system states degrades with time t, 

– Ei(t) is a component Ei reliability state at the moment t, ,,0 t  given that 

it was in the reliability state z  at the moment t = 0,   

– s(t) is a system S reliability state at the moment t, ,,0 t  given that it was 

in the reliability state z at the moment t = 0.  

Further, we assume that the changes of the operation states of the system 

operation process Z(t) have an influence on the system multistate components 

iE , ,,...,2,1 ni   reliability and the system reliability structure as well. 

Consequently, we denote the system multistate component iE , ,,...,2,1 ni   

conditional lifetime in the reliability state subset },...,1,{ zuu   while the system 

is at the operation state ,bz ,,...,2,1 vb   by )(
)(

uT
b

i  and its conditional 

reliability function by the vector 

 
)()],([ b

i tR  = [1, ,)]1,([ )(b
i tR ..., 

)()],([ b
i ztR ],  

 

with the coordinates defined by 

 

))()(()],([
)()(

b
b

i
b

i ztZtuTPutR   for ,,0 t  

,,...,2,1 zu  .,...,2,1 vb   
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Similarly, we denote the system conditional lifetime in the reliability state 

subset },...,1,{ zuu  while the system is at the operation state ,bz ,,...,2,1 vb 

by )(
)(

uT
b  and the conditional reliability function of the system by the vector 

 
)()],([ bt R  = [1, ,)]1,([ )(btR ..., ])],([ )(bztR ,  

 

with the coordinates defined by 

 
)()],([ butR ))()(( )(

b
b ztZtuTP   (9) 

 

for ,,0 t  ,,...,2,1 zu  .,...,2,1 b   

In the case when the system operation time  is large enough, the coordinates of 

the unconditional reliability function of the system defined by are given by [6] 

 

),( utR
)(

1

]),([ b
v

b
b utp



R  for ,,0 t , ,,...,2,1 zu   (10) 

 

where 
)()],([ butR , ,,...,2,1 zu  ,,...,2,1 b are the coordinates of the system 

conditional reliability functions defined by (9) and bp , ,,...,2,1 b are the 

system operation process limit transient probabilities defined by (3). 

The application of the above formula and other particular results for selected 

systems given in [3,6] allow to find the reliability evaluations of various real 
complex technical systems having “no memory” like for instance considered in 

[7] the port grain transportation system. 

 

3.2  System reliability states changing process with memory 
 

We assume that the changes of the operation states of the system operation 

process Z(t) have an influence on the system multistate components iE , 

,,...,2,1 ni   reliability and the system reliability structure as well. Moreover, in 

particular, we assume that the system components’ reliability depend on the 

number of operation states changes of the system operation process. 

Consequently, we denote the system multistate component iE , ,,...,2,1 ni   

conditional lifetime in the reliability state subset },...,1,{ zuu   while the system 

is at the operation state ,bz  ,,...,2,1 vb   after k, ,...,1,0k  changes of the 

system operation states by )(
)]([

b
ki uT  and its conditional reliability function by 

the vector 

 
)(

)],([
b

ki tR  = [1, ,)]1,([
)(b

ki tR ..., )(
)],([

b
ki ztR ], (11) 
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with the coordinates defined by 

 

))()](([)],([
)()(

b
b

ki
b

ki ztZtuTPutR   (12) 

 

for ,,0 t  ,,...,2,1 zu  ,,...,2,1 vb   ,....1,0k  

Similarly, we denote the system conditional lifetime in the reliability state 

subset },...,1,{ zuu  while the system is at the operation state ,bz ,,...,2,1 vb   

after k, ,...,1,0k  changes of the system operation states by )(
)]([

b
kuT  and the 

conditional reliability function of the system by the vector 

 
)(

)],([
b

kt R  = [1, ,)]1,([
)(b

ktR ..., ])],([
)(b

kztR ,  

 

with the coordinates defined by 

 
)(

)],([
b

kutR ))()](([
)(

b
b

k ztZtuTP   (13) 

 

for ,,0 t  ,,...,2,1 zu   ,,...,2,1 vb   ,....1,0k  

Under those assumptions, considering (8) and (10),we can get the following 

result. 

Theorem 1. The unconditional reliability function of the multistate system 

subjected to multistate operation process and composed of components with 

their conditional reliability functions at the operation state ,bz  ,,...,2,1 vb   

after k, ,...,1,0k  changes of the system operation states defined by (11)-(12) is 

given by 

 

),( tR  = [1, ),1,(tR ..., ),( ztR ], (14) 

 

where 

 

  








1 0

)(
))],()[)(((),(

b k

b
kbb utktNPput RR , (15) 

 

for ,,0 t ,,...,2,1 zu   where the distribution ))(( ktNP b  , ,,0 t  

,,...1,0k  is determined by (8) and )(
)],([

b
kutR  are the conditional reliability 

functions of the system defined by (13). 
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4  Port grain transportation system reliability evaluation 
 

4.1  Port grain transportation system operation process 
 

We consider the port grain transportation system, presented in Figure 1, 
assigned to handle the clearing of exported and imported grain.  

 

 
Figure 1. The scheme of the port grain transportation system  

structure at the operation state 1z  

 

The port grain transportation system function is loading railway trucks with 

grain. The railway truck loading is performed in the following successive grain 

transportation system steps: 

 gravitational passing of grain from the storage placed on the 8th elevator 
floor through 45 hall to horizontal conveyors placed in the elevator 

basement,  

 transport of grain through horizontal conveyors to vertical bucket elevators 

transporting grain to the main distribution station placed on the 9th floor, 

 gravitational dumping of grain through the main distribution station to the 

balance placed on the 6th floor, 

 dumping weighed grain through the complex of flaps placed on the 4th floor 

to horizontal conveyors placed on the 2nd floor, 

 dumping of grain from horizontal conveyors to worm conveyors, 

 dumping of grain from worm conveyors to railway trucks. 

In loading the railway trucks with grain the following presented in Figure 1 
transportation subsystems take part: S1 – horizontal conveyors of the first type, 

S2 – vertical bucket elevators, S3 – horizontal conveyors of the second type, S4 – 

worm conveyors. 

Taking into account the operation process of the considered transportation 

system, described by its operators,  we distinguish its following 3  operation 

states: 

1
z – the system operation with the largest efficiency when all components of 

subsystems S1, S2, S3 and S4 are used,  
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2z – the system operation with less efficiency system when the first conveyor of 

subsystem S1, the first and second elevators of subsystem S2,the first 

conveyor of subsystem S3, and the first and second conveyors of subsystem 

S4, are used,  

3
z – the system operation with least efficiency when only the first conveyor of 

subsystem S1, the first elevator of subsystem S2, the first conveyor of 

subsystem S3, and the first conveyor of subsystem S4, are used. 

Considering the system operators opinion, we assume the vector of approximate 

values of the initial probabilities 

 

 333.0,333.0,333.0)]0([ 31 xbp   

 

of the system operation process staying at the particular states 
b

z  at the time 

t = 0 and the matrix of probabilities of transitions between the operation states 

 



















0667.0333.0

556.00444.0

667.0333.00

][ 33xblp  (16) 

 

Moreover, we assume the following matrix of the conditional distribution 

functions of the system sojourn times ,bl  ,3,2,1, lb  

 

































011

101

110

)]([

2010

5040

105

33

tt

tt

tt

xbl

ee

ee

ee

tH  (17) 

 

Further, applying (5) and considering (16)-(17) we get the following 

unconditional distribution functions of the system sojourn times ,b  ,3,2,1b  

 

,667.0333.01)( 105
1

tt eetH    ,556.0444.01)( 5040
2

tt eetH    

,667.0333.01)( 2010
3

tt eetH     

 

the mean values and their variances 

 

,1333.01 M ,0222.02 M ,0667.03 M   

,0396.01 D ,0010.02 D .0010.03 D  (18) 
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After considering the above data and applying (18), the following limit values  

of the system operation process transient probabilities (3) at the operation states 

are determined and given by 

 

,5313.01 p  ,1094.02 p  ,3594.03 p   

 

From the above results, after applying Lemma 2, we imediatelly get the 

following conclusion.  

Corollary 1. The distributions of the conditional numbers ),(tNb  of changes of 

the port grain transportation system operation process’ states before ,3,2,1b of 

the moment t, ,,0 t  at the operation state ,bz ,3,2,1b  are 

approximatelly given by (8), where 
bM  and 

bD , b = 1,2,3, are given by (18). 

 

4.2  Port grain transportation system reliability 
 

Taking into account the efficiency of the considered in Section 4.1 port grain 

transportation system we distinguish the following three reliability states of the 

systems and its components:   

 state 2 – the state ensuring the largest efficiency of the system and its 
conveyors,   

 state 1 – the state ensuring less efficiency of the system caused by throwing 

grain off the system conveyors, 

 state 0 – the state involving failure of the system. 

The considered transportation system reliability analysis in the case of the 

system reliability states changing without memory is performed in [7]. In this 

section it is assumed that that the system reliability structure and its subsystems 

and components reliability parameters depend on its changing in time operation 

states and the exponential multistate reliability functions of the system 

components different in various operation states and dependent on the numbers 

of the system operation process changes in the past system operation are 
assumed. Considering those assumptions, we assume that the port grain 

transportation system subsystems ,S  ,4.3,2,1  are composed of three-state, 

i.e. z = 3, components ,
)(

ijE  ,4,3,2,1  having the conditional reliability 

functions while the system is at the operation state ,bz  ,3,2,1b  after k, 

,...,1,0k  changes of the system operation process states given by the vectors  

 
)()(

)],([
b

kij tR 


= [1,
)()(

)]1,([
b

kij tR


,
)()(

)]2,([
b

kij tR


],  

with the exponential coordinates  

 

])()]([exp[])]([exp[)],([ )()()()()()( tkcutuutR b
ij

b
kij

b
kij    ,  
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where )()( )]([ b

ij
u for ,,...,2,1 )(bki   ,,...,2,1

)(b
ilj   ,4,3,2,1  ,3,2,1b  

,2,1u  are given in Table 1 and ),1/()12()(  kkkc .,...1,0k  

 

Considering that the system is a series system composed of subsystems ,
1

S  ,
2

S  

3S  and 4S , its conditional reliability functions at the particular operation states 

,
b

z  ,3,2,1b  after k, ,...,1,0k  changes of system operation states are given by  

 
)(

)],([
b

kt R ,1[ ,)]1,([
)(b

ktR ],)]2,([
)(b

kt R  ,,0 t  ,...,1,0k  (19) 

 

where after applying (9.59)-(9.60) given in [3] and the data given in Table 1, the 

coordinates at the particular operation states are as follows 

 
Table 1. List of system components and parameters at different operation states 

S
u

b
sy

st
em

 

Components 
)(

ijE  

Parameters 
)()(

)]([
b

ij u
  

z1 z2 z3 

u = 1 u = 2 u = 1 u = 2 u = 1 u = 2 

1S  

 Belt conveyors  
 of the 1st type 

k(1) = 2,
129

)1(
2

)1(
1

 ll  
k(2) = 1, 

129
)2(

1
l  

k(3) = 1, 

129
)3(

1
l  

    1 belt 0.0125 0.0150 0.0110 0.0120 0.0100 0.0105 

    2 drums 0.0015 0.0020 0.0010 0.0012 0.0009 0.0011 

    117 channelled rollers 0.0050 0.0100 0.0030 0.0060 0.0020 0.0040 

    9 supporting rollers 0.0040 0.0080 0.0020 0.0030 0.0010 0.0020 

2S  

 Vertical bucket  
 elevators 

k(1) = 3, )1(
2

)1(
1 ll   

743
)1(

3  l  

k(2) = 2, 
743

)2(
2

)2(
1

 ll
 

k(3) = 1, 
743

)3(
1 l  

    1 belt 0.0250 0.030 0.020 0.0240 0.0180 0.0220 

    2 drums 0.0015 0.002 0.0012 0.0014 0.0011 0.0013 

    740 buckets 0.0300 0.035 0.0220 0.0250 0.0200 0.0240 

3S  

 Belt conveyors 

 of the 2nd type 

k(1) = 2, 
139

)1(
2

)1(
1

 ll  
k(2) = 1, 

139
)2(

1
l  

k(3) = 1, 
139

)3(
1

l  

    1 belt 0.0125 0.015 0.011 0.0120 0.0100 0.0105 

    2 drums 0.0015 0.002 0.001 0.0012 0.0009 0.0011 

    117 channelled rollers 0.0050 0.010 0.003 0.0060 0.0020 0.0040 

    19 supporting rollers 0.0040 0.008 0.002 0.0030 0.0010 0.0020 

4S  

 Chain worm conveyors k(1) = 3 k(2) = 2 k(3) = 1 

   Conveyors of the 1st type 162
)1(

2
)1(

1  ll  162
)2(

2
)2(

1  ll
 

162
)3(

1 l  

       2 driving wheels 0.005 0.006 0.002 0.004 0.001 0.003 

       160 links 0.012 0.014 0.008 0.010 0.007 0.009 

   Conveyor of the 2nd type 242
)1(

3 l  - - 

       2 driving wheels 0.022 0.024 - - - - 

       240 links 0.034 0.040 - - - - 
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)1(
)]1,([ ktR =  ])(903.55exp[24 tkc – ])(699.47exp[24 tkc   

– ])(675.33exp[24 tkc  + ])(471.25exp[24 tkc  – ])(699.47exp[24 tkc   

– ])(833.57exp[12 tkc – ])(5795.56exp[12 tkc  – ])(5395.56exp[12 tkc
 

– ])(973.53exp[12 tkc  + ])(629.49exp[12 tkc  + ])(3355.48exp[12 tkc   

+ ])(605.35exp[12 tkc + ])(3515.34exp[12 tkc + ])(3115.34exp[12 tkc  

+ ])(745.31exp[12 tkc – ])(401.27exp[12 tkc – ])(1075.26exp[12 tkc  

– ])(1475.26exp[12 tkc  + ])(3755.48exp[12 tkc  – ])(131.78exp[8 tkc
 

+ ])(927.69exp[8 tkc  + ])(5095.58exp[6 tkc + ])(4695.58exp[6 tkc   

+ ])(216.57exp[6 tkc + ])(6495.54exp[6 tkc + ])(6095.54exp[6 tkc
 

– ])(2655.50exp[6 tkc  – – ])(012.49exp[6 tkc ])(3055.50exp[6 tkc   

– ])(2815.36exp[6 tkc – ])(2415.36exp[6 tkc – ])(988.34exp[6 tkc  

– ])(4215.32exp[6 tkc – ])(3815.32exp[6 tkc + ])(0775.28exp[6 tkc
 

+ ])(0375.28exp[6 tkc  + ])(784.26exp[6 tkc  + ])(061.80exp[4 tkc  

+ ])(8075.78exp[4 tkc  + ])(7675.78exp[4 tkc + ])(201.76exp[4 tkc  

– ])(6035.70exp[4 tkc  – ])(5635.70exp[4 tkc  – ])(857.71exp[4 tkc   

– ])(146.59exp[3 tkc – ])(286.55exp[3 tkc  + ])(942.50exp[3 tkc   

+ ])(918.36exp[3 tkc + ])(058.33exp[3 tkc – ])(714.28exp[3 tkc   

– ])(7375.80exp[2 tkc  – ])(6975.80exp[2 tkc – ])(444.79exp[2 tkc  

– ])(8775.76exp[2 tkc – ])(8375.76exp[2 tkc + ])(4935.72exp[2 tkc   

+ ])(24.71exp[2 tkc + ])(5335.72exp[2 tkc + ])(374.81exp[ tkc  

+ ])(514.77exp[ tkc – ])(17.73exp[ tkc  (20) 

 
)1(

)]2,([ ktR = ])(37.66exp[24 tkc  – ])(722.56exp[24 tkc   

+ ])(788.30exp[24 tkc – ])(436.40exp[24 tkc – ])(622.68exp[12 tkc  

– ])(711.67exp[12 tkc – ])(631.67exp[12 tkc  – ])(118.64exp[12 tkc  

+ ])(974.58exp[12 tkc  + ])(063.58exp[12 tkc  + ])(983.57exp[12 tkc   

+ ])(688.42exp[12 tkc  + ])(777.41exp[12 tkc  + ])(697.41exp[12 tkc  

+ ])(184.38exp[12 tkc – ])(04.33exp[12 tkc – ])(129.32exp[12 tkc  

– ])(049.32exp[12 tkc  – ])(304.92exp[8 tkc + ])(656.82exp[8 tkc  

+ ])(963.69exp[6 tkc + ])(883.69exp[6 tkc + ])(972.68exp[6 tkc  

+ ])(459.65exp[6 tkc + ])(379.65exp[6 tkc – ])(315.60exp[6 tkc  

– ])(235.60exp[6 tkc  – ])(324.59exp[6 tkc – ])(029.44exp[6 tkc  

– ])(949.43exp[6 tkc – ])(038.43exp[6 tkc – ])(525.39exp[6 tkc  

– ])(445.39exp[6 tkc + ])(381.34exp[6 tkc  + ])(301.34exp[6 tkc  

+ ])(39.33exp[6 tkc + ])(556.94exp[4 tkc + ])(645.93exp[4 tkc  
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+ ])(565.93exp[4 tkc + ])(052.90exp[4 tkc – ])(908.84exp[4 tkc  

– ])(997.83exp[4 tkc  – ])(917.83exp[4 tkc  – ])(224.71exp[3 tkc  

– ])(72.66exp[3 tkc + ])(576.61exp[3 tkc + ])(29.45exp[3 tkc  

+ ])(786.40exp[3 tkc – ])(642.35exp[3 tkc  – ])(897.95exp[2 tkc   

– ])(817.95exp[2 tkc – ])(906.94exp[2 tkc – ])(393.91exp[2 tkc  

– ])(313.91exp[2 tkc + ])(249.86exp[2 tkc + ])(169.86exp[2 tkc  

+ ])(258.85exp[2 tkc + ])(158.97exp[ tkc + ])(654.92exp[ tkc  

– ])(51.87exp[ tkc  (21) 

 
)2(

)]1,([ ktR = ])(3704.18exp[4 tkc  – ])(6728.34exp[2 tkc  

– ])(6544.19exp[2 tkc + ])(9568.35exp[ tkc  (22) 

 
)2(

)]2,([ ktR = ])(6516.21exp[4 tkc  – ])(1784.40exp[2 tkc  

– ])(2596.23exp[2 tkc + ])(7864.41exp[ tkc  (23) 

 
)3(

)]1,([ ktR ])(462.16exp[ tkc  (24) 

 
)3(

)]2,([ ktR  ])(248.20exp[ tkc  (25) 

 

From the above results and from Theorem 1 and Corollary 1, we get the 

unconditional reliability function (14) of the port grain transportation system 

given by 

 

),( tR  = [1, ),1,(tR )2,(tR ],  

 
where 

 

)1,(tR   






3

1 0

)(
))],()[)(((

b k

b
kbb utktNPp R  

))]1,()[)(((1094.0))]1,()[)(((5313.0
100

0

)2(
2

100

0

)1(
1   

 k
k

k
k tktNPtktNP RR  

))]1,()[)(((3594.0
100

0

)3(
3 

k
ktktNP R  (26) 

)2,(tR    






3

1 0

)(
))]2,()[)(((

b k

b
kbb tktNPp R  

))]2,()[)(((1094.0))]2,()[)(((5313.0
100

0

)2(
2

100

0

)1(
1   

 k
k

k
k tktNPtktNP RR  

))]2,()[)(((3594.0
100

0

)3(
3 

k
ktktNP R  (27) 
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are the conditional reliability functions of the system defined by (15), where 

))(( ktNP b  , k = 0,1,…, are calculated according to (8) and (18) and )(
)],(

b
kutR  

are the conditional reliability functions of the system defined by (19)-(25). 

The approximate expected values of the system unconditional lifetimes in the 

reliability state subsets },2,1{ },2{  calculated from the results given by (26)-

(27), are  

 

)1(  0.0404, )2(  0.0345.  

 
Further, the mean values of the unconditional lifetimes in the particular 

reliability states 1, 2, respectively are: 

 

 )2()1()1(  0.0059 year,  )2()2(  0.0345 year.  

 

The expected values of the system unconditional lifetime in the reliability state 

subsets {1,2}, {2}, calculated for port grain transportation system in the case of 

the system reliability states changing without memory is performed in [7] and 

given by 
 

µ(1)  0.0744 month, µ(2)  0.0624 month. 
 

Further, the mean values of the system unconditional lifetimes in the particular 

reliability states 1, 2, respectively are [7]: 
 

0120.0)1(   month, 0624.0)2(   month. 

 

Conclusions 
 
The integrated general model of complex systems’ reliability, linking their 

reliability models and their operation processes models and considering variable 

at different operation states their reliability structures and their components 

reliability parameters is constructed and applied to the reliability evaluation of 

the port grain transportation system composed of three series-parallel 

subsystems linked in series. The considered transportation system reliability 

analysis in the case of the system reliability states changing with memory that 

have influence on the system components reliability parameters is performed. 

The predicted reliability characteristics of the system are different from those 

determined for this system in the case its reliability states changing without 

memory considered in [7]. This fact justifies the sensibility of considering real 
systems at the variable operation conditions with components that have 

reliability functions dependent of the past system operation process state 

changes that is appearing out in a natural way from practice. This approach, 

upon the good accuracy of the systems’ operation processes and the systems’ 
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components reliability parameters identification, makes their reliability 

prediction more precise and convergent to reality.  

 

References 
 
1. Grabski, F. and Jaźwiński, J. Functions of Random Variables in Problems of 

Reliability, Safety and Logistics, WKŁ, Warsaw, 2009 (in Polish). 
2. F. Grabski. Semi-Markov Processes: Applications in System Reliability and 

Maintenance, 1st Edition, Elsevier Science & Technology, 2014. 

3. K. Kołowrocki. Reliability of Large and Complex Systems, 2nd Edition, Elsevier 
Science & Technology, Oxford, 2014. 

4. K. Kołowrocki and E. Kuligowska. Monte Carlo simulation application to reliability 
evaluation of port grain transportation system operating at variable conditions, Journal 
of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 
4{1, 2013, 73-81. 

5. K. Kołowrocki, E. Kuligowska and J. Soszyńska-Budny. Monte Carlo Simulation for 
optimization of object operation process and reliability, Journal of KONBiN 4{24, 

2012, 79-92. 
6. K. Kołowrocki and J. Soszyńska-Budny. Reliability and Safety of Complex Technical 

Systems and Processes: Modeling – Identification – Prediction – Optimization, 
Springer, London-Dordrecht-Heidelberg-New York, 2011. 

7. K. Kołowrocki and J. Soszyńska-Budny. Modeling reliability of complex 
transportation system, Proc. Europen Safety and Reliability Conference-ESREL, 
Wrocław, 2014, 312. 

8. E. Kuligowska. Monte Carlo simulation for reliability assessment and optimization of 
an system to varying operation conditions, Journal of Polish Safety and Reliability 

Association, Summer Safety and Reliability Seminars 4{2, 2013, 205-218. 
9. E. Kuligowska. Preliminary Monte Carlo approach to complex system reliability 

analysis, Journal of Polish Safety and Reliability Association, Summer Safety and 
Reliability Seminars 3{1, 2012, 59-71. 

10. E. Kuligowska. Reliability analysis of a system subjected to two-state operation 
process, Scientific Journals Maritime University of Szczecin 1 (36) (2013) 100-104. 

11. J. Soszyńska. Reliability and risk evaluation of a port oil pipeline transportation 
system in variable operation conditions, International Journal of Pressure Vessels and 

Piping 87{2-3, 2010, 81-87. 
12. J. Soszyńska. Systems reliability analysis in variable operation conditions, 

International Journal of Reliability, Quality and Safety Engineering. Special Issue: 
System Reliability and Safety 14{6, 2007, 617-634. 

14. E. Zio and M. Marseguerra. Basics of the Monte Carlo Method with Application to 
System Reliability, LiLoLe, Hagen, 2002. 

452



_________________ 

16th  ASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece 
 

© 2015 ISAST                               
 

Identification of complex technical system 

components reliability models   
 

Krzysztof Kolowrocki
1
, and Joanna Soszynska-Budny

2
 

 

1
  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: katmatkk@am.gdynia.pl) 
2

      Gdynia Maritime University, Gdynia, Poland 

    (E-mail: joannas@am.gdynia.pl) 

 

Abstract. The paper is concerned with the methods for identification of unknown 

parameters of reliability models of multistate components of a complex technical system 

operating at variable conditions and their practical application. The multistate reliability 
model of a complex technical system component is constructed and the procedure of 

identifying its unknown reliability parameters is presented. In this reliability model, it is 

assumed that the conditional reliability functions of the multistate components at the 

system particular operation states are exponential. There are presented the methods of 
estimating unknown parameters of the exponential distribution of the system multistate 

component lifetimes in the reliability state subsets. The maximum likelihood method is 

applied to estimating unknown intensities of the component departure from the reliability 

state subsets at different system operation states in the case when there are in disposal 
empirical data coming from the process of system component reliability states changing 

for different kinds of the empirical investigations including the cases of small number of 

realizations and non-completed investigations. In the case when there are no empirical 

data, the procedure is based on the approximate opinions coming from experts.  There is 
also suggested the goodness-of-fit method applied to testing the hypotheses concerned 

with the exponential form of the reliability function of the system multistate component 

at variable operations conditions. The methods are applied to the components of an 

exemplary system and a maritime ferry technical system unknown reliability parameters 
statistical identification. 

 

1  Introduction 
 

Many real technical systems belong to the class of complex systems. First of all, 

it is concerned with the large numbers of components and subsystems they are 

built and with their operating complexity. The changes of the operation states of 

the system operation process cause the changes of the system reliability 

structure and also the changes of its multistate components reliability 

parameters. The general joint model linking the system reliability model with 

the model of its operation process allowing for the reliability analysis of the 

complex technical systems operating at variable conditions is constructed in [6], 

[9].  To apply this general model practically in the evaluation and prediction of 

real complex technical systems reliability it is necessary to elaborate the 
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statistical methods concerned with determining the unknown parameters of the 

proposed model [1]-[5], [10]-[12]. Particularly, in the part of the system model 

concerned with its reliability, the unknown parameters of the conditional 

reliability functions of the system multistate components at various operation 

states should be identified [7]-[9]. It is also necessary elaborating the methods of 

testing the hypotheses concerned with the conditional reliability functions [13]-

[16] of the multistate components at the system various operation states [9]. 

 

2  Theoretical backgrounds  
 

In the multistate reliability analysis of a system to define its ageing  components 

we assume that [9], [13]-[16]: 

– E is a component of a system, 

– a components E has the reliability state set {0,1,...,z}, ,1z  

– the reliability states are ordered, the state 0 is the worst and the state z is the 

best,  

– T(u) is a random variable representing the lifetime of component E in the 

state subset {u,u+1,...,z}, while it was in the state z at the  moment t = 0,   

– the component reliability states degrade with time t, 

– e(t) is a component E state at the moment t, ),,0 t  given that it was in 

the state z  at the moment t = 0.   

The above assumptions mean that the states of the system degrading 

components may be changed in time only from better to worse.  

Under those assumption, a vector   

      

R(t , ) = [R(t,0),R(t,1),...,R(t,z)], ),,0 t                                                       (1) 

 

where   

 

R(t,u) = P(e(t)  u  e(0) = z) = P(T (u) > t), ),,0 t  u = 0,1,...,z,                (2)                                                                  

 

is the probability that the component E is in the state subset },...,1,{ zuu   at the 

moment t, ),,0 t  while it was in the state z at the moment t = 0, is called 

the multi-state reliability function of a component E.  

Particularly, for  u = 0, in (1) and (2) we have  

 

R(t,0) = P(e(t)  0  e(0) = z) = P(T (0) > t) = 1, ).,0 t                               (3)                                                                   

 

Further, we assume that the system during its operation process is taking 

,, Nv   different operation states ,.,..,,
21 

zzz  and we define the system 

operation process )(tZ , ),,0 t  with discrete operation states from the set  

}..,..,,{
21 

zzz  since the changes of operation states of the multistate system 
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operation process )(tZ  have an influence on the reliability functions of the 

system components then we mark by )()( uT b  the conditional lifetime )()( uT b  of 

the system component in the reliability states subset },...,1,{ zuu  , .,...,2,1 zu   

Consequently, we mark the conditional multistate reliability function of the 

system component when the system is in the operation state ,
b

z ,,...,2,1 b  by  

 
)()],([ btR  = [1, ,)]1,([ )(btR ..., )()],([ bztR ],                                                         (4)                                                                            

 

where  

 

))()(()],([ )()(

b

bb ztZtuTPutR   for ),,0 t  ,,...,2,1 zu  ,,...,2,1 vb  (5)                                                           

 

is the conditional reliability function standing the probability that the 

conditional lifetime )()( uT b  of the system component in the reliability states 

subset },...,1,{ zuu   is greater than t, while the system operation process Z(t) is 

in the operation state ,
b

z  .,...,2,1 b  Further, we assume that the coordinates 

of the vector of the conditional multistate reliability function (4) are exponential 

reliability functions of the form   

 

])]([exp[)],([ )()( tuutR bb   for ),,0 t  ,,...,2,1 zu  .,...,2,1 vb              (6)                                                                

 

Te above assumptions mean that the density function of the system component 

conditional life time )()( uT b  in the reliability states subset },...,1,{ zuu  , 

,,...,2,1 zu   at the operation state 
b

z , ,...,2,1b , is exponential of the form   

 

])]([exp[)]([)],([ )()()( tuuutf bbb    for ),,0 t                                        (7)                                                                       

 

where ,)]([ )(bu  ,0)]([ )( bu  is an unknown intensity of departure from this 

subset of the reliability states.  

 

3  Procedures of identification of complex technical system 

components reliability models  
 

3.1 Procedure of the system components reliability data collection 

 

3.1.1 Data coming from components reliability states changing processes 

 

To estimate the unknown parameters of the system components multistate 

reliability models, during the experiment, we should collect necessary statistical 

data dependently of the fixed kinds of the experiments and the collected 
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statistical data considered in distinguished in [9] Cases 1-6. To illustrate the 

methods we will consider only Case 2 described below.  

Case 2. The estimation of the component intensity of departure from the 

reliability states subset on the basis of the realizations of the component 

lifetimes up to the first departure from the reliability states subset on several 

experimental posts – Non-completed investigations, the same observation time 

on all experimental posts.   

We assume that during the time ,)(b  ,0)( b  we have been observing the 

realizations of the component lifetimes )()( uT b  in the reliability states subset 

},...,1,{ zuu  , ,,...,2,1 zu   at the operation state 
b

z , ,...,2,1b , on )(bn  

identical experimental posts.  We assume that at the beginning of the experiment 

all components are new identical components staying at the best reliability state 

z  and that during the fixed observation time 
)(b not all components have left 

the reliability states subset },...,2,1{ z , i.e. )(bm , )()( bb nm  , observed 

components reached the worst reliability state 0.  It means that the number 

)()( um b   of components that have left the reliability states subset },...,1,{ zuu  , 

,,...,2,1 zu   is less or equal to )(bn , i.e. )()( )( bb num  , zu ,...,2,1 . Further, we 

mark by :)({)( )()( utuA b

i

b  )}(,...,2,1 )( umi b , ,,...,2,1 zu   the set of the 

moments  )()( ut b

i
, )(,...,2,1 )( umi b , ,,...,2,1 zu   of departures from the 

reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the component on the i

th observational post, i.e. the realizations of the identical component lifetimes 

)()( uT b

i
, )(,...,2,1 bni  , to the first departure from the reliability states subsets, 

that are the independent random variables with the exponential distribution 

defined by the density function (7). 

 

3.1.2 Data coming from experts 

 

On the basis of the expert opinions the approximate values  

 
)()](ˆ[ bu , ,,...,2,1 zu   ,,...,2,1 b   

 

of the mean values  

 
)()( )]([)]([ bb uTEu  , ,,...,2,1 zu   ,,...,2,1 b   

 

of the system components lifetimes )()]([ buT , ,,...,2,1 zu   ,,...,2,1 b  in the 

reliability states subsets },...,1,{ zuu  , ,,...,2,1 zu   while the system is 

operating in the operation state ,
b

z  ,,...,2,1 b  should be fixed.  
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3.2 Procedures of evaluating the system components unknown intensities of 

departure from the reliability state subsets  

 

3.2.1 Data coming from components reliability states changing processes 

 

On the basis of statistical data described in Section 3.1.1, we want to estimate 

the value of this unknown intensity of departure )()](ˆ[ bu  from the reliability 

states subset },...,1,{ zuu  , .,...,2,1 zu    

The formulae for the kind of experiment considered in Case 2 is presented 

below [9].   

Case 2. In this case, the maximum likelihood evaluation of the unknown 

component intensity of departure )()( ub  from the reliability states subset 

},...,1,{ zuu  , ,,...,2,1 zu   is  

 

)(ˆ )( ub

 





)()(

1

)()()()(

)(

)]([)(

)(
ubm

i

bbbb

i

b

umnut

um



, .,...,2,1 zu                                      (8)                                                                              

 

Assuming the observation time 
)(b  as the moment of departure from the 

reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the components that have 

not left this reliability states subset we get so called pessimistic evaluation of the 

intensity of departure )()( ub  from the reliability states subset },...,1,{ zuu  , 

,,...,2,1 zu   of the form   

 

)(ˆ )( ub

 





)()(

1

)()()()(

)(

)]([)(
ubm

i

bbbb

i

b

umnut

n



, .,...,2,1 zu                                      (9)                                                                       

 

3.2.2 Data coming from experts 

 

On the basis of the approximate values )()](ˆ[ bu , ,,...,2,1 zu   ,,...,2,1 b  of 

the mean values )()( )]([)]([ bb uTEu  , ,,...,2,1 zu   ,,...,2,1 b  of the system 

components lifetimes )()]([ buT , ,,...,2,1 zu   ,,...,2,1 b  in the reliability 

states subsets },...,1,{ zuu  , ,,...,2,1 zu   while the system is operating in the 

operation state ,
b

z  ,,...,2,1 b  coming from experts and described in Section 

3.1.2, we want to estimate the values )()](ˆ[ bu  of the components unknown 

intensities )()]([ bu  of departure from the reliability states subset },...,1,{ zuu  , 

,,...,2,1 zu   while the system is operating in the operation state ,
b

z  

.,...,2,1 b   
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The  formula for all system components is given by the following approximate 

equation [9]   

 

)()]([ bu ,
)](ˆ[

1
)](ˆ[

)(

)(

b

b

u
u


  ,,...,2,1 zu   .,...,2,1 b                               (10)        

                                                                             

4  Applications 
 

4.1 Statistical identification of exemplary system components reliability   

 

4.1.1 Defining parameters of exemplary system components reliability models 

and data collection  

 

The considered exemplary system reliability structure changing at the various 

operation states and its components and their unknown reliability parameters are 

described in [9]. At all the system operation process states 
b

z , ,4,3,2,1b  

defined in [9], we distinguish the following four reliability states 0, 1, 2 3, of the 

system and its components. Moreover, we fix that there are possible the 

transitions between the components reliability states only from better to worse 

ones. From the above, the subsystems ,


S  ,2,1  are composed of four-state,  

i.e. z = 3, components ,)(

ij
E  ,2,1  with the conditional four-state reliability 

functions given by the vector  

 
)()( )],([ b

ij
tR  = [1, )()( )]1,([ bv

ij tR , )()( )]2,([ b

ij
tR  , )()( )]3,([ b

ij
tR  ],  ,4,3,2,1b           (11) 

                                                                 

with the exponential co-ordinates  

 

],)]1([exp[)]1,([ )()()()( b

ij

b

ij
tR    ],)]2([exp[)]2,([ )()()()( b

ij

b

ij
tR    

],)]3([exp[)]3,([ )()()()( b

ij

b

ij
tR                                                                         (12) 

 

different at various operation states 
b

z , ,4,3,2,1b  and with the intensities of 

departure from the reliability state subsets },3,2,1{ },3,2{ },3{  respectively  

 
)()( )]1([ b

ij

 , )()( )]2([ b

ij

 , )()( )]3([ b

ij

 , .4,3,2,1b  

 

4.1.2 Collecting data coming from exemplary system components reliability 

states changing processes  

 

We arbitrarily suppose that we have in disposal data collected from the 

exemplary system components reliability states changing processes due to Case 
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2. Namely, we have in disposal the following data for particular components 

,)(

ij
E  ,2,1  of the exemplary system:  

- the numbers of identical experiment posts )()( b

ij

b nn  ,  

- the observation times ,)()( b

ij

b     

- the numbers )()( )()( umum b

ij

b   of components that have left the reliability state 

subsets }3,...,1,{ uu , ,3,2,1u   

- the sets :)({)()( )()()( utuAuA b

i

b

ij

b  )}(,...,2,1 )( umi b  of realizations )()( ut b

i

)()( ut b

ij
 of the component lifetimes )()( uT b

ij
 in the reliability state subsets 

}3,...,1,{ uu , ,3,2,1u  at the operation state 
b

z , 4,3,2,1b .  

For instance, we suppose that the collected data for the component )1(

11
E  of the 

subsystem 
1

S  at the operation state 
1

z  are as follows: 

 

)1(n 40, )1( 2600, )1()1(m 32,  

)1()1(A {30, 44, 209, 240, 263, 265, 280, 285, 288, 289, 289, 302, 307, 350, 

381,400, 430, 441, 452,  490, 490, 790, 837, 852, 856, 869, 1176,1191, 1253, 

1697, 1700, 2454},                                                                                        (13) 

 

)1(n 40, )1( 2600, )2()1(m 32,  

)2()1(A {30, 37, 37, 60, 63, 65, 69, 69, 80, 85, 88, 302, 307, 350, 352, 381, 

400,430, 441, 462, 470, 490, 637, 652, 656, 669, 776, 891, 1053, 1597,1600, 

2254}                                                                                                             (14) 

  

)1(n 40, )1( 2600, )3()1(m 32,  

)3()1(A {20, 27, 37, 60, 63, 65, 69, 69, 80, 85, 88, 302, 307, 350, 352, 381, 

400, 430, 441, 462, 470, 490, 637,  652, 656, 669, 776, 891, 1053, 1597,1600, 

2054}.                                                                                                            (15) 

 

The first realizations ,30)1()1(

1
t  ,30)2()1(

1
t  20)3()1(

1
t  and the second 

realizations ,44)1()1(

2
t  ,37)2()1(

2
t  27)3()1(

2
t of the component )1(

11
E  

lifetimes ),1()1(

11
T  ),2()1(

11
T  )3()1(

11
T in the  reliability state subsets },3,2,1{  },3,2{  

}3{  taken from the sets ),1()1(

1
A  )2()1(

1
A  and )3()1(

1
A are presented in Figure 1.  
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Fig. 1. The realizations of the components )1(

11
E  lifetimes ),1()1(

11
T  )2()1(

11
T  and 

)3()1(

11
T  in the reliability state subsets },3,2,1{  }3,2{  and }3{  

 

4.1.3 Evaluating exemplary system components intensities of departures from 

reliability state subsets on basis of data coming from components reliability 

states changing processes 

 

As by the arbitrary assumption, there are data collected from the exemplary 

system components reliability states changing processes, then their reliability 

models identification using the methods of Section 3.2.1 is possible. To identify 

the intensities of departures from the reliability state subsets, we can use 

statistical data included in Section 4.1.2 and the formula (8) in order to find the 

approximate values ,)]1(ˆ[ )()( b

ij

  )()( )]2(ˆ[ b

ij

  and )()( )]3(ˆ[ b

ij

  of the subsystems ,


S  

,2,1  components unknown intensities ,)]1([ )()( b

ij

  )()( )]2([ b

ij

  and )()( )]3([ b

ij

  

of departure respectively from the reliability states subsets }3,2,1{ , }3,2{ , }3{ , 

while the system is operating at the operation state ,
b

z  ,4,3,2,1b  and we can 

use the formula (9) to get their pessimistic evaluations. To illustrate this 

procedure, we find the evaluations ,)]1(ˆ[ )1()1(

11
  )1()1(

11
)]2(ˆ[  and )1()1(

11
)]3(ˆ[ of the 

intensities ,)]1([ )1()1(

11
  )1()1(

11
)]2([  and )1()1(

11
)]3([  of departures respectively from 

the reliability state subsets }3,2,1{ , }3,2{  and }3{  of the component )1(

11
E  of the 

subsystem 
1

S , while the system is operating in the operation state .
1

z   

We proceed as follows:  

- from data given by (13), we have  

 

)1(n 40, )1( 2600, )1()1(m 32, 

,2020024541700...4430)1(
)1()1(

1

)1(

1




m

i

t  

 

then, according to (8),  the evaluations )1()1(

11
)]1(ˆ[  of the intensity )1()1(

11
)]1([  of 

departure from the reliability state subset }3,2,1{ is  

 

)1(

11
)]1(ˆ[

 





)1()1(

1

)1()1()1()1(

)1(

)]1([)1(

)1(
m

i
i

mnt

m



 

               0008.0
]3240[260020200

32



                                                    (16)                                                          

 

and according to (9), its pessimistic evaluation is  
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)1(

11
)]1(ˆ[

 





)1()1(

1

)1()1()1()1(

)1(

)]1([)1(
m

i
i

mnt

n



.0010.0
]3240[260020200

40



  

 

- from data given by (14), we have  

 

)1(n 40, )1( 2600, )2()1(m 32, 

,1585322541600...3730)2(
)2()1(

1

)1(

1




m

i

t  

 

then, according to (8),  the evaluations )1()1(

11
)]2(ˆ[  of the intensity )1()1(

11
)]2([  of 

departure from the reliability state subset }3,2{  is  

 

)1(

11
)]2(ˆ[

 





)2()1(

1

)1()1()1()1(

)1(

)]2([)2(

)2(

m

i
i

mnt

m



 

               0009.0
]3240[260015853

32



                                                    (17)                                

 

and according to (9), its pessimistic evaluation is  

 

)1(

11
)]2(ˆ[

 





)2()1(

1

)1()1()1()1(

)1(

)]2([)2(
m

i
i

mnt

n



.0011.0
]3240[260015853

40



  

 

- from data given by (15), we have  

 

)1(n 40, )1( 2600, )3()1(m 32, 

,1563320541600...2720)3(
)3()1(

1

)1(

1 


m

i

t  

 

then, according to (8),  the evaluations 
)1()1(

11
)]3(ˆ[  of the intensity )1()1(

11
)]3([  of 

departure from the reliability state subset }3{  is  

 

)1(

11
)]3(ˆ[

 





)3()1(

1

)1()1()1()1(

)1(

)]3([)3(

)3(

m

i
i

mnt

m



   

               0009.0
]3240[260015633

32



                                                    (18)                        

 

and according to (9), its pessimistic evaluation is  
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)1(

11
)]3(ˆ[

 





)3()1(

1

)1()1()1()1(

)1(

)]3([)3(

)3(

m

i
i

mnt

m



.0011.0
]3240[260015633

40



  

 

This way, we may obtain the evaluations of the unknown intensities of departure 

for all remaining system components. Substituting the evaluations of the 

intensities of departures respectively into the formulae (12), we get the 

exponential coordinates of the exemplary system components reliability 

functions (11) that after successful testing can be used for the evaluation and 

prediction of this system reliability.   

 

4.1.4 Identifying exemplary system multistate components conditional  

exponential reliability functions on basis of data coming from system 

components reliability states changing processes 
 

As by the arbitrary assumption, there are data collected from the system 

components reliability states changing processes, then it is possible to verify the 

hypotheses on the exponential forms of the system components conditional 

reliability functions. To this end, we use the procedure given in [9]. Applying 

this procedure and using the statistical data from Section 4.1.2 and the results 

from Section 4.1.3, we may verify the hypotheses on the conditional exponential 

four-state exemplary system components reliability functions 
)()( )],([ b

ij
tR 

, 

,2,1 ,4,3,2,1b  at the particular operation states ,
b

z  .4,3,2,1b  To do this, 

we need a sufficient number of realizations of the system components lifetime 

in the reliability state subsets. This condition is satisfied for the statistical data 

that are partly presented in Section 4.1.2. Considering the evaluated values of 

the unknown intensities of the component )1(

11
E  departure from the reliability 

state subsets given by (16)-(18), we formulate the null hypothesis 
0

H  

concerned with the form of its multistate reliability )1()],([ tR in the following 

form:  

:
0

H  The conditional multistate reliability function of the system component 

)1(

11
E  at the operation state 

1
z  

 
)1()1(

11
)],([ tR = [1, ,)]1,([ )1()1(

11
tR ,)]2,([ )1()1(

11
tR )1()1(

11
)]3,([ tR ],                                                                                       

 

has the exponential reliability function coordinates of the forms    

 
)1()1(

11
)]1,([ tR = exp[-0.0008t], )1()1(

11
)]2,([ tR = exp[-0.0009t],  

)1()1(

11
)]3,([ tR = exp[-0.0009t] for ).,0 t                    
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Application of the goodness-of-fit method [9] allow to accept the above 

hypothesis.   

 

4.2 Statistical identification of maritime ferry technical system components 

reliability   

 

4.2.1 Defining parameters of ferry technical system components reliability 

models and data collection  

 
The considered ferry technical system reliability structure changing at the 

various operation states and its components and their unknown safety 

parameters are described in [9]. 

At all the system operation states , ,18,...,2,1b  defined in [9], we 

distinguish the following five safety states 0, 1, 2, 3, 4 of the system and its 

components, defined in [9]. Moreover, we fix that there are possible the 

transitions between the components reliability states only from better to worse 

ones.  

From the above, the ferry technical subsystems   are composed 

of five-state,  i.e. z = 4, components   having the conditional 

five-state reliability functions 

 
)()( )],([ b

ij
tR  = [1, )()( )]1,([ bv

ij
tR , )()( )]2,([ b

ij
tR  , )()( )]3,([ b

ij
tR  , )()( )]4,([ b

ij
tR  ],       (19) 

,18,...,2,1b                                              

 

with the exponential coordinates  

 

],)]1([exp[)]1,([ )()()()( b

ij

b

ij
tR     ],)]2([exp[)]2,([ )()()()( b

ij

b

ij
tR    

],)]3([exp[)]3,([ )()()()( b

ij

b

ij
tR    ],)]4([exp[)]4,([ )()()()( b

ij

b

ij
tR                    (20)                                                                                                                               

 

and with the intensities of departure from the reliability state subsets },4,3,2,1{

},4,3,2{ },4,3{ },4{  respectively  

 
)()( )]1([ b

ij

 , )()( )]2([ b

ij

 , )()( )]3([ b

ij

 , )()( )]4([ b

ij

 , ,18,...,2,1b  

 

different at the particular operation states 
b

z , ,18,...,2,1b  where 1i  and  

1j  for ,1  1i  and 4,3,2,1j ,  2i  and ,2,1j   7,6,5,4,3i  and 

1j  for ,2  5,4,3,2,1i  and  1j  for ,3  2,1i  and  1j  for ,4

3,2,1i  and  1j  for .5  

b
z

,


S 5,...,2,1

,)(

ij
E 5,...,2,1
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4.2.2 Collecting data on ferry technical system components reliability 
models coming from experts  
 

We have the approximate realizations  

 

,   

 

of the mean values   

 of the conditional lifetimes   

,18,...,2,1b   in the reliability state subsets },4,...,1,{ uu  of the 

components  of the ferry technical subsystems   at the 

particular operation states ,18,...,2,1b  estimated on the basis of the expert 

opinions. For instance, the approximate mean values )2()1(

11
)](ˆ[ u  of the ferry 

subsystem  components conditional lifetimes )2()1(

11
)]([ uT  at the operation 

states
2

z  are:  

 

,30)]1([ )2()1(

11



 ,25)]2([ )2()1(

11



 ,22)]3([ )2()1(

11



.20)]4([ )2()1(

11



               (21)                                                                  

 

4.2.3 Evaluating ferry technical system components intensities of departures 

from reliability state subsets on basis of data coming from experts  

 

To evaluate approximately the parameters of multistate reliability functions of 

the ferry technical system components the statistical data coming from experts 

partly presented in Section 5.2.2 can be used. The statistical data collected in [9] 

and the formula (10) application yield the approximate values  of the 

subsystems   components unknown intensities  of 

departure from the safety state subsets ,  , , , while the 

system is operating at the operation state  For instance, 

substituting into (10) the values the mean lifetimes given by (21), we obtain the 

approximate evaluations of the unknown intensities of departure of component 

 of the subsystem  from the safety state subsets ,  , , 

, while the ferry technical system is operating at the operation state , that 

respectively amount  

 

  

 

(22)                                                                                                                          

 
 

)()( )](ˆ[ b

ij
u 5,4,3,2,1 ,4,3,2,1u ,18,...,2,1b

],)]([[)]([ )()()()( b

ij

b

ij
uTEu   5,4,3,2,1 ,4,3,2,1u

,18,...,2,1b ,)]([ )()( b

ij
uT 

5,4,3,2,1 ,4,3,2,1u

,4,3,2,1u

)(

ij
E ,


S ,5,4,3,2,1

,
b

z

1
S

)()( )](ˆ[ b

ij
u

,


S ,5,4,3,2,1 )()( )]([ b

ij
u

}4,3,2,1{ }4,3,2{ }4,3{ }4{

,
b

z .18,...,2,1b

)1(

11
E

1
S }4,3,2,1{ }4,3,2{ }4,3{

}4{
2

z

,033.0
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1

)]1(ˆ[

1
)]1(ˆ[

)2()1(

)2()1( 
ij

ij


 ,040.0
25

1

)]2(ˆ[

1
)]2(ˆ[

)2()1(

)2()1( 
ij

ij




,045.0
22

1

)]2(ˆ[

1
)]2(ˆ[

)2()1(

)2()1( 
ij

ij


 .050.0
20

1

)]2(ˆ[

1
)]2(ˆ[
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ij

ij



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The evaluations of all unknown intensities of departure from the reliability state 

subsets ,  , , }4{  of components of the ferry technical 

system operating at various operation states, can be obtained in the same way. 

Substituting the obtained evaluations of the intensities of departures respectively 

into the formulae (19)-(20), we get the exponential coordinates of the ferry 

technical system five-state components reliability functions that after arbitrary 

acceptance can be used for the evaluation and prediction of this system 

reliability characteristics.   

 

4.2.4 Identifying ferry technical system multistate components conditional 

exponential relability functions on basis of data coming from experts 
 

As there are no data collected from the ferry technical system components 

safety  states changing processes, then it is not possible to verify the hypotheses 

on the exponential forms of this system components conditional reliability 

functions. We arbitrarily assume that these reliability functions are exponential 

and using the results of the previous section and the relationships (19)-(20) we 

fix their forms. For instance, using the evaluations (22) of the previous section 

and (19)-(20), we conclude that at the system operation state ,2z  the subsystem 

S1 component 
)1(

11E  has the reliability function  

 
)2()1(

11
)],([ tR = [1, ,)]1,([ )2()1(

11
tR ,)]2,([ )2()1(

11
tR ,)]3,([ )2()1(

11
tR )2()1(

11
)]4,([ tR ],                                                                                       

 

with the exponential reliability function coordinates of the forms    

 
)2()1(

11
)]1,([ tR  = exp[0.033t], )2()1(

11
)]2,([ tR = exp[0.040t],  

)2()1(

11
)]3,([ tR  = exp[0.045t], )2()1(

11
)]4,([ tR  = exp[0.05t]. 

 

This way arbitrarily fixed the exponential coordinates of the ferry technical 

system components reliability functions can be used for the evaluation and 

prediction of this system safety characteristics. 

 

Conclusions 
 

The proposed statistical methods of identification of the unknown parameters of 

the multistate components reliability models allow us for their practical 

applications in reliability evaluation and prediction of real complex multistate 

technical systems. These methods can be applied to estimating the reliability 

characteristics of various maritime, port and shipyard transportation systems 

oand other technical systems operating at variable conditions. The results are 

expected to be the basis to the reliability of complex technical systems 

optimization and their operation processes effectiveness and cost optimization 

as well. Thus, proposed methods for evaluating unknown parameter of the 

}4,3,2,1{ }4,3,2{ }4,3{

465



piece-wise exponential reliability function with a special stress on small samples 

and unfinished investigations are very important in everyday industrial practice.          
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Abstract. The paper is concerned with the methods and procedures for identification of  

unknown parameters of a general probability model of a complex technical system 

operation process and their practical application. The general multistate model of a 
complex technical system operation process is proposed and the procedure of identifying 

its basic unknown parameters is presented. There are also suggested typical distribution 

functions describing the system operation process conditional sojourn times at particular 

operation states and the procedure of identifying their unknown parameters is proposed. 
An illustration of the proposed methods and procedures practical application to 

identifying the port oil piping transportation system operation process and its 

characteristics prediction is presented.  

 

1  Introduction 
 

Modeling the complex system operation process is complicated because of the 

large number of the operation states, impossibility of their precise defining and 

exact describing the transitions between them. The changes of the operation 

states of the system operation process cause the changes of the system reliability 

structure and also the changes of its components reliability parameters. The 

general joint model linking the system reliability model with the model of its 

operation process is constructed in [1] and [2]. To apply this general model 

practically to the evaluation and prediction of real complex technical systems 

reliability it is necessary to elaborate the statistical methods concerned with 

determining the unknown parameters of the proposed model. Particularly, 

concerning the system operation process, the methods of estimating the 

probabilities of the initials system operation states, the probabilities of 

transitions between the system operation states and the distributions of the 

sojourn times of the system operation process at the operation states should be 

proposed [3]. The methods of testing the hypotheses concerned with the 

conditional sojourn times of the system operation process at the operation states 

should be also elaborated. 
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2  Mathematical model of complex technical system operation 

process  
 

We assume that the system during its operation process is taking ,, Nv   

different operation states ..,..,,
21 

zzz  Further, we define the system operation 

process )(tZ , ),,0 t  with discrete operation states from the set  

}..,..,,{
21 

zzz  Moreover, we assume that the system operation process Z(t) is a 

semi-Markov process [1]-[9], with the conditional sojourn times 
bl

  at the 

operation states bz  when its next operation state is ,lz  ,,...,2,1, vlb   .lb    

Under these assumptions, the system operation process may be described by:   

– the vector 
x1

)]0([
b

p of the initial probabilities ),)0(()0(
bb

zZPp   

,,...,2,1 vb   of the system operation process Z(t) staying at the operation 

states at the moment ;0t  

– the matrix x][ blp  of probabilities ,blp  ,,...,2,1, vlb   ,lb   of the system 

operation process Z(t) transitions between the operation states bz  and ;lz   

– the matrix 
x

)]([ tH
bl

of conditional distribution functions 

)()( tPtH blbl   , ,,...,2,1, vlb   ,lb   of the system operation process 

Z(t) conditional sojourn times bl  at the operation states.  

The mean values of the conditional sojourn times bl  of the system operation 

process Z(t) are given by   

 

][
blbl

EM  


0

),(ttdH
bl

 ,,...,2,1, vlb   .lb                                                   (1) 

 

From the formula for total probability, it follows that the unconditional 

distribution functions of the sojourn times ,b ,,...,2,1 vb   of the system 

operation process )(tZ  at the operation states ,
b

z  ,,...,2,1 vb   are given by [1], 

[2]  

  

)(tH
b

 = 


v

l
blbl

tHp
1

),(  .,...,2,1 vb                                                                        (2) 

 

Hence, the mean values ][
b

E   of the system operation process )(tZ  

unconditional sojourn times ,b  ,,...,2,1 vb   at the operation states are given 

by   

 

][
bb

EM   = 


v

l
blbl

Mp
1

, ,,...,2,1 vb                                                                  (3) 

 
where 

bl
M  are defined by the formula (1).  
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The limit values of the system operation process )(tZ  transient probabilities at 

the particular operation states  

 

)(tpb = P(Z(t) = 
b

z ) , ),,0 t  ,,...,2,1 vb                                                 (4) 

 

are given by [1]-[9]    

 

b
p  = )(lim tp

b
t 

= ,

1




v

l
ll

bb

M

M




 ,,...,2,1 vb                                                              (5) 

 

where ,
b

M  ,,...,2,1 vb   are given by (3), while the steady probabilities b  of 

the vector 



xb 1

][  satisfy the system of equations 

 








 





v

l
l

blbb
p

1

.1

]][[][




                                                                                                (6) 

 

Other interesting characteristics of the system operation process )(tZ  possible 

to obtain are its total sojourn times 
b

̂  at the particular operation states ,
b

z  

,,...,2,1 vb   during the fixed system operation time. It is well known [2], [6] 

that the system operation process total sojourn times 
b

̂  at the particular 

operation states ,
b

z  for sufficiently large operation time ,  have approximately 

normal distributions with the expected value given by  

 

,]ˆ[ˆ 
bbb

pEM   ,,...,2,1 vb                                                                         (7) 

 

where 
b

p  are given by (5).  

 

3  Procedure of identifying unknown parameters of complex 

technical system operation process  
 

3.1 Methodology of description of the complex technical system 

 

The description of the complex technical systems should include at least the 

following items:  

- the system designation,  

- the system operation conditions,  

- the system subsystem and components.   

 

3.2 Methodology of defining the parameters of the system operation process 
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To make the estimation of the unknown parameters of the system operations 

process the experiment delivering the necessary statistical data should be 

precisely planned.  

Firstly, before the experiment, we should perform the following preliminary 

steps [3]:   

i) to analyze the system operation process;  

ii) to fix or to define its following general parameters: 

- the number of the operation states of the system operation process  , 

- the operation states of the system operation process 
1

z , 
2

z , …, 


z ; 

iii)  to fix the possible transitions between the system operation states; 

iv)  to fix the set of the unknown parameters of the system operation process 

semi-Markov model. 

 

3.3 Procedure of the system operation process data collection 
 

To estimate the unknown parameters of the system operations process, during 

the experiment, we should collect necessary statistical data performing the 

following steps [3]:   

i) to fix and to collect the following statistical data necessary to evaluating the 

probabilities of the initial states of the system operations process:  

- the duration time of the experiment  , 

- the number of the observed realizations of the system operation process )0(n , 

- the numbers of staying of the operation process respectively in the operations 

states 
1

z , 
2

z , …, 


z , at the initial moment 0t  of all )0(n  observed 

realizations of the system operation process )0(
1

n ,  )0(
2

n , …, )0(


n , where 

)0(
1

n  + )0(
2

n + )0(


n  = )0(n , in the form of the vector 
x

n
1

)]0([ ; 

ii) to fix and to collect the following statistical data necessary to evaluating the 

transient probabilities between the system operation states:  

- the numbers 
bl

n , b, l = 1,2,...,v, b l, of the transitions of the system operation 

process from the operation state 
b

z  to the operation state 
l

z  during all observed 

realizations of the system operation process in the form of the matrix 
xbl

n ][ ; 

- the numbers ,...
21 bbbb

nnnn  b = 1,2,...,v, of departures of the system 

operation process from the operation states 
b

z  in the form of the column 
1

][
xb

n


;    

iii) to fix and to collect the following statistical data necessary to evaluating the 

unknown parameters of the distributions of the conditional sojourn times of 

the system operation process in the particular operation states: 

- the realizations k

bl
 , k = 1,2, …, ,

bl
n  b, l = 1,2,...,v, lb  , of the conditional 

sojourn times 
bl


 
of the system operations process at the operation state 

b
z  

when the next transition is to the operation state 
l

z  during the observation time 

 .  
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3.4 Procedure of evaluating the unknown parameters of the system operation 

proces  

 

After collecting the statistical data, it is possible to estimate the unknown 

parameters of the system operation process performing the following steps [3]: 

i) to determine the vector 
x

p
1

)]0([  of the realizations of the probabilities )0(
b

p

, ,,...,2,1 b  of the initial states of the system operation process, according to 

the formula 

 

)0(

)0(
)0(

n

n
p b

b
  for ;,...,2,1 b                                                                          (8) 

 

ii) to determine the matrix 
xbl

p ][  of the realizations of the probabilities 
bl

p , 

,,...,2,1, lb  of the system operation process transitions from the operation 

state 
b

z  to the operation state ,
l

z  according to the formula   

 

b

bl

bl
n

n
p   for ,,...,2,1, lb  b  l, 

bb
p  = 0, ;,...,2,1 b                                   (9) 

 

iii) to determine the following empirical characteristics of the realizations of the 

conditional sojourn time of the system operation process at the operation states:  

- the realizations of the mean values 
bl

  of the conditional sojourn times 
bl

  of 

the system operation process at the operation state 
b

z  when the next transition is 

to the operation state 
l

z  , according to the formula  

 

,
1

1




bln

k

k

bl

bl

bl
n


 

,,...,2,1, vlb   b  l                                                                 (10) 

 

- the number ,
bl

r  of the disjoint intervals ),, j

bl

j

blj
baI   ,,...2,1

bl
rj   that 

include the realizations ,k

bl
  ,,...2,1

bl
nk   of the conditional sojourn times ,

bl
  

the lengths 
bl

d  and the ends ,j

bl
a j

b l
b of these intervals and the numbers j

b l
n  of 

the realizations k

bl
 in these intervals [2]. 

 

3.5 Procedure of identifying the distributions of the system conditional 

sojourn times at operation states 

    

To formulate and next to verify the hypothesis concerning the form of the 

distribution function )(tH
bl

 of the system conditional sojourn time 
bl

  on the 

basis of its realizations ,k

bl
  ,,...,2,1

bl
nk   it is necessary to proceed according 

to the following scheme: 
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- to construct and to plot the realization of the histogram of the system 

conditional sojourn time 
bl

  at the operation state, defined by the following 

formula   

 

bl

j

bl

bln
n

n
th )(  for 

j
It    ,                                                                                    (11) 

 

- to analyze the realization of the histogram, comparing it with the graphs of the 

density functions )(th
bl

 of the previously distinguished distributions, to select 

one of them and to formulate the null hypothesis 
0

H , concerning the unknown 

form of the distribution function )(tH
bl

 of the conditional sojourn time ,
bl

   

- to estimate the parameters of the selected distribution of the conditional 

sojourn times of the system operation process at the operation state in the way 

given in [2], 

- to verify the hypothesis 
0

H  using the chi-square test [2].  

 

3.6 Procedure of identifying the mean values of the system conditional 

sojourn times at operation states   

  

After identifying the matrix 
x

)]([ th
bl

 of the conditional density functions of the 

system conditional sojourn times 
bl

 , ,,...,2,1, vlb  ,lb   in operation states 

corresponding to the matrix 
x

)]([ tH
bl

 of distribution functions, it is possible to 

determine the mean values of the system conditional sojourn times at the 

operation states either using (1) or the direct formulae for the distinguished 

distributions fixed in [2]. In the case when the identification of the conditional 

density functions of the system conditional sojourn times 
bl

 , ,,...,2,1, vlb 

,lb   in operation states is not possible we may determine the approximate 

empirical values of the system conditional sojourn times in the operation states 

according to the formula (10) or use their approximate values coming from 

experts.      

                                                                            

4  Statistical identification of exemplary system components 

reliability 
 

4.1 Description of port oil piping transportation system operation process   

 

The considered port oil piping transportation system is the main part of the Oil 

Terminal in Dębogórze that is designated for the reception from ships, the 

storage and sending by carriages or by cars the oil products such like petrol and 

oil. It is also designated for receiving from carriages or cars, the storage and 

loading the tankers with oil products. The considered terminal is composed of 

three parts A, B and C, linked by the piping transportation systems with the pier. 
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The scheme of this terminal is presented in Figure 1. The unloading of tankers is 

performed at the pier placed in the Port of Gdynia. The pier is connected with 

terminal part A through the transportation subsystem S1 built of two piping lines 

composed of steel pipe segments with diameter of 600 mm. In the part A there is 

a supporting station fortifying tankers pumps and making possible further 

transport of oil by the subsystem S2 to the terminal part B. The subsystem S2 is 

built of two piping lines composed of steel pipe segments of the diameter 600 

mm. The terminal part B is connected with the terminal part C by the subsystem 

S3. The subsystem S3 is built of one piping line composed of steel pipe segments 

of the diameter 500 mm and two piping lines composed of steel pipe segments 

of diameter 350 mm. The terminal part C is designated for the loading the rail 

cisterns with oil products and for the wagon sending to the railway station of the 

Port of Gdynia and further to the interior of the country.  

 

 
 

Fig. 1. The scheme of the port oil piping transportation system. 

 

The oil pipeline system consists three subsystems:  

- the subsystem 
1

S  composed of two identical pipelines, each composed of 178 

pipe segments of length 12m and two valves,  

- the subsystem
2

S  composed of two identical pipelines, each composed of  717 

pipe segments of length 12m and two valves, 

- the subsystem
3

S  composed of three different pipelines, each composed of 360 

pipe segments of either 10 m or 7,5 m length and two valves. 

 

4.2 Defining the parameters of the port oil piping transportation system 

operation process   

 

Taking into account the expert opinion on the operation process of the 

considered port oil pipeline transportation system we fix [10]:  

- the number of the pipeline system operation process states 7 and we 

distinguish the following as its seven operation states:  

 an operation state 
1

z  transport of one kind of medium from the 

terminal part B to part C using two out of three  pipelines of the 

subsystem S3,   
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 an operation state 
2

z  transport of one kind of medium from the 

terminal part C (from carriages) to part B using one out of three pipelines 

of S3,   

 an operation state 
3

z  transport of one kind of medium from the 

terminal part B through part A to pier using one out of two pipelines of 

the subsystem S2 and one out of two pipelines of the subsystem S1, 

 an operation state 
4

z  transport of two kinds of medium from the pier 

through parts A and B to part C using one out of two pipelines of the 

subsystem S1, one out of two pipelines of the subsystem S2 and two out 

of three pipelines of the subsystem S3, 

 an operation state 
5

z  transport of one kind of medium from the pier 

through part A to B using one out of two pipelines of the subsystem S1 

and one out of two pipelines of the subsystem S2, 

 an operation state 
6

z  transport of one kind of medium from the 

terminal part B to C using two out of three  pipelines of the subsystem S3, 

and simultaneously transport one kind of medium from the pier through 

part A to B using one out of two pipelines of  the subsystem S1 and one 

out of two pipelines of the subsystem S2, 

 an operation state 
7

z  transport of one kind of medium from the 

terminal part B to C using one out of three  pipelines of the subsystem S3, 

and simultaneously transport second kind of medium from the terminal 

part C to B using one out of three  pipelines of the subsystem S3. 

Moreover, we fix that there are possible the transitions between all system 

operation states. Thus, the unknown parameters of the system operation process 

semi-Markov model are:  

- the initial probabilities )0(
b

p , ,7,...,2,1b  ,lb   of the pipeline system 

operation process transients in the particular states 
b

z  at the moment t = 0, 

- the transition probabilities 
bl

p , ,7,...,2,1, lb  of the pipeline system 

operation process from the operation state bz  into the operation state ,
l

z   

- the distributions of the conditional sojourn times 
bl

 , ,7,...,2,1, lb ,lb   in 

the particular operation states and their mean values. 

To identify all these parameters of the pipeline system operation process the 

collected statistical data about this process presented in [2] are needed.    

 

4.3 The port oil piping transportation system operation process data collection    

 

The collected statistical data necessary to evaluating the initial transient 

probabilities of the piping system operation process in the particular states are: 

- the pipeline system operation process observation/experiment time  = 329 

days = 47 weeks, 

- the number of the pipeline system operation process realizations )0(n  41, 
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- the vector of realization )0(
b

n  of the number of the pipeline system operation 

process transients in the particular operation states bz  at the initial moment t = 

0 

 

)]0([
b

n ]8,8,9,0,0,2,14[ . 

 

The collected statistical data necessary to evaluating the transition probabilities 

of the pipeline system operation process between the operation states are: 

- the matrix realization 
bl

n  of the numbers of pipeline system operation process 

transitions from the state 
b

z  into the state 
l

z  during the experiment time 

329  days 

 

77
][

xbl
n =





























07700217

50140002

1010010121

1000000

0000001

4000001

145240110

, 

 

- the column of realization 
b

n  of the total numbers of the pipeline system 

operation process transitions from the operation state 
b

z  during the experiment 

time 329 days  

 


17

][
xb

n T]33,21,43,1,1,5,45[ . 

 

The exemplary collected statistical data necessary to evaluating the unknown 

parameters of the distributions of the conditional sojourn times of the port oil 

pipeline transportation system operation process at the operation states the 

variable 
15

  are as follows: 

- the number of realizations 24
15
n ,  

- the realizations: 

 

1

15
  930, 2

15
 3840, 3

15
 1290, 4

15
 480, 5

15
 5575,  

6

15
 4680, 7

15
 4350, 8

15
 2100, 9

15
 840, 10

15
 2460,  

11

15
 1560, 12

15
 1020,  13

15
 1860, 14

15
 960, 15

15
 930,  

16

15
 910, 17

15
 480, 18

15
 410, 19

15
 960, 20

15
 480,  

21

15
 1440, 22

15
 4710, 23

15
 540, 24

15
 5180. 
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4.4 Evaluating unknown basic parameters of port oil piping transportation 

system operation process   

 

On the basis of the statistical data, using the formulae given in Section III, it is 

possible to evaluate  

- the vector of realizations  

 

]19.0,19.0,23.0,0,0,05.0,34.0[)]0([
71


x
p  

  

of the initial probabilities )0(
b

p , ,7,...2,1b  (8) of the pipeline system 

operation process transients at the operation states 
b

z  at the moment t = 0, 

- the matrix of realizations  

 


77

][
xbl

p





























0194.0226.000064.0516.0

02380667.0000095.0

233.0233.00023.00023.0488.0

1000000

0000001

8.0000002.0

311.0111.0534.00022.0022.00

,                                 (12) 

 

of the transition probabilities 
bl

p , ,7,...,2,1, lb  (9) of the pipeline system 

operation process between the states.  

 
4.5 Identifying distributions of conditional sojourn times at operation states of 

port oil piping transportation system    

 

On the basis of statistical data, it is possible to determine the empirical 

characteristics of the conditional sojourn times of the pipeline system operation 

process at the operation states. Particularly, for ,
15
  we have:  

- the realizations of the mean value of the conditional sojourn times ,
15
  

calculated according to (10)    

 

 


24

1
1515

4.1999
24

1

k

k
 

7,...,12, lb  b  l, 

 

- the number 5
15
r  of the disjoint intervals that include the realizations k

15
  of 

the conditional sojourn times 
15
 ,  the length  1291

15
d  and the ends ,j

bl
a  j

b l
b  

of these intervals:  

 

,01

15
a  ,12912

15

1

15
 ab ,25823

15

2

15
 ab  ,38734

15

3

15
 ab  

,51645

15

4

15
 ab  ,64555

15
b                                                                            (13) 
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- the numbers jn
15

 of the realizations k

15


 
in these intervals 

 

  ,131

15
n  ,52

15
n ,13

15
n  ,44

15
n .15

15
n                                                       (14) 

 

 
                     Fig. 2. Histogram of the conditional sojourn time 

15
  

 

The realization of the histogram defined by (11)  of the system conditional 

sojourn time 
15
  constructed on the basis of the empirical results (13)-(14) is 

presented in Figure 2.   

Using the procedure given in [2] we may verify the hypotheses on the 

distributions of the conditional sojourn times ,
bl

  ,7,...,2,1, lb ,lb   at the 

operation states. For instance, the conditional sojourn time 
15
  has a chimney 

distribution with the density function    

 

)(
15

th





















.67.6886,0

,67.688667.1721,00007.0

,67.17210,0003.0

,0,0

t

t

t

t

                                                    (15) 

 

4.6 Identifying mean values of system conditional sojourn times at operation 

states of port oil piping transportation system    

 

For the distributions identified in Section IV E, using the formula (1), we can 

find the mean values of the conditional sojourn times in the particular operation 

states. For instance, after applying (1) and (15), we get .4.1999
15
M In the 

remaining cases, because of lack of sufficiently large sets of empirical data for 

testing the hypotheses, it is possible to find only the approximate values of the 

mean values ][
blbl

EM   of the conditional sojourn times at the operation 

states, using (10), that are as follow:    

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0-1291 1291-2582 2582-3873 3873-5164 5164-6455
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,1920
12
M ,480

13
M

 
,1250

16
M ,6.1129

17
M  

,9960
21
M ,810

27
M ,575

31
M ,380

47
M   

,7.874
51
M ,480

52
M  ,300

54
M ,3.436

56
M

  
,5.1042

57
M .1.874

71
M  

 

This way, the port oil piping transportation system operation process is 

approximately identified and we may predict its main characteristics. 

 

5  Port piping transportation system operation process 

prediction  
 

Applying (3), the unconditional mean sojourn times of the piping system 

operation process at the operation states are:  

 

,52.1610
1
M  ,2640

2
M  ,575

3
M  ,380

4
M  

,35.789
5
M  ,76.475

6
M  .16.1497

7
M                                                  (16) 

 

Considering (12) in the system of equations (6), we get its following solution  

 

,291.0
1
  ,027.0

2
  ,006.0

3
  ,007.0

4
   

,301.0
5
  ,144.0

6
  .224.0

7
  

 

Hence and from (16), after applying (5), it follows that the limit values of the 

piping system operation process transient probabilities )(tpb
 at the operation 

states 
bz  are given by  

 

,395.0
1
p  ,060.0

2
p  ,003.0

3
p  ,002.0

4
p   

,200.0
5
p  ,058.0

6
p  .282.0

7
p  

 

Substituting the above transient probabilities at operation states into (7), we get 

the mean values of the port oil piping transportation system operation process 

total sojourn times at the particular operation states during 1  year:  

 

,144ˆ
1
M ,22ˆ

2
M ,1ˆ

3
M  ,1ˆ

4
M  ,73ˆ

5
M  ,21ˆ

6
M 103ˆ

7
M  days. 

 

Conclusions 
 

The way of the identification of the operation process of complex system 

including the formulae and procedures for estimating unknown parameters of 

the operation process semi-Markov and its characteristics prognosis is proposed. 

Its application to the port oil piping transportation system operation process 
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unknown parameters estimation and operation characteristic prediction proves 

of the proposed formulae and procedures high practical importance.  
 

The proposed statistical methods of identification of the unknown parameters of 

the multistate components reliability models allow us for their practical 

applications in reliability evaluation and prediction of real complex multistate 

technical systems. These methods can be applied to estimating the reliability 

characteristics of various maritime, port and shipyard transportation systems 

oand other technical systems operating at variable conditions. The results are 

expected to be the basis to the reliability of complex technical systems 

optimization and their operation processes effectiveness and cost optimization 

as well. Thus, proposed methods for evaluating unknown parameter of the 

piece-wise exponential reliability function with a special stress on small samples 

and unfinished investigations are very important in everyday industrial practice.          
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Abstract. The paper is concerned with the methods for statistical data uniformity testing 

and identifying unknown parameters of a general probability model of a complex 

technical system operation process and their practical application. The general model of a 
complex technical system operation process is introduced. The procedure of statistical 

data sets uniformity testing is proposed and applied to the empirical realizations of 

sojourn times at system operation states coming from realizations of a maritime ferry 

operation process collected during spring and winter into separate two sets of data. After 
that, the identification of the maritime ferry technical system operation process is 

performed and the identified process is applied to its operation characteristics prediction. 

 

1  Introduction 
 

The general joint model linking the system reliability model with the model of 

its operation process is constructed in [1] and [2]. To apply this general model 

practically to the evaluation and prediction of real complex technical systems 

reliability it is necessary to elaborate the statistical methods concerned with 

determining the unknown parameters of the proposed model. Particularly, 

concerning the system operation process, the methods of estimating the 

probabilities of the initials system operation states, the probabilities of 

transitions between the system operation states and the distributions of the 

sojourn times of the system operation process at the particular operation states 

should be proposed. The methods of testing the hypotheses concerned with the 

conditional sojourn times of the system operation process at particular operation 

states should be also elaborated. In the case when the statistical data are coming 

from different experiments, before the system operation identification, the 

investigation of these data uniformity is necessary. 

 

2  Mathematical model of complex technical system operation 

process    
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We assume that the system during its operation process is taking ,, Nv   

different operation states ..,..,,
21 

zzz  Further, we define the system operation 

process )(tZ , ),,0 t  with discrete operation states from the set  

}..,..,,{
21 

zzz  Moreover, we assume that the system operation process Z(t) is a 

semi-Markov process [1]-[9] with the conditional sojourn times 
bl

  at the 

operation states bz  when its next operation state is ,lz  ,,...,2,1, vlb   .lb    

Under these assumptions, the system operation process may be described by 

[10]:   

– the vector 
x1

)]0([
b

p of the initial probabilities ),)0(()0(
bb

zZPp   

,,...,2,1 vb   of the system operation process Z(t) staying at the operation 

states at the moment ;0t  

– the matrix x][ blp  of probabilities ,blp  ,,...,2,1, vlb   ,lb   of the system 

operation process Z(t) transitions between the operation states bz  and ;lz   

– the matrix 
x

)]([ tH
bl

of conditional distribution functions 

)()( tPtH blbl   , ,,...,2,1, vlb   ,lb   of the system operation process 

Z(t) conditional sojourn times bl  at the operation states.  

The mean values of the conditional sojourn times bl  of the system operation 

process Z(t) are given by   

 

][
blbl

EM  


0

),(ttdH
bl

 ,,...,2,1, vlb   .lb                                                   (1) 

 

From the formula for total probability, it follows that the unconditional 

distribution functions of the sojourn times ,b ,,...,2,1 vb   of the system 

operation process )(tZ  at the operation states ,
b

z  ,,...,2,1 vb   are given by [1]-

[2]  

  

)(tH
b

 = 


v

l
blbl

tHp
1

),(  .,...,2,1 vb                                                                        (2) 

 

Hence, the mean values ][
b

E   of the system operation process )(tZ  

unconditional sojourn times ,b  ,,...,2,1 vb   at the operation states are given 

by   

 

][
bb

EM   = 


v

l
blbl

Mp
1

, ,,...,2,1 vb                                                                  (3) 

 

where 
bl

M  are defined by the formula (1).  

The limit values of the system operation process )(tZ  transient probabilities at 

the particular operation states  
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)(tpb = P(Z(t) = 
b

z ) , ),,0 t  ,,...,2,1 vb                                                 (4) 

 

are given by [1]-[9]   

 

b
p  = )(lim tp

b
t 

= ,

1




v

l
ll

bb

M

M




 ,,...,2,1 vb                                                              (5) 

 

where ,
b

M  ,,...,2,1 vb   are given by (3), while the steady probabilities b  of 

the vector 



xb 1

][  satisfy the system of equations 

 








 





v

l
l

blbb
p

1

.1

]][[][




                                                                                                (6) 

 

Other interesting characteristics of the system operation process )(tZ  possible 

to obtain are its total sojourn times 
b

̂  at the particular operation states ,
b

z  

,,...,2,1 vb   during the fixed system operation time. It is well known [2], [5] 

that the system operation process total sojourn times 
b

̂  at the particular 

operation states ,
b

z  for sufficiently large operation time ,  have approximately 

normal distributions with the expected value given by  

 

,]ˆ[ˆ 
bbb

pEM   ,,...,2,1 vb                                                                         (7) 

 

where 
b

p  are given by (5).  

 

3  Procedure of experimental statistical data uniformity 

analysis   
 

We consider test   [2] that can be used for testing whether two independent 

samples of realizations of the conditional sojourn times at the operation states of 

the system operation process are drawn from the population with the same 

distribution. We assume that we have two independent samples of non-

decreasing ordered realizations  

 

,1k

bl
  ,,...,2,1 1

bl
nk   and ,2k

bl
  ,,...,2,1 2

bl
nk                                                         (8) 

 

of the sojourn times 1

bl
  and  2

bl
  },,...,2,1{, lb  ,lb   respectively composed 

of 1

bl
n  and 2

bl
n  realizations and we mark their empirical distribution functions by 
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}},,...,2,1{,:{#
1

)( 11

1

1

bl

k

bl

bl

bl
nktk

n
tH    ,0t                                                 (9) 

 

and  

 

}}.,...,2,1{,:{#
1

)( 22

2

2

bl

k

bl

bl

bl
nktk

n
tH    ,0t                                             (10) 

 

Then, according to Kolmogorov-Smirnov theorem [7], the sequence of 

distribution functions given by the  equation 

 

)()(
2121

n
DPQ

nnnn


                                                                                    (11) 

 

defined for ,0  where 

,1

1 bl
nn   ,2

2 bl
nn   ,

21

21

nn

nn
n


                                                                         (12) 

 

and  

,)()(max 21

21
tHtHD

blbl
t

nn



                                                                            (13) 

 

is convergent, as ,n  to the limit distribution function  

  ,)1()(
222

 






k

kk eQ   .0                                                                         (14) 

 

The distribution function )(Q  given by (14) is called   distribution and its 

Tables of values are available.  

The convergence of the sequence )(
21


nn
Q  to the   distribution )(Q  means 

that for sufficiently large 
1

n  and 
2

n  we may use the following approximate 

formula  

).()(
21

 QQ nn                                                                                                (15) 

 

Hence, it follows that if we define the statistic   

,
21

nDU
nnn

                                                                                                    (16) 
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where 
21nn

D  is defined by (13), then by (14) and (15), we have  

)()(
21

unDPuUP
nnn

 )(
21

n

u
DP

nn
  

                )()(
21

uQuQ
nn

  for .0u                                                              (17)

 

This result means that in order to formulate and next to verify the hypothesis 

that the two independent samples of the realizations of the system operation 

process conditional sojourn times 1

bl
  and 2

bl
 , },,...,2,1{, lb  ,lb   at the 

operation state 
b

z  when the next transition is to the operation state 
l

z  are 

coming from the population with the same distribution, it is necessary to 

proceed according to the following scheme:  

- to fix the numbers of realizations 1

bl
n  and 2

bl
n  in the samples;   

- to collect the realizations (8) of the conditional sojourn times 1

bl
  and  2

bl
  of 

the system operation process in the samples;  

- to find the realization of the empirical distribution functions )(1 tH
bl

 and )(2 tH
bl

 

defined by (9) and (10) respectively, in the following forms: 

 

,

,1

,...,3,2,,

,0

)(

11

1

111

1111

1

1

11

1

11

1





























bl
n

bl

bl

bl
n

bl

bl

k

bl

k

bl

bl

k

bl

bl

bl

bl

bl

t
n

n

nkt
n

n

t
n

n

tH







                                            (18) 

 

where 

 

 011 
bl

n , ,1111

bl

bl
n

bl
nn 



                                                                                       (19) 

 

and  

 
k

bl
n1 }},,...,2,1{,:{# 111

bl

k

bl

j

bl
njj    ,,...,3,2 1

bl
nk                                        (20) 

 

is the number of the sojourn time 1

bl
  realizations less than its realization ,1k

bl
  

,,...,3,2 1

bl
nk   
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,

,1

,...,3,2,,

,0

)(

22

2

122

2212

2

2

21

2

21

2





























bl
n

bl

bl

bl
n

bl

bl

k

bl

k

bl

bl

k

bl

bl

bl

bl

bl

t
n

n

nkt
n

n

t
n

n

tH







                                           (21) 

 

where  

 

021 
bl

n , ,2122

bl

bl
n

bl
nn 



                                                                                        (22) 

 

and 

}},,...,2,1{,:{# 2222

bl

k

bl

j

bl

k

bl
njjn   ,,...,3,2 2

bl
nk                                        (23) 

 

is the number of the sojourn time 2

bl


 
realizations less than its realization ,2k

bl
  

;,...,3,2 2

bl
nk 

 
- to calculate the realization of the statistic 

n
u  defined by (16) according to the 

formula                                                                                                                           

,
21

ndu
bl

n
bl

nn
                                                                                                    (24) 

where  

max
21


bl
n

bl
n

d { ,1

21
bl

n
bl

n
d },2

21
bl

n
bl

n
d                                                                              (25) 

 

}},,...,2,1{,)()(max{ 112111

21 bl

k

blbl

k

blbl
bl

n
bl

n
nkHHd                                        (26) 

}},,...,2,1{,)()(max{ 222212

21 bl

k

blbl

k

blbl
bl

n
bl

n
nkHHd                                        (27) 

;
21

21

blbl

blbl

nn

nn
n


                                                                                                     (28) 

 

- to formulate the null hypothesis 
0

H in the following form:  
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:
0

H  The samples of realizations (8) are coming from the populations with the 

same distributions; 

- to fix the significance level  of the   test;  

- to read from the Tables of   distribution the value 
0
u  such that the 

following equality holds 

)( uUP
n
 ;1)()(

0
  QuQ                                                                   (29) 

 

- to determine the critical domain  in the firm );,( u  

- to compare the obtained value 
n

u  of the realization of the statistics 
n

U  with 

the read from Tables value ;
0
u  

- to decide on the formulated hypothesis 
0

H in the following way: if the value 

n
u  does not belong to the critical domain, i.e. ,uu

n
  then we do not reject the 

hypothesis ,
0

H  otherwise if the value 
n

u  belongs to the critical domain, i.e. 

,uu
n
  then we reject the hypothesis 

0
H . 

In the case when the null hypothesis 
0

H  is not rejected we may join the 

statistical data from the considered two separate sets into one new set of data 

and if there are no other sets of statistical data we proceed with the data of this 

new set in the way described in [8]. Otherwise, if there are other sets of 

statistical data we select the next one of them and perform the procedure of this 

section for data from this set and data from the previously formed new set. We 

continue this procedure up to the moment when the store of the statistical data 

sets is exhausted. 

 

4  Maritime ferry operation process uniformity testing 
 

We use the two-sample   test described in Section III to verify the hypotheses 

that spring and winter realizations of the maritime ferry [7] conditional sojourn 

times at the operation states are from the populations with the same distribution. 

For instance, the procedure of testing the uniformity of data collected at the 

operation state 
1

z  when the next operation state was 
2

z  is as follows: For 

spring and winter data, the conditional sojourn times 1

12
  and 2

12
  have the 

empirical distribution functions  
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
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
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






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
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
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



































;97,1

,9784,42/41

,8478,42/40

,7875,42/39

,7572,42/38

,7271,42/36

,7168,42/35

,6867,42/34

,6765,42/33

,6563,42/32

,6362,42/30

,6261,42/29

,6160,42/27

,6059,42/26

,5958,42/24

,5857,42/23

,5755,42/22

,5553,42/21

,5352,42/19

,5250,42/18

,5047,42/17

,4746,42/15

,4645,42/14

,4544,42/13

,4443,42/9

,4340,42/8

,4037,42/6

,3735,42/5

,3533,42/4

,3325,42/3

,2520,42/2

,2015,42/1

,15,0

)(12
1

t

t

t

t

t

t

t

t
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t
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t

t
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
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.90,1

,9080,40/39

,8075,40/38

,7569,40/36

,6967,40/35

,6765,40/34

,6563,40/30

,6362,40/29

,6261,40/28

,6160,40/27

,6059,40/25

,5957,40/24

,5755,40/23

,5553,40/22

,5350,40/21

,5048,40/20

,4846,40/18

,4644,40/17

,4441,40/16

,4140,40/15

,4037,40/14

,3736,40/11

,3634,40/10

,3433,40/9

,3325,40/7

,2520,40/6

,2019,40/5
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,12,0
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The null hypothesis is :
0

H  The winter and spring data at the operation state 
1

z  

when the next operation state was 
2

z are from the population with the same 

distribution. 

To verify this hypothesis we will apply the two-sample   test at the 

significance level .05.0  Using the above empirical distributions we form a 

common Table 1 composed of all their values. In Table 1, the values 
k

t  are joint 

together all realizations ,1

12

k ,,...,2,1 1

12
nk   and ,2

12

k  ,,...,2,1 2

12
nk   of the 

conditional sojourn times 1

12
  and ,2

12
  i.e. they are all discontinuity points of 
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the empirical distribution function )(12
1 tH  and )(12

2 tH  were they have jumps in 

their values )(12
1

k
tH  and )(12

2

k
tH . 

 

Table 1. Joint empirical distribution function 

k

k
t 1

12


k2

12
   )(12

1

k
tH  )(12

2

k
tH  )()( 12

2
12

1

kk
tHtH   

12 0 0 0 

15 0 1/40 0.025 

18 1/42 3/40 0.051 

19 1/42 4/40 0.076 

20 1/42 5/40 0.101 

25 2/42 6/40 0.102 

33 3/42 7/40 0.104 

34 4/42 9/40 0.129 

35 4/42 10/40 0.156 

36 5/42 10/40 0.131 

37 5/42 11/40 0.156 

40 6/42 14/40 0.207 

41 8/42 15/40 0.185 

43 8/42 16/40 0.209 

44 9/42 16/40 0.186 

45 13/42 17/40 0.115 

46 14/42 17/40 0.092 

47 15/42 18/40 0.093 

48 17/42 18/40 0.045 

50 17/42 20/40 0.095 

52 18/42 21/40 0.096 

53 19/42 21/40 0.073 

55 21/42 22/40 0.05 

57 22/42 23/40 0.051 

58 23/42 24/40 0.052 

59 24/42 24/40 0.029 

60 26/42 25/40 0.006 

61 27/42 24/40 0.032 

62 29/42 28/40 0.009 

63 30/42 29/40 0.011 

65 32/42 30/40 0.012 

67 33/42 34/40 0.064 

68 34/42 35/40 0.065 

69 35/42 35/40 0.042 

71 35/42 36/40 0.067 

72 36/42 36/40 0.043 

75 38/42 36/40 0.005 

78 39/42 38/40 0.021 
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80 40/42 38/40 0.002 

84 40/42 39/40 0.023 

90 41/42 39/40 0.001 

97 41/42 1 0.024 

>97 1 1 0 

 

Next, according to (25)-(27), from Table 1, we get 

 

209.0)()(max 12
2

12
1

4042


kk
kt

tHtHd , 

 

and  according to (28) 

 

48.20
4042

4042
12





n . 

 

Thus, the realization nu  of  the statistics (24) is  

 

946.048.20209.0
124042

 ndu
n

. 

 

From the table of the  distribution for the significance level ,05.0  

according to (29), we get the critical value .36.1
0

 u  Since  

 

,36.1946.0  uu
n

 

 

then we do not reject the null hypothesis .
0

H   

After proceeding in an analogous way with data in the remaining operation 

states we can obtain the same conclusions that the sprig data sets and the winter 

data sets are from the populations with the identical distributions. 

 

5  Statistical identification of maritime ferry operation process 
 

To identify all parameters of the considered maritime ferry operation process [7] 

the statistical data coming from this process is needed. The joint statistical data 

that has been collected during spring and winter are:    

- the number of the ship operation process states 18 ; 

- the ferry operation process observation time  = 82 days; 

- the number of the ferry operation process realizations )0(n  82; 

- the vector of realizations of the numbers of the ferry operation process staying 

at the operation states bz  at the initial moment t = 0 

 


181

)]0([
xb

n ]0,...,0,82[ ; 
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- the matrix of realizations 
bl

n  of the numbers of the ferry operation process 

)(tZ  transitions from the state 
b

z  into the state 
l

z  during the observation time 

82  days 

  

1818
][

xbl
n = 























00...0082

820...000

...

00...8200

00...0820

; 

 

- the vector of realizations of the total numbers of the ferry operation process 

transitions from the operation state bz  during the observation time 82  days 

 


118

][
xb

n .]82,...,82,82[ T  

On the basis of the above statistical data it is possible to evaluate  

- the vector of realizations  

 

]0,0.,..0,0,1[)]0([ p , 

 

of the initial probabilities )0(
b

p , ,18,...,2,1b  of the ferry operation process 

transients at the operation states bz  at the moment t = 0  

- the matrix of realizations  

 

,

00...001

10...000

...

00...100

00...010

][
























bl

p                                                                                         (30) 

 

of the transition probabilities 
bl

p , ,18,...,2,1, lb  of the system operation 

process )(tZ  from the operation state bz  into the operation state .
l

z   

The statistical data allow that applying the same methods as in [8], we may 

verify the hypotheses about the conditional distribution functions )(tH
bl

 of the 

maritime ferry operation process sojourn times ,
bl

  ,17,...,2,1b  1 bl  and 

,18b  1l  at the state 
b

z  while the next transition is to the state 
l

z  on the 

base of their joint realizations j

b l
 , .82,...,2,1j  For instance, the conditional 

sojourn time 
12
  has a normal distribution with the density function    
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)(
12

th ],
563.666

)415.51(
exp[

2256.18

1 2


t


 ).,( t  

 

Next for the verified distributions, the mean values ],[
blbl

EM  ,18,...,2,1, lb  

,lb  (1) of the system operation process Z(t) conditional sojourn times at the 

operation states can be determined: 

 

,415.51
12
M  ,176.36

34
M  ,268.37

67
M  ,807.6

78
M  ,19

89
M  

,614.46
910
M ,829.2

1011
M  ,459.4

1112
M  ,091.25

1213
M  ,689.513

1314
M

,182.51
1415

M ,807.33
1516

M  .039.18
181
M                                              (31) 

 

In the remaining cases, because of lack of sufficiently extensive empirical data,  

the mean values ][
blbl

EM   can be estimated by application the formula for 

the empirical mean [8] giving the following their approximate values:   

 

533.2
23
M , ,393.52

45
M  ,188.530

56
M  ,448.4

1617
M .473.5

1718
M   (32)                                 

 

6  Maritime ferry operation process prediction 
 

After applying (3) and the results (31)-(32), the unconditional mean sojourn 

times of the maritime ferry operation process at the particular operation states 

are:  

 

,415.51
1
M ,533.2

2
M ,176.36

3
M ,393.52

4
M ,188.530

5
M  

,268.37
6
M ,807.6

7
M ,19

8
M ,614.46

9
M ,829.2

10
M ,459.4

11
M

,091.25
12
M ,689.513

13
M ,182.51

14
M ,807.31

15
M ,448.4

16
M  

,473.5
17
M .039.18

18
M                                                                               (33) 

 

Considering (30) in the system of equations (6), we get its following solution  

 

1 2 3  4  5  6  7 8 
9


10

  11 12 13


14

 
15

 
16

 
17

 056.0
18
  

 

Hence and from (33), after applying (5), it follows that the limit values of the 

maritime ferry operation process transient probabilities at the operation states 

,bz ,18,...,2,1b  are:  
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,036.0
1
p ,002.0

2
p ,025.0

3
p ,036.0

4
p ,368.05 p  ,026.06 p  

,005.07 p ,013.0
8
p ,032.09 p ,002.010 p ,003.011 p ,017.012 p

,356.013 p ,036.014 p ,023.015 p ,003.016 p ,004.017 p ,013.018 p  

 

Substituting the above transient probabilities at operation states into (7), we can 

get the mean values of the maritime ferry operation process total sojourn times 

at the particular operation states during 1  year:  

 

,14.13ˆ
1
M  ,73.0ˆ

2
M  ,13.9ˆ

3
M  ,14.13ˆ

4
M  ,32.134ˆ

5
M  ,49.9ˆ

6
M  

,83.1ˆ
7
M  ,75.4ˆ

8
M ,68.11ˆ

9
M  ,73.0ˆ

10
M  ,10.0ˆ

11
M  ,21.6ˆ

12
M  

,94.129ˆ
13
M  ,14.13ˆ

14
M  ,40.8ˆ

15
M  ,10.1ˆ

16
M  ,46.1ˆ

17
M  

75.4ˆ
18
M  days.

 
 

Conclusions 
 

The way of the uniformity testing of statistical data coming from different sets 

of realizations of the same complex technical system operation process before 

joining them into one common set of data and identifying its unknown operation 

parameters and prognosis its operation characteristics was presented and 

practically applied. The results of its application to the empirical data uniformity 

testing and the parameters identifying of the maritime ferry operation process 

and the operation characteristic prognosis justifies the proposed methods and 

procedures practical importance in everyday practice concerned with the 

complex transportation systems operation processes identification and 

prediction.   
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Abstract. Basic notions and agreements on reliability of one-dimensional nanosystems 
are introduced. The asymptotic approach to the one-dimensional nanosystem reliability 

investigation is presented and the nanosystem limit reliability function is defined. 

Auxiliary theorems on limit reliability functions of one-dimensional nanosystems 

composed of large number of independent components are formulated and the classes of 
limit reliability functions for a homogeneous series nanosystems are fixed. A model of a 

one-dimensional series nanosystem with dependent nanocomponents is created and the 

class of limit reliability functions identical with the class in the previous case is fixed as 
well. Moreover, the asymptotic approach application to reliability evaluation of an 

exemplary one-dimensional nanosystems with dependent nanocomponents is presented 

and its accuracy is discussed and illustrated.  

Keywords: nanosystem, reliability, series nanosystem, asymptotic approach 

 

1  Introduction 
 

A nanosystem is a device which is built of individual nanocomponents and is a 

system engineered in a nanoscale, i.e. at least one of its dimensions is in size 

range of 1 to 100 nanometers, while 1 nanometer is equal to 10
-9

 meter. Thus, 

nanosystems are very small in the above sense but they may be composed of a 

huge number of nanocomponents and in this sense they can be considered as 

large systems. Sometimes, the exact reliability function of the nanosystem could 

be given by very complicated formula when a number of nanocomponents that 

make up a nanosystem is very large, mostly when lifetimes of nanocomponents 

are dependent on each other. Therefore, using the exact results of the 

nanosystems reliability evaluation in practical purpose is often very hard. The 

asymptotic approach to reliability evaluation of nanosystems can solve this 

problem. Namely, if we assume that the number of nanocomponents tends to 

infinity and find the limit reliability function of this nanosystem we can receive 

a simplified reliability function which approximate the exact reliability function. 
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The results of this paper concern the asymptotic approach to the reliability 

evaluation of large one-dimensional nanosystems composed of independent 

nanocomponents and also nanosystems in which the nanocomponents are 

dependent of each other and the dependence between them is decreasing when 

the distance between them tends to infinity. 

 

2  Reliability of one-dimensional nanosystems 

 

We consider a one-dimensional nanosystem composed of n N+, neighbouring 

nanocomponents ,,...,, 21 nEEE arranged in order shown in Figure 1. 

  

 

 

  

Fig. 1. A scheme of a one-dimensional nanosystem. 

 

We denote by si(t), ),,0 t i=1,…,n, a nanocomponent Ei displacement 

stochastic process which is equal to 0 when a nanocomponent Ei is displaced 

from its initial position at the moment t and otherwise it is equal to 1. 

We assume that a nanocomponent Ei, i=1,…,n, cannot be displaced from its 

initial position at the moment 0t  and we denote by Ti a non-negative 

continuous random variable that reflects the time at which a nanocomponent Ei 

becomes displaced from its initial position. Moreover, the random variable Ti, 

i=1,…,n, will also be called the time up to displacement of a nanocomponent Ei 

from its initial position.  

According to above assumptions we can conclude that 

 

Ti=ti if and only if si(ti
-
)=1 and si (ti)=0 for ti ),,0(   i=1,…,n. 

 

Definition 2.1. A nanocomponent Ei, i=1,…,n, is failed if it is displaced from its 

initial position. 

We mark by  

 

Fi(t)= P(Ti  t), ),,( t i=1,…,n,          (2.1) 

 

the distribution function of the time up to displacement Ti of the nanocomponent 

Ei and by  

 

Ri(t)=P(Ti > t), ),,( t i=1,…,n,          (2.2) 

 

a reliability function of a nanocomponent Ei. 

 

1E  

 

 

2E

 

 

 

… nE

 
 

 

3E

 

 

 

1nE
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Corollary 2.1. The following relationship 

 

Fi(t) + Ri(t)=1, ),,( t i=1,…,n,          (2.3) 

 

between the distribution function Fi(t), i=1,…,n, of a nanocomponent Ei and its 

reliability function Ri(t) is satisfied. 

 

Definition 2.2. We call a one-dimensional nanosystem homogeneous if all its 

nanocomponents have the same reliability function R(t), ),,( t i.e.  

 

Ri(t) = R(t), ),,( t i=1,…,n.                 (2.4) 

 

Moreover, we denote by s(t), ),,0[ t  a nanosystem failure stochastic 

process which is equal to 0 when a nanosystem is failed at the moment 

,t ),,0 t  and otherwise it is equal to 1. 

We assume that a nanosystem is not failed at the moment t = 0 and we mark by 

T a non-negative continuous random variable that represents the time at which a 

nanosystem becomes failed. Further, the random variable T will also be called 

the time up to nanosystem failure or the nanosystem lifetime.   

According to above assumptions we can conclude that  

 

T =t if and only if s(t 
-
)=1 and s(t)=0 for ).,0( t  

 

We mark by  

 

F(t)=P(T  t), ),,( t            (2.5) 

 

the distribution function of the nanosystem lifetime and by  

 

R(t)=P(T > t), ),,( t            (2.6) 

 

the reliability function of the nanosystem. 

 

Definition 2.3. A function given by 

 

),,(),()(  ttTPtnR            (2.7) 

 

where T=φ(T1, T2,…, Tn), is called the reliability function of the one-

dimensional nanosystem composed of n nanocomponents Ei, i=1,…,n. The 

function   that depends on the nanosystem model and expresses the 

relationship between the nanosystem lifetime and its nanocomponents times up 

to their displacements from the initial positions is called the one-dimensional 

nanosystem reliability structure function.  
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Definition 2.4. A one-dimensional nanosystem composed of n nanocomponents 

Ei, i=1,…,n, is called series if its lifetime T  is given by  

 

},{min
1

i
ni

TT


              (2.8) 

 

where Ti are the nanocomponents Ei displacement times. 

 

Definition 2.5. The nanocomponents Ei, i=1,…,n, displacement times Ti are 

independent random variables if and only if 

 

R (t1, t2,…, tn) = ,( 11 tTP  ,22 tT   ..., )nn tT  = ,)(
,...,1


 ni

ii tR  

 

where R is a joint reliability function of a nanocomponents Ei and 

 

),,...,,,,...,()(  ii ttR
i

R i=1,…,n, 

 

are the reliability functions of the nanocomponents Ei defined by (2.2). 

 

Corollary 2.2. If nanocomponents Ei, i=1,…,n, displacement times Ti of the 

one-dimensional series nanosystem are independent random variables, then the 

reliability function of this nanosystem is given by 

 

)(tnR 
 ni

i tR
,...,1

)(  

 

and in the case when the nanosystem is homogeneous  

 

,)]([)( n
n tRt R              (2.9) 

 

where )(tRi and R(t), ),,( t  are the reliability functions of its nanocom-

ponents defined respectively by (2.2) and (2.4). 

We may also consider more complex case when the nanocomponents Ei, 

i=1,…,n, displacement times Ti of the one-dimensional nanosystem are 

dependent random variables. A particular case of nanocomponents' dependence 

considered in this paper is formulated in the following assumption.  

 

Assumption 2.1. The dependence between Ti and Tj, i,j=1,…,n, decreases with 

the increasing distance d(i, j) between them in that way they became  

independent when this distance tends to infinity. 
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3 Asymptotic approach to reliability of one-dimensional 

nanosystems 

 

For convenience in the theoretical considerations we assume that the 

distributions of the one-dimensional nanosystem's nanocomponents' 

displacement times and the nanosystem lifetime T do not have to be 

concentrated in the interval ).,0  It means that a reliability function of the 

nanosystem lifetime R(t), ),,( t  does not have to fulfill the condition 

 

R(t) = 1 for ).0,(t  

 

Despite that, the properties of that reliability function do not change. Hence, 

between a reliability function R(t), ),,( t  and a distribution function 

F(t), ),,( t the following relationship 

 

R(t) + F(t) = 1 for ),( t                                                                       (3.1) 

 

holds. Thus, the next corollary is clear. 

 

Corollary 3.1. A reliability function R(t) is non-increasing, right-continuous and 

 

.0)(,1)(  RR  

 

Definition 3.1. A reliability function R(t) is called degenerate if there exists 

),,(0 t  such that 

 

R(t) = 1 for t < t0 and R(t) = 0 for t  ≥  t0 . 

 

Corollary 3.2. A function 

 

)(tR  = exp[- )(tV ], ),,( t  

 

is a reliability function if and only if a function )(tV  is non-negative, non-

decreasing, right continuous, .)(,0)(  VV  At the same time, )(tV  

can be identically equal to +∞ in an interval. 

 

Agreement 3.1. If we use symbol )(tV in next considerations we always mean a 

function of properties given in Corollary 3.2 and if )(tV  is identically equal to 

+∞ we assume that exp[- )(tV ]=0. 
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Moreover, if we say that )(tV  is a non-negative, non-decreasing or non-

increasing and right-continuous we consider the intervals where )(tV ≠ +∞. 

At the same time, we mark the set of continuity points of a reliability function 

)(tR  by 
R

C  and the set of continuity points of a function )(tV  and points such 

that )(tV = +∞ by 
V

C . 

According to Definition 3.1, Corollaries 3.1-3.2 and Agreement 3.1, we 

introduce the following definitions. 

 

Definition 3.2. A function )(tV  is called degenerate if there exists 

),(0 t  such that 

 

)(tV = 0 for t < t0  and )(tV  = +∞ for t  ≥  t0. 

 

Hence, the next corollary is obvious.   

 

Corollary 3.3. A reliability function 

 

)(tR  = exp[- )(tV ], ),,( t  

 

is degenerate if and only if a function )(tV  is degenerate. 

The asymptotic approach to the reliability of nanosystems depends on the 

investigation of limit distributions of a standardized random variable  

,/)( nn abT   where T is the lifetime of a one-dimensional nanosystem and 

),(,0  nn ba  are suitably chosen numbers called normalizing constants. 

Since 

 

),()()/)(( nnnnnnn btabtaTPtabTP  R  

 

where )(tnR  is a reliability function of a one-dimensional nanosystem 

composed of n nanocomponents, then the next definition is natural. 

 

Definition 3.4. A reliability function (t) is called a limit reliability function or 

an asymptotic reliability function of a one-dimensional nanosystem having a 

reliability function )(tnR  if there exist normalizing constants 

),(,0  nn ba  such that 

 




)(lim nnn
n

btaR (t) for t C. 
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Consequently, if the asymptotic reliability function (t) of a nanosystem is 

known, then for sufficiently large nN+, the approximate formula 

 

)(tnR  ((t-bn)/an), ),,( t                    (3.2) 

 

may be used instead of the nanosystem exact reliability function )(tnR . 

Moreover, from the condition 

 




)(lim nnn
n

btaR (t)  for t C, 

 

it follows that setting 

    

αn=aan, βn=ban+bn, 

 

where a > 0 and ),,( b we obtain that 

 




))((lim)(lim nnn
n

nnn
n

bbatt  RR (at+b) for t C. 

 

Thus, if (t) is the limit reliability function of a nanosystem, then (at+b) with 

arbitrary a > 0 and ),( b  is its limit reliability function as well. That fact 

justifies the next definition. 

 

Definition 3.5. The limit reliability functions 0(t) and (t) are said to be of the 

same type if there exist numbers a > 0 and ),( b  such that  

    

0(t) = (at+b) for ).,( t  

 

Agreement 3.2. We write x(n) = o(y(n)), where x(n) and y(n) are positive 

functions, when x(n) is of order much less than y(n) in a sense 

 

.0
)(

)(
lim 

 ny

nx

n
 

 

4  Limit reliability of the one-dimensional nanosystem with 

independent nanocomponents 
 

The investigations of limit reliability functions of homogeneous one-

dimensional nanosystems with independent nanocomponents are based on next 

lemma. 

 

Lemma 4.1. If 
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(i) )(t = exp[- )(tV ],  is a non-degenerate reliability function, 

(ii) )(tnR  is the reliability function of a homogeneous series nanosystem 

with independent nanocomponents defined by (2.9), 

(iii) ),,(,0  nn ba  

 

then 

 

)()(lim tbta nnn
n




R for t
C           (4.1) 

 

if and only if 

 

)()(lim tVbtanF nn
n




 for .
V

Ct           (4.2)         

 

Lemma 4.1 is an essential tool in finding limit reliability functions of series 

nanosystems. Its various proofs may be found in Barlow and Proschan[1],  

Gniedenko[4] and Kołowrocki[5]. It is the basis for determining classes of all 

possible limit reliability functions of these nanosystems as well. These class is 

fixed by the next theorem proved in Barlow and Proschan[1],  Gniedenko[4] and 

Kołowrocki[5]. 

 

Theorem 4.1. The only non-degenerate limit reliability functions of the 

homogeneous one-dimensional series nanosystem with independent 

nanocomponents are: 

 

)(1 t  = ])(exp[  t  for t < 0 and )(1 t = 0 for t  0,  > 0, 

 

)(2 t  = 1 for t < 0 and )(2 t  = ]exp[ t  for t  0,  > 0, 

                                 

)(3 t = ]]exp[exp[ t  for ).,( t  

 

5  Limit reliability of the one-dimensional nanosystem with 

dependent nanocomponents 
 

To investigate the limit reliability functions of one-dimensional homogeneous 

series nanosystems with dependent nanocomponents which satisfy Assumption 

2.1 we can use the following modification of Lemma 4.1. 

 

Theorem 5.1. If the joint reliability function of the homogeneous series one-

dimensional nanosystem is given by 
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R ,))(),(| ,(|))(()...,,,(
,...,1,...,1

21 



nji

ji

ni

in tRtRjihtRttt         (5.1) 

 

for ),,(,...,1 ntt  where R(t) is a reliability function of the 

nanocomponents, 

 

h : N+ × [0,1]
2 
→[0,1],            (5.2) 

 

],1,0[,,1),,(lim 


yxyxkh
k

           (5.3) 

 

h(k, x, y)= h(k, y, x),  x,  y[0,1], kN+,          (5.4) 

 

h(k, 1, y)=1,  y[0,1], kN+,           (5.5) 

 

h(∙, x, y) is increasing for fixed x, y[0,1],          (5.6) 

 

h(k, ∙, x) is increasing for fixed kN+, x[0,1],         (5.7) 

 

)],(exp[)( tVt   ),,( t  is a non-degenerate reliability function,  

),(,0  nn ba , and 

 

h(1, R(ant+bn), R(ant+bn))=1- o(1/ n
2
),          (5.8) 

 

then 

 

)()(lim tbta nnn
n




R for


Ct           (5.9) 

 

if  and only if  

 

)()(lim tVbtanF nn
n




 for .
V

Ct         (5.10) 

 

Proof: Since R(t1,…, tn), it ),,(   i = 1,…,n,  given by (5.1), is a joint 

reliability function and at the same time, for all i < j, i, j = 1,2,…,n, then we get 

 

 ||
lim
ji

P(Ti > ti, Tj > tj ) = (lim
||

n
ji

R


-∞,…, -∞, ti, -∞,…,-∞, tj, -∞,…, -∞)  

=
 ||

lim
ji

 R(ti) R(tj)∙h(|i-j|, R(ti), R(tj)) = R(ti) R(tj) for ti, tj ).,(   
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Thus, the considered reliability model of the nanosystem defined by (5.1)-(5.8)  

fulfills Assumption 2.1. Obviously, from (5.1), we have  

  ).,(,))(),(,()()(
,...,1

 



ttRtRihtRt

ni

inn
nR  

 

Then, according to conditions (5.2) and (5.6) we receive 

  

    ).,(,1))(),(,())(),(,1(
,...,1,...,1

 







ttRtRihtRtRh

ni

in

ni

in      (5.11) 

 

Further, let ),,(,0  nn ba  be constants such that the condition (5.8) is 

fulfilled. Hence, from (5.8) we get 

 

 










ni

in

n
ni

nnnn
in

n
nobtaRbtaRh

,...,1

2

,...,1

)]/1(1[lim))](),(,1([lim  

1]0exp[]2/)1)(/1(exp[lim)]/1(1[lim 22 2/)1(







nnnono

n

nn

n
 

 

for all ).,( t  Thus, according to the squeeze theorem 

 

).,(,1))](),(,([lim
,...,1







tbtaRbtaRih

ni

nnnn
in

n
     (5.12) 

 

Assume that 

)()(lim tVbtanF nn
n




 for ),,(,0  nn ba .
V

Ct       (5.13) 

 

Obviously, using (5.12) and (5.13) for 
V

Ct  we have 




)](exp[lim)(lim)(lim nn
n

nn
n

n
nnn

n
btanFbtaRbtaR

).()](exp[ ttV   

 

Next, we assume that 
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)](exp[)()(lim tVtbta nnn
n




R  for ),(,0  nn ba  and .


Ct

   

Hence, according to (5.12) for 
V

Ct  we get 

 

)],(exp[)(lim)(lim tVbtaRbta nn
n

n
nnn

n



R  

 

and 

 

)],(exp[)](exp[lim)(lim tVbtanFbtaR nn
n

nn
n

n



 

 

so consequently 

 

)()(lim tVbtanF nn
n




 for 
V

Ct , 

 

what completes the proof.  

 

Theorem 5.2. The only non-degenerate limit reliability functions of the 

homogeneous one-dimensional series system with dependent nanocomponents, 

which fulfill assumptions from Theorem 5.1, are the same as functions from 

Theorem 4.1.  

 

Example 5.1. Consider the joint reliability function of the homogeneous one-

dimensional series system with dependent nanocomponents given by (5.1) in 

which 

 

h(k, x, y) = 1-c∙[(1-x)(1-y)]
q∙k

   for c(0,1], q > 1, x, y[0,1], kN+. 

 

It is easy to prove that function h satisfies conditions (5.2) - (5.7). Moreover, if 

we assume that 

 

)()(lim tVbtanF nn
n




 for ,
V

Ct  

 

for ),,(,0  nn ba  we obtain 

 




 2/1

1))(),(,1(
lim

n

btaRbtaRh nnnn

n
 




2)1))](1))((1[(1(lim nbtaRbtaRc q
nnnn

n
 

 



qq
nn

n
nn

q

n
nbtanFcnbtaFc 22222 )]([lim)(lim  
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,00)]([ 2  qtVc   c(0,1], q > 1, .
V

Ct  

 

Hence, 

 

h(1, R(ant+bn), R(ant+bn))= 1- o(1/n
2
)  for nN+, ,

V
Ct  

 

so the considering joint reliability function fulfills assumption from Theorem 

5.1. Moreover, if we assume that c=1, q=1.1 and 

 










,0],exp[

0,1
)(

tt

t
tR


 

 

where λ >0, then reliability function of that one-dimensional series nanosystem 

is given by 

 













 


 .0,)]1[1(

0,1

)(

,...,1

2.2 tee

t

t

ni

initnt
n

R  

 

Since for an=1/(λn) and bn=0, we have  

 
0)(lim 


nn

n
btanF  for 0t  

 

and  

 

tnnotenbtanF
n

n

t

n
nn

n







))/1((lim)1(lim)(lim 



 for ,0t  

 

then by Theorem 5.1 the asymptotic reliability function of this nanosystem is 

 










.0],exp[

0,1
)(2

tt

t
t  

 

Thus, using the formula (3.2) for n=20 and λ=1/(4sec), we can approximate the 

nanosystem’s exact reliability function )(20 tR  by 

 

)(20 tR









.0],5exp[

0,1
)5(2

tt

t
t   
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The expected value of this nanosystem lifetime T and its standard deviation, in 

seconds, calculated on the basis of the above approximate result, respectively 

are:  

 

E[T] 1/5 sec,   1/5 sec. 

  

The differences between the values of nanosystem exact reliability function and 

the values of its approximate reliability function are shown in Table 2 and 

illustrated in Figure 2. It can be learned that they are small, what justifies using 

the asymptotic approximation. 

 

t [sec] 
)(20 tR  )/)((2 nn abt   

)5()( 220 tt R  

0 1 1 0 

0.1 0.603188 0.606531 -0.003343 

0.2 0.358887 0.367879 -0.008992 

0.3 0.210364 0.223130 -0.012766 

0.4 0.121435 0.135335 -0.013900 

0.5 0.069032 0.082085 -0.013053 

0.6 0.038647 0.049787 -0.011140 

0.7 0.021310 0.030197 -0.008888 

0.8 0.011574 0.018316 -0.006741 

 

Table 1. The differences between the values of the nanosystem exact and 

approximate reliability functions. 
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Fig. 2. The graphs of the exact and approximate reliability functions of the 

exemplary homogeneous series one-dimensional nanosystem. 

 

)/)((),( 220 nn abtt R  

t 
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7  Conclusion 
 

In Ebrahimi[3], we can find investigation of the asymptotic reliability function 

of homogeneous series nanosystem in which times up to displacement of 

nanocomponents from their initial positions are dependent and this dependence 

decreasing with increasing the distance between nanocomponents. To create the 

joint reliability function of that nanosystem the copula functions are used there.  

In this paper, a classes of the reliability function is fixed for the one-dimensional 

homogeneous series nanosystem with assumed dependencies between lifetimes 

of nanocomponents decreasing when the distance between nanocomponents 

tends to infinity. The fixed class of its possible asymptotic reliability functions 

is the same as the class of asymptotic reliability functions of this nanosystem 

when its nanocomponents are independent. Thus, we can use a theorems similar 

to the lemmas which allow us to investigate limit reliability function of the one-

dimensional homogeneous series nanosystem with independent times up to 

displacement of nanocomponents to investigate the limit reliability functions of 

nanosystems with dependent nanocomponents. And finally, that result allows us 

to determinate the class of limit reliability functions of these nanosystems and to 

approximate their exact reliability functions when the times up to displacement 

of nanocomponents are dependent. 
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Abstract. Multiple Choice Forms are widely used during exams in which respondents 
are asked to select the best possible answer out of the choices from the list. Scanning and 

analysis of Multiple Choice Forms by using standard or specialized flatbed scanner is 

reliable, but slow. In the frames of developed Camera Based FFS (Fast Feedback 

System), Multiple Choice Forms are photographed by a Smartphone's camera and 
obtained images are immediately processed by a Smartphone's software. Considering that 

in the real life form's illumination, smartphone's position and orientation are not optimal, 

reliable recognition of the forms require sophisticated algorithms.  Additionally, barrel 

and pincushion image distortions of smartphone's cameras must be taken into account. In 
order to fasten development and reliability evaluation of the algorithms in test, Monte-

Carlo simulator was developed. After setting the simulation parameters (distance from 

camera to the form, orientation angles of the camera relative to the form, etc.), synthetic 

test-image of the form is created. The algorithm in test processes this image, and 
statistics of recognition reliability is collected. Results of the simulation shows that 

reliability of Camera Based FFS is high enough to be used in the real class. 

. 

Keywords: Monte-Carlo simulation, Image Processing, Multiple Choice Quiz. 
 

1  Introduction 
 

Multiple-Choice Quiz (MCQ) is a well-known form of an exam in which 

students are asked to answer to the specially formulated question by selecting 

the best possible answer out of the choices from the list. This type of exam is 

known more than 100 years and is widely used in many universities (Kehoe 

[1]). Traditionally, during MCQ, students blacken selection boxes (or circles) on 

the printed on the paper MCQ Form. In the simplest form, educator checks the 

forms manually. Better option is to scan the forms by using flatbed scanner and 

process scanned images by using dedicated for that software. It is clear, that in 

this case students get grades after significant delay. In the frames of Camera 

Based FFS (Fast Feedback System), MCQ Forms are photographed by a 

smartphone's camera and obtained images are immediately processed by a 

smartphone's software (Kosolapov et al. [2], Gershikov and Kosolapov [3], Xian 

[4]). It is clear, that in this case student can get grades relatively fast (during 

minutes); hence this system can be referred as Fast Feedback System (FFS). 
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Although the idea of using a camera instead of slow scanner looks trivial, it 

should be taken into account, that scanner operates in the stable environment, 

hence quality of the scanned images are always excellent, so that processing of 

the scanned images is simple and reliable. When smartphone's camera is used to 

photograph MCQ Form, quality of the obtained images is much worse because 

of lower resolution, uneven illumination and image distortions by the lens of the 

camera.  

Operation of the camera-based FFS is similar to the operation of camera-based 

2D barcode scanner. On Fig. 1 presented typical 2D barcode. The barcode has 

three positioning elements (markers). When smartphone' camera takes the image 

of the 2D barcode, size and orientation of the 2D barcode are not exact. By 

using positions of three marker's, parameters of the rotation and scaling can be 

evaluated, and image registration can be executed. Then barcode info can be 

easily extracted from the pattern between the markers (Hara and Watabe [5]).  
 

 
 

Fig. 1. Exemplary 2D barcode having three positioning elements (markers) 

 

Important difference between 2D barcodes and MCQ Forms is in their physical 

size: most of the MCQ Forms have standard A4 size, whereas typical 2D 

barcode is much smaller. Our preliminary evaluations revealed that for the 

camera-based FFS size A5 is preferable as logistically as technically. On Fig. 2 

presented MCQ Form optimized for camera-based FFS. The form has 6 black 

circle markers that can be used to evaluate parameters of the transform of the 

MCQ Form image (photographed by smartphone' camera) to the image having 

predefined size, orientation and position. The form has three blocks of rectangle 

selection boxes having predefined sizes and positions. Lines of selection boxes 

labeled as T1, T2, and T3 used to encode number of the test (quiz) in the range 

from 000 to 999. Lines labeled ID6...ID9 encoded four last digits of the student' 

ID. Alternatively, number of student in the class list can be used. Lines of 

selection boxes labeled as Q01...Q10 are designed to collect numbers of selected 

answers. Up to 10 answers can be collected. This number is good enough for the 

concept of FFS, according to which lecturer asks questions during the lecture. 

Asking bigger number of questions during the lecture is impractical. MCQ Form 

has additional rectangular markers, which can be used to validate proper image 

registration. 

A big number of MCQ Form variants, camera types and image recognition 

algorithms can be selected. It would be impractical to test all possible variants 

physically. Fortunately, adequate smartphone's camera models are known 

(Sukmock and Byongoh [6], Claus [7]).  

510



 
 

Fig. 2. MCQ Form optimized for camera-based FFS 

  

By using proper camera model, one can create synthetic image of the MCQ 

Form and process it by using selected image processing algorithms. Considering 

big number of FFS parameters, it is clear that Monte-Carlo approach must be 

used to evaluate accuracy and reliability of the configuration in test. 
This article describes Monte-Carlo simulator designed to evaluate accuracy and 

reliability of the selected image processing algorithms used to process the MCQ 

Form. During simulations, simplified model of the MCQ Form presented in the 

Fig.2 was used. Simulator was created by using MS Visual Studio 2013 C# 

.NET. 

Section 2 describes classical pinhole camera model modified to take into 

account typical for smartphone's cameras image distortions. 

Section 3 describes implementation of Affine Transform and Bilinear Transform 

used in the simulator. 

Section 4 describes main blocks of the Monte-Carlo simulator and typical 

results obtained during simulator operation.    

 

2  Modified Pinhole Camera Model 
 

In order to take into account barrel and pincushion camera distortions and 

different MCQ Form position and orientation relative to the camera, classic 

pinhole camera model was modified. Fig. 3 presents Modified Pinhole Camera 
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Model (MPCM). Camera contains lens (1) and CCD or CMOS image sensor 

(2), box and camera electronics (not shown).  

 

 
 

Fig. 3. Modified Pinhole Camera Model 

 

MPCM has a number of coordinate systems. Origin of the main 3D coordinate 

system is at the center of the lens (1). Direction of axis "Z" (3) coincides with 

the direction of the main optical axis of the lens (1). Axis "X" (4) and axis "Y" 

(5) are normal to the axis "Z" (3).  Flat MCQ Form (6) is positioned on the 

distance D (7) from the center of the lens (1) normally to the direction of the 

axis "Z" (3). Auxiliary axis " X' " (8) is parallel to the axis "X" (4), and auxiliary 

axis " Y' " (9) is parallel to the axis Y (5). In the frames of the classical pinhole 

model, 3D geometrical point  P (10) (on the surface of the MCQ Form (6)) 

having coordinates {X,Y,Z} in the main coordinate system, is projected to the 

2D point P' (11) on the CCD (2).  

2D coordinates of the point P' can be presented in the auxiliary CCD 2D 

coordinate system {x, y}. Center (12) of this coordinate system is in the center 

of the CCD (2).  Axis "x" (13) is parallel to the axis "X" (4) and axis "y" (14) is 

parallel to the axis "Y" (5). Distance of point P' (11) from the center of the CCD 

(12) will be referred later as "r" (15). This parameter will be used to describe 

barrel and pincushion distortions. Distance (16) between lens (1) and CCD (2) 

can be calculated by using well-known lens law in the frames of the geometrical 

optics. However, practically, distance D (7) between MCQ Form (6) and the 

lens (1) is significantly bigger than typical focal lens of the CCD camera. In this 

case, distance (16) is practically equals to focal length of the lens "F" and then, 

one can evaluate {x,y} as x = F*X/Z and y=F*Y/Z.  
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Above evaluation does not takes into account typical for the simple 

smartphone's cameras barrel and pincushion distortions. Fig. 4 presents 

deformation of rectangular grid resulted from barrel and pincushion distortion.  

 

 
 

Fig. 4. Barrel and Pincushion distortions 

 

It is clear, that during real life MCQ Form photographing, direction of the 

camera main optical axis (direction of "Z" axis (3)) is not normal to the surface 

of MCQ Form (6).  In the MPCM, effect of camera rotation and translation is 

modelled as translation and rotation of the MCQ Form in the main XYZ 

coordinate system. Dashed line (19) (see Fig. 5) represents rotation of the form 

about "Y" axis and dashed line (20) represents rotation of the MCQ Form about 

"X" axis. Rotation about axis "Z" and form translation are obvious and thus not 

shown. 

 

 
 

Fig. 5. Effect of camera rotation and translation. 
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Fig. 6 presents extract of the C# code calculating 3D coordinates {X, Y, Z} of 

some point P (10) positioned on the surface of the MCQ Form (6) after rotation 

by using 3D coordinates of this point {x,y,z} before rotation and relevant 

angles. Obviously, proper degrees-radians conversion must be applied. 

 

 
 

Fig. 6. C# Code used to model MCQ Form rotation 

                    

Additionally, it should be taken into account, that 2D {x,y} coordinates of the P' 

point (11) in the physical 2D coordinate system (12,13,14) are not convenient 

for the computer-based Image Processing algorithms. Computer treats image on 

the image sensor as a 2D array of pixels, and array indexes {row, col} must be 

positive. Conversion between {x,y} of the point P' (measured in mm) and 

correspondent pair {row, col} measured in pixels (see axis (17) representing 

"col" and axis (18) representing "row") is obvious, when proper image sensor 

parameters are known..  

Fig. 7 presents the code calculating {row, col} of the point P' (11) by using 

{X,Y,Z} coordinates of the point P (10), after taking into account rotation and 

translation described above. Sizes of CCD image sensor in pixels and pixel sizes 

in mm are used during conversion. Barrel and pincushion distortions are 

modelled by using well-known radially symmetrical barrelFactor. Practical 

values and tolerances of the camera model parameters are described in the 

Section 4. 

 

 

3  Affine and Bilinear Transform 
 

Result of camera model "operation" is an image ("ccd Bitmap") which is 

expected to look as if it was created by real-life camera. In order to simplify 

operation of simulator, only four corner circle markers and one block of 

selection boxes were used.  To further simplify simulator, only centers of 

markers and selection boxes were marked as black pixels on the white 

background of the "ccd Bitmap". This bitmap represents scaled, rotated, 

translated and distorted image of the simplified MCQ Form. Registration of this 

bitmap results in "std Bitmap". Currently, registration was executed by using 

two transform algorithms: Affine Transform and Bilinear Transform. In order to 

calculate six parameters {a11…a23} of the Affine Transform (Fig. 8), one must 
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know positions of three markers on the source image {"ccd Bitmap") and 

required positions of the markers on the registered image ("std Bitmap"). Then, 

by solving six equations, {a11….a23} can be calculated. Formulae for the 

calculations of six parameters of the Affine Transform were obtained by using 

MAPLE 18 symbolic software.  

 

 
 

Fig. 7. C# Code of the modified pinhole camera model (MPCM) 

 

 
 

Fig. 8. Equations of the Affine Transform 
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Exemplary formula for "a12" is presented in the Fig. 9. In this example, "m1c" 

represents column of the center of Marker #1 in the "ccd bitmap". In the real 

application, this value must be extracted from the real image from camera. In 

this simulation, this value is obtained as result of calculations described in the 

Section 2. During Monte-Carlo simulation pseudo-random "error values" were 

added to "centers" in order to simulate error of the marker recognition 

algorithm. Parameter "stdM2c" means column of the center of marker #2 on the 

"std Bitmap". Practically, this value is set as scaled value of the marker position 

on the real MCQ Form. For example, if MCQ Form width was designed as 150 

mm and marker #2 is positioned 15 mm from the right, then stdM2c was 

calculated as (150-15)*4 = 540 pixels. Determinant ("det") and other parameters 

of the Affine Transform were calculated in the same way. 

 

 
 

Fig. 9. Exemplary calculation of "a12" (Affine Transform) 

 

Affine Transform is linear transform. Hence, it cannot compensate for the barrel 

and pincushion distortions. In attempt to compensate above distortions, Bilinear 

Transform was used in the simulations. Fig. 10 presents equations for this 

transform. 

  

 
 

Fig. 10. Equations of Bilinear Transform 

 

In order to find eight parameters of the Bilinear Transform, eight linear 

equations must be symbolically solved.  Positions of the four markers must be 
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known. Fig. 11 presents exemplary calculations of the parameter "a11" of the 

Bilinear Transform.  

 

 
 

Fig. 11. Exemplary calculation of "a11" (Bilinear Transform) 

 

One can see that calculations of the Bilinear Transform parameters are time 

consuming, so that this transform must be used only in case when there are 

serious reasons to do this.  

 

4  Monte-Carlo Simulator 
 

Fig. 12 presents block-chart of the main blocks of Monte-Carlo simulator. 

Before entering Monte-Carlo loop, simulator sets parameters of the MPCM 

which will not be changed in the Monte-Carlo loop. Name of those parameters, 

units and typical values can be seen in Fig. 13. Then, simplified MCQ Form of 

A5 size is created. For simplicity, only positions of the centers of the four corner 

markers and centers of the 10x15 selection boxes are calculated. Then, Monte-

Carlo loop is entered. First, pseudo-random set of variable MPCM parameters is 

calculated by using flat distribution. Name or those variable parameters, units, 

typical values and tolerances can be seen in Fig. 14.  
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Fig. 12. Block-chart of the main steps of the Monte-Carlo simulator 

 

 
Fig. 13. Fixed parameters of the Monte-Carlo Simulator 
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           Fig. 14. Variable parameters of the Monte-Carlo Simulator  

 

On the next step, simulator (by using as fixed as variable parameters of the 

MPCM) calculates {row, col} positions of the centers of the four corner markers 

and all selection boxes as described in the Section 2. Then parameters of Affine 

Transform and Bilinear Transform are calculated as described in the Section 3. 

Calculated Affine Transform parameters are used to calculate final {row, col} 

positions of the four markers and all the selection boxes on the "std Bitmap A". 

Calculated Bilinear Transform parameters are used to calculate final {row, col} 

positions of the four markers and all the selection boxes on the "std Bitmap B".  

Fig 15 presents typical "std Bitmap A" (left)  and "std Bitmap B" (right).  

 

 
 

Fig. 15. Exemplary result of Monte-Carlo Simulator 

519



In the original "std Bitmap A" one can see that centers of the three markers used 

in the Affine Transform resulted in a single pixel black points (those points 

cannot be seen in the scaled down Fig. 15 and thus, are marked as (1) (2) and 

(3)). This means that Affine Transform calculates final positions of those three 

markers correctly for any pseudo-random combination of the MPCM 

parameters. However, the fourth marker (which was not used by the Affine 

Transform) can be clearly seen as blob of black pixels (4), and not as a single 

black pixel. This means that Affine Transform is not adequate in this case. Size 

of this blob is about 15 pixels.  It can be seen that centers of the selection boxes 

are also seen as blobs of black pixels. Typical size of the blob in the left top part 

of the "std Image A" (5) is about 4 pixels.  Typical size of the blob in the right 

bottom part of the "std Image A" (6) is about 10 pixels. Size of selection box is 

15 pixels. This means that Affine Transform is not exact enough to ensure 

reliable recognition of the "blacken" and "non-blacken" selection boxes.  

Bilinear Transform provides much better results. All four markers are single 

pixel points (not seen in the scaled down Fig, 15). It can be seen that selection 

boxes appears as blobs of black pixels, but of much smaller sizes. Blobs of 

maximal sizes are positioned at the center (7) and their size is less than five 

pixels. This means that Bilinear Transform has accuracy that is good enough for 

the reliable recognition of "blacken" and "non-blacken" selection boxes. 

Additionally 2DHistogramA and 2DHistogramB were calculated. After Monte-

Carlo loop is finished, 2DHistogramA and 2DHistogramB contains number of 

times the specific pair {row, col} was used.  By using well-known statistical 

methods, more detailed analysis of the reliability of algorithms in test can be 

provided. As a result of this analysis, final number of black circle markers on 

the current design of MCQ Form (Fig. 2) was set to six. Then, upper and bottom 

parts of the MCQ Form can be processed independently: on the first stage, top 

and middle markers are used to calculate parameters of the "upper" Bilinear 

Transform. Then "T" and "ID" selection boxes are processed. On the second 

stage, middle and bottom markers are used to calculate parameters of the 

"bottom" Bilinear Transform. Then "Q" selection boxes are processed. In this 

case, sizes of the "blobs" are nearly twice smaller. This means that positions of 

the selection boxes on the "std Bitmap" does not depend on variations of the 

PMCM parameters in the selected ranges. In this case recognition of "blacken" 

and "non-blacken" selection boxes is trivial and reliable enough for the practical 

usage in the Camera-Based FFS. 

 

Conclusions 
 

Results of the operation of the developed Monte-Carlo simulator shows that 

design of MCQ Form having six markers used to calculate parameters of 

Bilinear Transform enables to create reliable implementation of the camera-

based FFS.   
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Abstract 

Every attainable structure of a closed continuous time homogeneous Markov system 
(HMS) with n states is considered as a point-particle of Rn. Then, the motion of an attainable 
structure corresponds to the motion of the respective point-particle in Rn. Under the 
assumption that ‘‘the motion of every particle at every time point is due to its interaction with 
its surroundings’’, Rn  (and in particular the set of the attainable structures of the HMS or 
alternatively of the underlying Markov chain) becomes a continuum. So the evolution of the 
set of the attainable structures corresponds to the motion of the continuum. For the case of a 
three-dimensional HMS (n=3), it is stated that the concept of the two-dimensional isotropic 
viscoelasticity can further be used to interpret the three-state HMS’s evolution.  

 

1. Introduction  

 In this paper we consider a continuous-time homogeneous Markov system (HMS) 
with state space S={1,2,…,n}. The members of the system could be particles, biological 
organisms, parts of human population, etc. Every member of the system may be in one and 
only one of the states 1,2,…,n at some time point t, and it can move from some state i to 
some other state j in the time interval [t,t+Δt] with transition probability pij⋅Δt, for 
every tϵR+. Then, every attainable structure of the continuous time HMS with n 
states and fixed size is considered as a point-particle of Rn. Thus, the motion of an 
attainable structure corresponds to the motion of the respective point-particle in Rn. 
  Under the assumption that the motion of every particle at every time point is due 
to its interaction with its surroundings, Rn is further seen as a continuum (Tsaklidis, 
(1998, 1999),  Tsaklidis and Soldatos (2003), Maaita et al  (2013))  and, hence, the evolution 
of the set of the HMS attainable structures corresponds to the deformation of the continuum. 
This turns to be a realistic assumption, since the motion of every point-particle depends 
entirely on its position in Rn. Under these considerations, the concepts of the state of stress 
and the relevant stress tensor can be associated with an n dimensional HMS (i.e., a HMS with 
n states, abbreviated as n-D HMS) and, as far as the present paper is concerned 
these are initially detailed in an example application dealing with a 3D HMS in 
Tsaklidis (1999).  

Then, given the rate of transition probabilities matrix of the HMS 
a question is raised on whether the set of the attainable structures of the continuous 
time HMS may be considered as a viscoelastic continuum and, in this context, it is further 
examined whether the deformation of such a model could explain the evolution of 
the HMS.  

We stress here that the aforementioned HMS can generally represent any Markov 
system whose evolution is driven by a continuous time Markov chain (MC). So the 
interpretation of such a system as a continuum, can be equivalently be considered as the 
continuum viewpoint of the relevant Markov chain itself. In other words the material behavior 
can be assigned to the HMS or alternatively to the MC which “generates” the HMS. This 
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consideration refers to any homogeneous Markov system and not only to the model of the 
special type examined in Tsaklidis (1998, 1999), Tsaklidis and Soldatos (2003), Maaita et al 
(2013),  denoted as HMS. By taking the above consideration into account we will retain the 
same symbolism, HMS, by which we will generally refer to any homogeneous Markov 
system driven (“generated”) by a continuous time MC and not only to the Markov model of 
the partcular type examined in Tsaklidis (1998, 1999), Tsaklidis and Soldatos (2003), Maaita 
et al (2013).      

The study follows the steps of the methodology presented in Maaita et al (2013), in 
which the 3D HMS was successfully interpreted, through the deformation of a linearly elastic 
medium. It was further mentioned that the evolution of an n-D HMS may be interpreted 
through the deformation of an n-1 dimensional, anisotropic, linearly elastic solid. Apart from 
the above concepts, the present project develops further the 3D HMS example application, 
and the evolution of the HMS is interpreted through the deformation of a 2D viscoelastic 
continuum, i.e., the Kelvin-Voigt model (Christensen (1982), Mase (1970)).  

The Kelvin-Voigt model can interpret the motion of a continuum which exhibits a 
elastic and also viscous behavior, that are common and characteristic properties for real 
continua. This model consists of a combination of a spring and a dashpot, coupled in parallel, 
as shown in Figure 1. The elastic behavior of the spring is described by Hooke’s law while 
the viscous behavior of the dashpot is described by the Newton’s law for viscous fluids. If any 
of the two properties is not considered, the model is reduced either to the elastic or to the 
Newtonian (or non-Newtonian) fluid model. The increased number of dimensions, as 
compared with the number of dimensions considered in Tsaklidis and Soldatos (2003), results 
in an increase of the number of the Partial Differential Equations (PDEs) describing the 
motion of the present HMS and, consequently, it complicates the associated calculations. 
Using the field equations of viscoelasticity, an explicit form of the stress tensor involved can 
still be evaluated analytically. 

 

Figure 1. The Kelvin-Voight model 

It is therefore concluded that, under certain assumptions, the evolution of a 3D 
HMS may successfully be interpreted through the deformation of a 2D viscoelastic Kelvin-
Voigt model. The interpretation of the evolution of HMSs through the deformation 
laws of viscoelastic continua gives rise to further fruitful thoughts regarding the manner 
in which well-known concepts and features met in classical and finite viscoelasticity  
(e.g., anisotropy, strain energy) may be associated to HMSs and be exploited 
appropriately. For example, the adoption of anisotropy could imply the existence 
of special directions or regions on the field of the attainable structures, where 
the system evolves in the same or different ways. This would lead to conclusions 
regarding the interpretation and the special features of the HMS. Therefore, if the 
HMS represents a system of biological sea organisms, anisotropy could indicate different 
environmental behavior due to sea streams or neighborhood with bacteria colonies, etc. 
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2. The continuous time HMS as a viscoelastic medium. 

For a continuous time HMS it is assumed that the transition probability of moving 
from some state i to j in the time interval [ ],t t t+ ∆ is given by the relation  

                                               ( )( , ) ,ij ijp t t t q t o t+ ∆ = ∆ + ∆                                             (1) 

where 0ijq ≥  is the rate of transition from i to j and the ( )o t∆  denotes a quantity that 

becomes negligible when compared to Δt as 0t∆ → , ( )0lim ( / ) 0t o t t∆ ∆ ∆ =


. In the general 

case the non-homogenous Markov systems’ transitions intensities ijq  may be time depended.  

In what follows, let ( )( )i i S
x t

∈
=x(t)  denote the n×1 state vector of the HMS,  

the i-th component of which is the probability of a systems’ member to possess 
state i at time t. Then the probabilistic law for the transitions given in (1) leads to 
the equation  

( )( ) ( ) ( ),j i ij ijx t t x t q t o tδ+ ∆ = ∆ + + ∆                                      (2) 

where repeated indices denote summation over their range and ijδ stands for the Kronecker 
delta, having the value 1 when i=j and 0 otherwise. From (2) the Kolmogorov equation can be 
derived, i.e.,  

(t) ( ) ,T T t= ⋅x x Q                                                     (3) 

where x(t) denotes the derivative of the vector x(t) with respect to t, ( )
, jij i S

q
∈

=Q  is the 

matrix of transitions intensities and the superscript T denotes transposition of the respective 
vector (or matrix).  

Equation (3) represents the motion of a stochastic structure in Rn. If we consider 
every structure of the HMS moving according to (3) as a “particle” of the n-dimensional 
space we can assign material behavior to Rn. From (3) we conclude that the velocity x(t)  of 
each particle depends only on its position, x(t). So we can assume that the motion of every 
particle, at every time t, depends on the interaction of that particle with its surroundings (the 
infinitesimal continuum around the point x(t)). Thus, the HMS may be considered as a 
continuum moving according to Eq. (3). 

Now, from (3) we get that the trajectory of every initial HMS’s structure x(t) 
moving in Rn is given by 

                       t( ) (0)e , 0.T Tt t= ≥Qx x                                                    (4) 

As the initial state vectors x(0) run over all stochastic n-tuples, we get the respective 
set of the solutions x(t) given by (4), which is denoted by A(t) and called “the set of the 
attainable structures.” Let An(t) be the region of Rn defined by A(t). We are interested in the 
motion-evolution of the continuum possessing the region An(0)⊂ Rn at time t = 0, in the 
velocity field defined by (3).              

Now, Eq. (3) represents a system of n linear differential equations (DEs). 
Because of the stochasticity condition 

                                                              1x ( ) .. x ( ) 1nt t+ + =  
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the variables xi(t), i=1,2,..,n , are depended and the motion takes place on the hyperplane  

     1( ) : x .. x 1.nΠ + + =  

In order to express the motion taking place on the (n−1 -dimensional) hyperplane (Π) 
using only n−1 coordinates, we introduce a new coordinate system as follows. 
Firstly, we assume, without loss of generality, that Q is an irreducible matrix. In 
this case, a stochastic stability point, π, exists for which .TΤ ⋅ =π Q 0  Consider at π 
a new orthogonal coordinate system { }1 2, ,.., nf f f where  f1, f2,…, fn belongs to the 

hyperplane (Π) and n ⊥ Πf , and let    

[ ] [ ]1 2 1, ,.., |n n= =F f f f F f , 

where [ ]1 1 2 1| | .. | n−=F f f f . Equation (3) expressed with respect to the coordinate system

1 2 1{ | | .. | }n−f f f , with origin to π, become ⋅T Tz (t) = z (t) W , or simply  

    ⋅T Tz = z W                                                             (5) 

where ( )1 2 1, ,.., T
nz z z −=z and  

T
1 1W = F QF  .                                                          (6) 

The system of the n DEs of (3) is now reduced to the equivalent system of the  
(n−1) DEs given in (5). So, Eq. (5) can be used instead of (3) in order to study the 
dynamical evolution-motion of the HMS-continuum taking place on (Π). Note that 
since tr G = tr Q < 0, the field defined by (5) is compressible.  

Now, every part of the “material continuum” An(t), t ≥ 0, is supposed to be 
subjected to surface forces. Then the n×1 stress vector tn(t) is defined at every 
point P enclosed by the infinitesimal surface S, where n is the n×1 outward unit 
normal of the surface element ΔS of S. The state of stress at P is given by the set 
tn generated from all the unit vectors n, according to the formula  

                                                 ˆ ,⋅(n)t = T n  

where T is the symmetric n × n stress tensor. 

  The stress tensor ( )( ),ijt t=T z , i,j=1,2,..,n−1, should satisfy Cauchy’s equation of 
motion 

                                  ( , ) ( , ) ( , ) ( , )divT t b t t tρ+ = ⋅z z z a z                                        (7) 

at every point P of the medium, where z is the position vector of the point P (with respect to 
the new coordinate system), ( , )tρ z is the material density at the point P at time t, ( , )ta z  is 
the acceleration at the point P at time t and ( , )b tz represents a vector of possible body forces 
given by the description of a particular HMS. 

 The acceleration ( , )ta z  appearing in the (7) is given by 

t
t

∂
= +∇ ⋅
∂
va(z, ) v v  
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where ijv=v  stands for the velocity (z), and the (i,j)-entry of the (n−1×n−1)  

matrix ∇v equals i

j

v
z
∂

∂
. Since by (5), the velocity is time independent, we get 

( )( , t) .= ∇ ⋅ =
TT 2a z v v W z = W z  

Thus 

( ) .t
T2a(z, ) = a(z) = W z                                                       (8) 

 Let ( )ijε=E be the ( )1) ( 1n n− × − Eulerian strain tensor with  

ji m m
ij

j i i j

dudu du du
dx dx dx dx

ε
 

= + −  
 

,                                                (9) 

where ( )iu=u represents the displacement vector Since the features of the HMS give no rise 
to consider it as an inhomogeneous or anisotropic medium, we will focus attention to the case 
of a homogeneous isotropic viscoelastic continuum and specific the Kelvin-Voigt model. For 
this case the stress tensor ( )ijt=T , i, j = 1 2, becomes (Meille and Garbozci (2001), Mase 

(1970), Roylance (2001)) 

( )( ) 2 2 ,ij ij ij ijt K G Gκκ κκε η ε δ ε η ε= − ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅                             (10) 

where K is the bulk modulus, G is the shear modulus, η is the shear viscosity and κκε is the 
rate of strain. The parameters λ=(K-G) and G are referred also as the Lame parameters. 

 

3. The case of the 3D continuous time HMS 

For the case of the 3D (irreducible) HMS, i.e., for S = {1, 2, 3}, the intensity matrix 
has the form  

12 13 12 13

21 21 23 23

31 32 31 32

q q q q
q q q q
q q q q

− − 
 = − − 
 − − 

Q   ,                                 (11) 

where qij ≥ 0 for i≠j, and the diagonal elements are nonnegative. The stability 
point π of the HMS is the stochastic, left eigenvector of the intensity matrix (11) 
associated with the eigenvalue 0, i.e., Τ ⋅ Tπ Q = 0  and Τ Tπ 1 = 1 , where 1 is the column 
vector of 1’s. The base vectors of the orthogonal coordinate system {f1, f2, f3}, with origin at 
π, can be chosen to be 

1 2
2 1 1 1 1, , , 0, ,
3 6 6 2 2

T T
   

= − = −   
   

f f , 3
1 1 1, ,
3 3 3

T
 

=  
 

f .            (12) 

Then,  
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1 1

2 2

2 1 1
3 6 6

0

T
 
− 
 =
 

− 
 

1F   .                                                  (13) 

According to (5), the motion of a particle-structure is expressed on the 2D hyperplane 
(Π) by the equation 

( ) t
1 2( ) ( ), ( ) (0)eT Tt z t z t= = Wz z .                                     (14) 

Then, since 

( ; , ) ( ) ( )t t t t t t+ ∆ = + ∆ −u z z z ,                                       (15) 

the components εij of the continuum’s strain tensor can be evaluated using (9). 

 In order to examine if the 3D HMS can be interpreted as a density-homogeneous 
viscoelastic medium (that is ρ(z,t)=ρ(t) for every z and t) we have to check if Cauchy’s 
equation of motion, (7), is justified while substituting for the required acceleration 
and density, using (8). Moreover we have to check if the continuity equation  

( ) 0
d

div
dt
ρ

ρ+ ⋅ =v ,                                                (16) 

is satisfied, where v = z stands for the velocity. 

The mass forces appearing in (7) to meet the general case, are here set equal to 0. The 
final system of Cauchy’s equation of motion is of the form:  

( ) ( )11 1 12 2 11 22 11 22 11 11
1 1 1 1

12 12
2 2

( ) 2 2

2 2 ,

d dn dG dnz z
dz dz dz dz

dG dn
dz dz

λρ α α ε ε ε ε ε ε

ε ε

+ = + − + + +

+ +

  



           (17)   

( ) ( )21 1 22 2 21 21 11 22 11 22
1 1 2 2

22 22
2 2

( ) 2 2

2 2

dG dn d dnz z
dz dz dz dz

dG dn
dz dz

λρ α α ε ε ε ε ε ε

ε ε

+ = + + + − +

+ +

  



        (18) 

The above system cannot be solved in terms of the (unknown) parameters G, λ and η, because 
there are three unknown parameters but only two equations. So, we assume here that the shear 
viscosity η depends only on time t. We notice here that such an space-independence 
assumption for the parameters G and λ can be seen to violate the consideration of the HMS as 
a real continuum (in the sense that G, λ →-∞ for some t).  Then the above system (17)-(18) 
becomes a system of two unknown parameters 

       ( )11 1 12 2 11 22 11 12
1 1 2

( ) 2 2d dG dGz z
dz dz dz
λρ α α ε ε ε ε+ = + + +                                         
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          ( )21 1 22 2 21 11 22 22
1 2 2

( ) 2 2 .dG d dGz z
dz dz dz

λρ α α ε ε ε ε+ = + + +                                                                                                                                                        

In order to solve the above underdetermined system of PDEs, we can work either 
numerically or seek for solutions of some special forms, for example separable solutions in 
the form 

1 1 1 2 2 2( , ) ( ) T (t) ( ) T (t)t z zλ = Ζ + Ζz , 1 1 1 2 2 4( , ) ( ) T (t) ( ) T (t).G t K z K z= +z  

Then the system of the two PDEs (17)–(18), which determines the motion of the HMS-
continuum, now considered as a 2D continuum, becomes a system of two ODEs which can be 
solved in terms of λ and G: 

( ) ( ) 1 1 2
11 1 12 2 11 22 1 11 3 12 4

1 1 2

T (t) 2 T (t) 2 T (t)
Z K K

a z a z
z z z

ρ ε ε ε ε
∂ ∂ ∂

+ = + + +
∂ ∂ ∂

 

( ) ( )1 2 2
21 1 22 2 21 3 22 4 11 22 2

1 2 2

2 T (t) 2 T (t) T (t) .K K Za z a z
z z z

ρ ε ε ε ε∂ ∂ ∂
+ = + + +

∂ ∂ ∂
 

Now we have to check if the above system of ODEs (corresponding to Cauchy’s 
equation of motion given by (7)), is justified while substituting for the required acceleration 
and density, using (8) and the continuity equation (16). The mass forces appearing in (7) to 
meet the general case, are set equal to 0. If the system of the ODEs is justified then the 2D 
continuum corresponding to the 3D HMS, as explained in Sec. 2, can be used in order to 
interpret the evolution of the HMS. The procedure of solving the system (17)–(18) will be 
presented clearly by means of the example provided in the next section. 

3.1  The energy of the HMS 

The rate of the energy, E, of the HMS is given by 

,dK dU dE
dt dt dt

+ =                                                     (19) 

where U stands for the internal energy and K for the kinetic energy. The rate of the internal 
energy is given by   

( )dU tr
dt ρ

⋅
=

W T
  ,                                                   (20) 

while the rate of the kinetic energy can be easily calculated by means of (5). 

 

4.    An illustrative example 

Consider a closed continuous-time HMS with state space S = {1, 2, 3} and intensity 
matrix  

4.7 4 0.7
4.02 4.22 0.2
0.2 2 2.2

− 
 = − 
 − 

Q  
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(as given in Maaita et al, 2013), The stability point of the HMS is the stochastic, left 
eigenvector of the intensity matrix (11) associated with the eigenvalue 0, that is Τ ⋅ Tπ Q = 0
and Τ Tπ ×1 = 1 . It is found that  =(0.389,0.447,0.164)Τπ . 

The base vectors of the orthogonal coordinate system {f1, f2, f3}, with origin 
at π, can be chosen to be those given by (12). Then, by (13) and (6), the matrix W appearing 
in the reduced matrix Eq. (5), which expresses the motion on the hyperplane (Π), is found to 
be 

1 1
T=W F QF =

6.81 1.96876
,

3.3082 4.31
− 

 − 
 

with eigenvalues  

 
λ1 = −840716,  λ2= −271824. 

Since λ1, λ2 < 0, the velocity field ⋅T Tz = z W  is compressible.   

Now, using (14) with ( ) ( ) ( )( )1 20 z 0 ,z 0
T

=z , we get the equations of motion 

( ) ( )-8.402t -2.718t -8.402t -2.718t
1 10 20z (t)= 0.72e +0.28e z + -0.582e +0.582e z  

( ) ( )-8.402t -2.718t -8.402t -2.718t
2 10 20z (t)= -0.346e +0.346e z + 0.28e +0.72e z .  

Then from (15) we derive the components of the displacement vector: 

( )
( )

-8.402Δt -2.718Δt
1 1 1 1

-8.402Δt -2.718Δt
2

( ; , ) ( ) ( ) -1+0.72e +0.28e

-0.582e +0.582e ,

u z t t t z t t z t z

z

+ ∆ = + ∆ − =

+
 

( )
( )

-8.402Δt -2.718Δt
2 2 2 1

-8.402Δt -2.718Δt
2

( ; , ) ( ) ( ) -0.346e +0.346e

-1+0.28e +0.72e .

u z t t t z t t z t z

z

+ ∆ = + ∆ − =

+
 

 From (9) the entries of the strain tensor ( )ijε=E can be evaluated to be 

         -16.804t -11.12t -8.402t -5.436t -2.718t
11ε =-1.5-0.319e -0.082e +1.44e -0.0992e +0.56e            (21) 

-16.804t -11.12t -8.402t -5.436t -2.718t
12 21ε =ε 0.258e -0.052e -0.928e -0.206e +0.928e=           (22) 

-16.804t -11.12t -8.402t -5.436t -2.718t
22ε =-1.5-0.209e +0.137e +0.56e -0.429e +1.44e ,            (23) 

and then, by (10), the components ( )( ) 2 2 ,ij ij ij ijt K G Gκκ κκε η ε δ ε η ε= − ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ 

of the stress tensor (t )ij=Τ can be derived.  

By substituting for a(z, t) and T(z, t) in Cauchy’s equation of motion, (7), assuming 
the body forces to be equal to zero, we get the system of the PDEs 
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( )
1 2

16.804 11.12 8.402 5.436 2.718

1

(52.889 36.787 )

3 0.528 0.056 2 0.528 2t t t t t

z z
de e e e e
dz

ρ
λ− − − − −

⋅ − =

= − − + + − +
 

    

( )16.804 11.12 8.402 5.43648 2.718

1

2 1.5 0.319 0.082 1.44 0.099 0.56t t t t t dGe e e e e
dz

− − − −+ − − − + − + −  

( )16.804 11.12 8.402 5.436 2.718

2

2 0.258 0.052 0.928 0.206 0.928t t t t t dGe e e e e
dz

− − − − −+ − − − +  (24) 

and  

( )
1 2

16.804 11.12 8.402 5.436 2.718

2

( 21.893 25.089 )

3 0.528 0.056 2 0.528 2t t t t t

z z
de e e e e
dz

ρ
λ− − − − −

⋅ − + =

= − − + + − +
 

              

( )16.804 11.12 8.402 5.43648 2.718

2

2 1.5 0.319 0.082 1.44 0.099 0.56t t t t t dGe e e e e
dz

− − − −+ − − − + − + −  

 ( )16.804 11.12 8.402 5.436 2.718

1

2 0.258 0.052 0.928 0.206 0.928t t t t t dGe e e e e
dz

− − − − −+ − − − +  (25) 

In order to solve the system of the PDEs (24)–(25), we have to evaluate the 
density ρ(t). Now, by assuming that the material is homogeneous with respect to 
the density at every time t, (i.e., the density depends only on the time and not on 
the spatial coordinates), we get by using the continuity Eq. (16) and for the given 
velocity field, for which div(v)=11.12 that 

11.12 t(0)e .ρ ρ=  

Next, let us seek for a solution (λ,G) of the above underdetermined system 
(24)–(25) of PDEs, such that 

1 1 1 2 2 2( , ) ( ) T (t) ( ) T (t)t z zλ = Ζ + Ζz  ,   1 1 1 2 2 4( ) T (t) ( ) T (t).G K z K z= +              (26) 

Then the system (24)-(25) becomes 

  ( ) ( ) 1 1 2
1 2 11 22 1 11 3 12 4

1 1 2

52.889 36.787 T (t) 2 T (t) 2 T (t)z z
z z z

ρ ε ε ε ε
∂Ζ ∂Κ ∂Κ

− = + + +
∂ ∂ ∂

 

  ( ) ( ) 2 1 2
1 2 11 22 2 21 3 22 4

2 1 2

21.893 25.089 T (t) 2 T (t) 2 T (t)z z
z z z

ρ ε ε ε ε
∂Ζ ∂Κ ∂Κ

− + = + + +
∂ ∂ ∂

, 

from which we derive that 

         ( ) 1 1
1 11 22 1 11 3

1 1

52.889 T (t) 2 T (t)z
z z

ρ ε ε ε
∂Ζ ∂Κ

⋅ ⋅ = + +
∂ ∂
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                                      2
2 12 4

2

36.787 2 T (t)z
z

ρ ε
∂Κ

− ⋅ ⋅ =
∂

 

                                      1
1 21 3

1

21.893 2 T (t)z
z

ρ ε
∂Κ

− ⋅ ⋅ =
∂

 

and 

( )2 2
2 22 4 11 22 2

2 2

25.089 2 T (t) T (t) ,z
z z

ρ ε ε ε
∂Κ ∂Ζ

⋅ ⋅ = + +
∂ ∂

 

where εij(t) are given by (21)–(23). The above system may be considered as a system of 
consistency equations for the motion of the HMS-continuum assuming the solution (λ, G) to 
be of the form (26). Using these equations we get by simple algebraic manipulations that 

( ) ( )

2 2
1 21 11 2 12 22

1 2
21 11 22 12 11 22

52.889 ( ) 21.893 ( ) 25.089 ( ) 36.787 ( )
( , t)

2 ( ) ( ) ( ) 2 ( ) ( ) ( )
z t t z t t

t t t t t t
ε ε ε ε

λ ρ α α
ε ε ε ε ε ε

+ +
= ⋅ + ⋅ + + ⋅

+ +

    
    
    

z

 

(27) 

2 2
1 2

1 2
21 12

21.787 36.787
( , )

2 2 ( ) 2 2 ( )
z z

G t b b
t t

ρ
ε ε

= − ⋅ + ⋅ + + ⋅
    
    
    

z ,   (28) 

where α1, α2, b1, and b2 are real arbitrary constants.  

 Now from (27), (28) and the relation K=λ+G, we can derive the bulk modulus K. In 
figures 1 and 2 the solution (K(z.t), G(z,t)) is presented for t=0.01 and t=0.3, with  a1= a2 = 
0.2 and b1= b2 = -0.5. The shapes of the respective surfaces K(z.t) and G(z,t) remain the same 
also for larger values of t, while the values of K(z.t) and G(z,t) increase exponentially fast, 
because of their dependence on ρ(t) . 

 

 

Figure 2.  Shear G(z,t) and bulk modulus K(z.t) for t=0.01 
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Figure 3. Shear G(z,t) and bulk modulus K(z.t) for t=0.3 

 

         The shear viscosity, η(t), which is not found by solving the PDEs, should be determined 
so as to allow for a natural interpretation. Now η(t) should be proportional to pressure 
(alternatively to the density) and inversely proportional to the rate of shear strain (Dealy and 
Wang (2013), Lanzedorfer (2011)). Through those considerations the shear viscosity could 
be of the form 

( )
12

( )(21.893 36.787)(0.23855 )
,

2 (t)
t t

t
ρ

η
ε

+ −
=



                                   (29) 

where the quantity (0.23855 )t− arises in order for η(t) to be positive, i.e.,  η(t)>0 for  t >0 
(see Figure 4), and the constant (21.893+36.787) is included in order for η(t) to have the same 
behavior as parameter G. 

 

Figure 4. The shear viscosity, η(t). 
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4.1   The energy of the HMS   

       In order to evaluate the energy of the HMS-continuum, the internal 
energy may be firstly evaluated taking (20) into account. Then, by setting without 
loss of generality ρ(0) = 1,  

( )11 12 21 22-6.81 +1.96876 +3.30822 -4.31
 = ,

t t t tdU
dt ρ

⋅ ⋅ ⋅ ⋅
                    (30) 

where the stresses ijt , i, j= 1, 2,  are derived by taking into account (27), (28) and (29). 

 The rate of change of the kinetic energy, K(t), can be evaluated using the velocity 
field (5) or equivalently (14). So, 

    

( )
( )
( )

16.8 11.12 5.43 2
10

16.8 11.12 5.43
10 20

16.8 11.12 5.43 2
20

5.36 0.9 054

8.67 1.15 2.24

3.5 1.52 2.32 .

t t t

t t

t t t

dK e e e z
dt

e t e e z z

e e e z

− − −

− − −

− − −

= − − −

+ − −

+ − + −

                             (31) 

 

Figure 5. Rate of change of the Energy. 

 Next, by (30), (31), and (19), the rate of change of the whole energy, E (i.e., internal 
plus kinetic energy), can be easily derived. The rate of change of the energy, is presented for 
two different spatial initial conditions in Fig. 5.  The (exponential) growth of the rate of 
change is due to the internal energy while the rate of change of the kinetic energy tends to 0.  
It should be emphasized here that the energy behavior of the system presented in Fig. 5, 
depends on the solution type selected for G(t), K(t), i.e., on (26), while other types of 
solutions for G(t), K(t) may lead to different energy behaviors.  

 

4. Conclusion 
 
 Since the features of a HMS or equivalently of its underlying (generating) MC do not 
give rise to the determination of certain initial conditions concerning the evaluation of the 
parameters K, G and η, fixed numerical values cannot be given to them. Nevertheless, by 
assuming λ(z,t) and G(z,t) to be of the special form (26), and by choosing suitable constants 
α1, α2, b1, b2 (in (27)–(28)), we can assign positive values to K and G as expected by the 
theory of real continua. In the same way, we can assign via (29) positive values to the 
parameter η. The three parameters appear generally to be time-dependent and increase rapidly 
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(Hofmeister (1991)) because, by (27), (28) and (29), they are proportional to the density 
ρ(t), which grows up exponentially fast. 

 Since under the assumption (26) the three parameters appearing in the study of 
real viscoelastic continua, retain their features (e.g. positiveness) while considered for the 3D 
HMS-continuum (using the Kelvin-Voight model), the evolution of the HMS can be 
interpreted as the deformation of a 2D homogeneous viscoelastic medium. Consequently 
suitable values could generally be assigned to the (arbitrary) constants appearing in the 
solutions K(z,t), G(z, t), in order for the HMS to attain any special features. 

      Finally, the HMS-continuum (or alternatively the relative MC-continuum (via the set of 
the attainable structures)) interestingly reveals a functionally graded material (FGM) behavior 
since its parameters are continually changing in space and the values of K and G appear to be 
bigger near to the continuum “center”, i.e., the stability point π (Bharti et al (2013), 
Makwana and Panchal (2014)). In other words the material is stress resistant especially 
near to π.  
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Abstract. In the present work we study the distribution of a random sum of ran-
dom variables which is related to a binary scan statistic. The motivation of the model
studied herein stems from several areas of applied science such as financial risk man-
agement, actuarial science, quality control and reliability, educational psychology,
engineering etc.
Let Tk denote the waiting time for the first occurrence of “two successes which lie at
most k places apart”, (i.e. two successes separated by at most k− 2 failures) in a se-
quence of binary success/fail trials (k ≥ 2 is a positive integer). Assume further that
Y1, Y2, . . . is a sequence of independent and identically distributed discrete random
variables which are independent of Tk. In the present article we develop some results
on the distribution of the compound random variable Sk =

∑Tk
t=1 Yt and illustrate

how these results can be profitably used to study models pertaining to risk manage-
ment problems, more specifically to supervisory bank capitalization monitoring.
Keywords: Waiting Times, Compound distributions, Binary scan statistics, Phase–
type distributions, Bank supervision, Risk management.

1 Introduction

The motivation of the model studied in the present article stems from several
areas of applied science such as financial risk management, actuarial science,
quality control and reliability, educational psychology, engineering etc. Many
problems encountered in these areas can be described through dichotomous (bi-
nary) variables ξ1, ξ2, . . . taking on the values 1 (success, S) or 0 (failure, F ) and
the interest focuses on random variables related to the time a predetermined
criterion is satisfied (stopping rule).

As an example, let us consider the following model which is of special im-
portance in financial risk management. Assume that a bank is subject to a

* This research has been co-financed by the European Union (European Social Fund – ESF)
and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) - Research Funding Program:
Aristeia II. Investing in knowledge society through the European Social Fund.

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST
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sequence of stress tests over time. Using several indices related to the bank’s
economical health, the bank may be classified as appropriately functioning (low
risk of defaulting) or not. For example, it is widely recognized that a bank’s
capitalization is of utmost importance and provides the main line of defense
for absorbing unexpected losses; therefore it may be used as an important
risk measure signaling an oncoming credit event, i.e. default. A measure of
bank capitalization health is provided by the Capital Ratio, which is defined as
(Tier1+Tier2)/Risk-Weighted Assets; for regulatory purposes, the Basel Ac-
cord has adopted a simple dichotomous classification that characterizes a bank
either as undercapitalized or not, depending on whether its Capital Ratio falls
below or above 8%; see e.g. Demstez et al.[5]; Flannery and Sorescu[8]; Estrella
et al.[7], Goldberg and Hudgins[11]; Lindquist[17], Berger et al.[2], Koutras and
Drakos[16].

Apparently, the outcomes of the series of stress tests may be modeled by the
aid of a sequence of binary variables ξ1, ξ2, . . . taking on the values 1 (success,
S) or 0 (failure, F ) where 1 designates an undercapitalized bank (i.e. a bank
that failed in the stress test) and 0 for a well-capitalized one. A plausible
criterion to consider that a bank is susceptible to default would be to have at
least two negative stress tests that are very close to each other, e.g. when an
outcome of the form SS, SFS, SFFS is observed.

The aforementioned model can be accommodated in the following general
set-up. Let ξ1, ξ2, . . . be an infinite sequence of binary outcomes and denote by
Tk the waiting time for the first occurrence of two successes which lie at most
k places apart from each other, i.e. they are separated by at most k−2 failures
(k ≥ 2 is a positive integer). Clearly, Tk counts the number of trials required
to observe for the first time one of the patterns

SS, SFS, . . . , S

k−2︷ ︸︸ ︷
F . . . FS.

For illustration, consider the sequence of outcomes

FFSFFFSFFFFSFFSFSS

then

T2 = 18, T3 = 17, T4 = 15, and T5 = 7.

The random variable Tk is a special case of a scan statistic, see e.g. Glaz[9],
Glaz and Naus[10], Greenberg[12], Saperstein[19], Chen and Glaz[4]. Note
that, for k = 2 the random variable Tk is enumerating success runs of length
k = 2 and therefore it follows a geometric distribution of order 2 ; the interested
reader may consult the book by Balakrishnan and Koutras[1] for more details
and results relating to waiting times for runs and scans.

Let us next assume that the times of the stress tests are random and denote
by Y1 the time when the first stress test takes place. Moreover, denote by Yt the
interarrival time between the (t− 1)-th and t-th stress tests (t ≥ 2). Then the
total time till a default signal is created for the monitored bank (i.e. the time
when the bank is considered susceptible to a future default) will be described
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by the random variable

Sk =

Tk∑
t=1

Yt,

where Y1, Y2, . . . is a sequence of positive valued iid random variables, which
are independent of Tk.

The simplest scenario for the sequence ξt, t = 1, 2, . . . which gives birth
to the random variable Tk is when ξt, t = 1, 2, . . . is a sequence of iid trials
with constant success probability p = P [ξt = 1] and failure probability q =
1 − p = P [ξt = 0] for t = 1, 2, . . .. For the financial risk modeling application
discussed earlier, this sequence might arise as follows. LetXt denote the Capital
Ratio of the bank subject to the stress test at time t, t = 1, 2, . . .. Adopting
the Basel Accord dichotomous classification we may consider that the bank
failed the stress test if Xt < 8% and therefore p = P [ξt = 1] = P [Xt > 0.08]
and q = P [ξt = 0] = P [Xt ≤ 0.08]. If Xt, t = 1, 2, . . . are considered as
independent, then ξt, t = 1, 2, . . . will be independent as well and the sequence
ξt, t = 1, 2, . . . will be a sequence of iid Bernoulli trials. A more realistic
scenario could be created by assuming that Xt depends on the magnitude of
the previous capitalization Xt−1 or more generally on the capitalizations of
more than one previous time instances. Under this assumption the resulting
sequence ξt, t = 1, 2, . . . exhibits a first (or higher) order Markov dependence.
In our presentation we shall deal with the iid model only and leave the more
general set up for future research.

In the present study, we obtain the distribution and the moments of the
compound scan statistic Sk =

∑Tk

t=1 Yt using some recursive and nonrecur-
sive formulae. Since the distribution of the scan statistic Tk, k ≥ 2 can be
represented as a phase-type distribution, we shall also establish some results
for the probability mass function (pmf) of Sk by making use of the theory of
phase-type distributions.

A discrete phase-type distribution of order d is the distribution of the ran-
dom variable T that describes the time to absorption in a finite discrete time
Markov chain with d transient states and one absorbing state. Let Λ0 be
the (d+ 1) × (d+ 1) transition probability matrix of the Markov chain and
π0 = (π1, π2, . . . , πd+1)

′
the respective initial probability vector. Assume that

the absorbing state of the Markov chain is labeled as state d + 1. Then, the
pmf of the discrete phase-type random variable T may be expressed as

P [T = t] = π′Λt−1u, t = 1, 2, . . . , (1)

where Λ is the d×d substochastic matrix of Λ0 deduced by removing the row and
column associated with the absorbing state d + 1, π = (π1, π2, . . . , πd)

′
is the

respective initial transition probability vector (note that
∑d
i=1 πi = 1−πd+1 ≤

1), and u = (Id − Λ)1 is a column vector including all transition probabilities
from the transient states to the absorbing state. The symbol 1 denotes a
column vector of size d whose all entries are 1 and Id the d×d identity matrix.
If T is a discrete phase-type random variable with pmf given in (1), we shall
say that T follows a phase-type distribution of order d with parameters π and
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Λ, symbolically T ∼ PHd (π, Λ). For more details on phase-type distributions
and their properties, we refer to the books by Neuts[18] and He[13].

The structure of the present paper is as follows. In Section 2 we give some
results for the distribution, probability generating function, and the moments
of the compound scan statistic Sk =

∑Tk

t=1 Yt. Section 3 addresses the problem
of evaluating the pmf of Sk in the case where Yt’s are discrete random variables.
We indicate how one can establish effective recursive schemes for the pmf of Sk
and develop a nonrecursive formula for it when the positive valued iid random
variables Y1, Y2, . . . have a phase-type distribution. Finally, in Section 4 we
provide some plots for the distribution of the compound scan statistic along
with some remarks on its shape and the effort required for the computations.

2 Generating functions and moments of the compound
scan statistic

In this section we present some results for the evaluation of the probability mass
function and the moments of Sk =

∑Tk

t=1 Yt. The random variable Tk appearing
in the random sum stands for the waiting time for the first occurrence of two
successes which lie at most k places apart (k ≥ 2) in a sequence of binary
iid (Bernoulli) trials having probability of success p and probability of failure
q = 1− p.

Let us denote by

PSk
(z) = E

(
zSk
)

=

∞∑
t=1

P [Sk = t] zt =

∞∑
t=1

fk (t) zt

and

PTk
(z) = E

(
zTk
)

=

∞∑
t=1

P [Tk = t] zt

the probability generating functions (pgf’s) of Sk and Tk, respectively, and by

PY (z) = E
(
zYt
)

=

∞∑
x=1

P [Yt = x] zx

the common pgf of all Yt’s, t = 1, 2, . . .. Making use of the well known formula
for the pgf of a sum of random variables (see e.g. Bowers et al.[3]) we may
express the pgf of Sk as follows

PSk
(z) = PTk

(PY (z)) . (2)

The pgf of Tk, PTk
(z), is given by (see Koutras[14])

PTk
(z) = E

(
zTk
)

=
(pz)

2
A (z)

1− qz − pqk−1zk
,

where

A (z) =

k−2∑
i=0

(qz)
i

=
1− (qz)

k−1

1− qz
.
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Replacing PTk
(z) into (2) we readily deduce the next expression for the pgf of

the compound scan statistic distribution

PSk
(z) = E

(
zSk
)

=
(pPY (z))

2

1− qPY (z)− pqk−1 (PY (z))
k

1− (qPY (z))
k−1

1− qPY (z)
. (3)

Note that for the special case k = 2 the result coincides with the one given
by Koutras and Eryilmaz[15] since in this case the scan statistic reduces to the
waiting time for a success run of length 2.

Let us now turn our attention from probability generating functions to
moment generating functions (mgf’s). Denote by

MSk
(z) = E

(
ezSk

)
=

∞∑
t=1

P [Sk = t] ezt =

∞∑
t=1

fk (t) ezt

and

MTk
(z) = E

(
ezTk

)
=

∞∑
t=1

P [Tk = t] ezt

the mgf’s of Sk and Tk, respectively, and by

MY (z) = E
(
ezYt

)
=


∞∑
x=1

P [Yt = x] ezx if Yt’s are discrete,∫
ezxfY (x) dx if Yt’s are continuous

the common mgf of all Yt’s, t = 1, 2, . . .. When Yt’s are iid continuous random
variables, fY (x) denotes the common probability density function (pdf) of the
Yt’s. The mgf of Sk can then be expressed in terms of the pgf of Tk and the
mgf of Yt’s as follows

MSk
(z) = PTk

(MY (z)) .

Replacing PTk
(z) we obtain the next expression for the mgf of the compound

scan statistic distribution

MSk
(z) = E

(
zSk
)

=
(pMY (z))

2

1− qMY (z)− pqk−1 (MY (z))
k

1− (qMY (z))
k−1

1− qMY (z)
. (4)

Using the well known formulae for the mean and variance of a random sum
of random variables,

E (Sk) = E

(
Tk∑
t=1

Yt

)
= E (Tk)E (Yt) ,

V ar (Sk) = V ar

(
Tk∑
t=1

Yt

)
= E (Tk)V ar (Yt) + (E (Yt))

2
V ar (Tk) ,

and the following expressions for the mean and variance of the scan statistic
Tk (see Koutras[14])

E (Tk) =
2− qk−1

p (1− qk−1)
,
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V ar (Tk) =
q

p2
+ (2k − 1)

qk−1

p (1− qk−1)
2 +

q

p2 (1− qk−1)
2 ,

we may readily deduce explicit expressions for the mean and the variance of
Sk, namely

E (Sk) =
2− qk−1

p (1− qk−1)
E (Yt) , (5)

V ar (Sk) =
2− qk−1

p (1− qk−1)
V ar (Yt)

+ (E (Yt))
2

[
q

p2
+ (2k − 1)

qk−1

p (1− qk−1)
2 +

q

p2 (1− qk−1)
2

]
. (6)

Formulae (3)-(6) can be used, at least for some simple special cases, to gain
neat expressions for the pmf, pgf, and the moments of Sk.

As an illustration we mention that, if k = 3 and Y1, Y2, . . . have an expo-
nential distribution with pdf

fY (y) = θe−θy, y > 0

then MY (z) = E
(
ezYt

)
= θ

θ−z , z < θ and the mgf of Sk reduces to

MS3 (z) =
(pθ)

2
[(p− 2) θ + z]

p2 (p− 2) θ3 + (2p+ 1) θ2z − (p+ 2) θz2
.

Likewise, if k = 3 and Y1, Y2, . . . have a geometric distribution with pmf

P [Yt = y] = θ (1− θ)y−1
, y = 1, 2, . . . for t = 1, 2, . . .

then PY (z) = E
(
zYt
)

= θz
1−(1−θ)z and the pgf of Sk reads

PS3
(z) =

(pθz)
2
[
(B (z))

2 − (1− p)2
θ2z2

]
((pθ − 1) z + 1)

[
(B (z))

3 − p (1− p)2
θ3z3 − (1− p) θz (B (z))

2
] ,

(7)
where B (z) = (θ − 1) z + 1.

3 Evaluation of the probability mass function of the
compound scan statistic

In the present section we shall discuss several methods for deriving the pmf
of the compound scan statistic in the case where the random variables Yt are
discrete.

First of all, let us mention that, having at hand an explicit expression for
the pgf of Sk (see (3)), one may easily establish a recursive scheme for the
evaluation of fk (t) = P [Sk = t] at least for some simple special cases. For
example if k = 3 and Y1, Y2, . . . follow a geometric distribution we have already
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deduced the pgf as indicated in formula (7). That result yields the following
simple recursive scheme for f3 (t) = P [S3 = t], t = 1, 2, . . .

f3 (t) = 2 (1− pθ) f3 (t− 1)−
[
(1− pθ)2

+ (1− p)2
θ2
]
f3 (t− 2)

− (1− p)2
(p− 2) θ3

t−1∑
i=3

((p− 2) θ + 1)
i−3

f3 (t− i) , t ≥ 3.

Using this recursion along with the obvious initial conditions f3 (2) = (pθ)
2
,

f3 (1) = 0, one can easily proceed to the evaluation of the whole probability
distribution of S3.

We shall now proceed to the development of some general formulae for the
evaluation of the pmf of Sk that exploit the theory of phase-type family of
distributions. Eisele[6] obtained recursive schemes for the pmf of the random

variable S =
∑T
t=1 Yt when Y1, Y2, . . . is a sequence of positive valued iid dis-

crete (or continuous) random variables with common pmf (or pdf) fY (t) and
T is a discrete random variable having a phase-type distribution of order d,
that is, T ∼ PHd (π, Λ).

To implement Eisele’s[6] recursive scheme we need to compute two sets of
coefficients that are associated to the substochastic d × d matrix Λ. The first
set b1, b2, . . . , bd is simply the set of coefficients of the characteristic polynomial
of Λ, i.e.

det (xId − Λ) = xd +

d∑
i=1

bix
d−i

while the second one consists of the numbers a1, a2, . . . , ad generated by the
following formulae

a1 = P [T = 1] and at = P [T = t] +

t−1∑
i=1

biP [T = t− i] for t = 2, 3, . . . , d.

We are presenting next a lemma providing the set of coefficients involved
in Eisele’s[6] recursive scheme for the case of the compound scan statistic dis-
tribution.

Lemma 1. For the distribution of the random variable Tk we have

b1 = p− 1, bk = −p (1− p)k−1
, b2 = · · · = bk−1 = bk+1 = 0

and

ai =


0 for i = 1,

p2 (1− p)i−2
for i = 2, . . . , k,

0 for i = k + 1.

Proof. Balakrishnan and Koutras[1] have indicated that the distribution of
Tk can be analyzed by imbedding it to an appropriate Markov chain with
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respective transition probability matrix

Λ0 =



1− p p 0 0 · · · 0 0 0 0
0 0 1− p 0 · · · 0 0 0 p
0 0 0 1− p · · · 0 0 0 p
0 0 0 0 · · · 0 0 0 p
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1− p 0 p
0 0 0 0 · · · 0 0 1− p p

1− p p 0 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 1


(k+2)×(k+2)

This in fact indicates that Tk belongs to the family of phase-type distribu-
tions, namely, Tk ∼ PHk+1 (π, Λ) with π = (1, 0, . . . , 0)

′
= e1 and Λ the upper

left (k + 1)× (k + 1) submatrix of Λ0, that is,

Λ =



1− p p 0 0 · · · 0 0 0
0 0 1− p 0 · · · 0 0 0
0 0 0 1− p · · · 0 0 0
0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1− p 0
0 0 0 0 · · · 0 0 1− p

1− p p 0 0 · · · 0 0 0


(k+1)×(k+1)

.

It is not difficult to verify that the characteristic polynomial of Λ is given
by

det (xIk+1 − Λ) = xk+1 + (p− 1)xk + (−1)
k

(p− 1)
k−1

px;

hence b1 = p− 1, bk = −p (1− p)k−1
, and b2 = · · · = bk−1 = bk+1 = 0.

On the other hand, it is obvious that P [Tk = 0] = P [Tk = 1] = 0 and

P [Tk = i] = (i− 1) p2qi−2 for 1 < i ≤ k.

Since Tk satisfies the following recurrence relation

P [Tk = i] = qP [Tk = i− 1] + pqk−1P [Tk = i− k] for i > k,

we get P [Tk = k + 1] = (k − 1) p2qk−1. Therefore

a1 = P [Tk = 1] = 0,

ai = P [Tk = i] +

i−1∑
j=1

bjP [Tk = i− j]

= (i− 1) p2qi−2 + b1P [Tk = i− 1] = p2 (1− p)i−2
for 1 < i ≤ k,

ak+1 = P [Tk = k + 1] +

k∑
j=1

bjP [Tk = k + 1− j]

= (k − 1) p2qk−1 + b1P [Tk = k] + bkP [Tk = 1] = 0.

�
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Eisele[6] obtained the next recursion for the pmf of the random variable

S =
∑T
t=1 Yt when T has a discrete phase-type distribution of order d and

Y1, Y2, . . . is a sequence of positive valued iid random variables independent of
T :

P [S = t] =

min(d,t)∑
j=1

ajf
∗j
Y (t)−

min(d,t−1)∑
j=1

bj

(
t−1∑
u=1

P [S = u] f∗jY (t− u)

)

for t ≥ 1, where f∗jY (t) is the j-th convolution of Y1, Y2, . . . , Yj , i.e.

f∗jY (t) = P

[
j∑
i=1

Yi = t

]
, j = 1, 2, . . . .

Making use of this result, we may now readily establish an efficient set of
recurrence relations for Sk.

Proposition 1. Assume that the support of the random variables Y1, Y2, . . .
is {y0, y0 + 1, . . .} and denote by f∗jY (t) the j-th convolution of Y1, Y2, . . . , Yj.
Then the pmf of Sk obeys the following recursive scheme

fk (t) =



k∑
j=2

p2 (1− p)j−2
f∗jY (t)

− (p− 1)
t−1∑
u=1

fk (u)P [Y = t− u]

−p (1− p)k−1
t−1∑
u=1

fk (u) f∗kY (t− u) if t > y0k,
k∑
j=2

p2 (1− p)j−2
f∗jY (t)

− (p− 1)
t−1∑
u=1

fk (u)P [Y = t− u] if 1 < t ≤ y0k,

with initial conditions fk (0) = fk (1) = 0.

Proof. Since Tk has a discrete phase-type distribution of order k + 1 and
Y1, Y2, . . . is a sequence of positive valued iid random variables independent
of Tk, one can apply Eisele’s[6] result to obtain the next recurrence relation for

the pmf of Sk =
∑Tk

t=1 Yt:

fk (t) = P [Sk = t]

=

min(d,t)∑
j=1

ajf
∗j
Y (t)−

min(d,t−1)∑
j=1

bj

(
t−1∑
u=1

P [Sk = u] f∗jY (t− u)

)

=

min(d,t)∑
j=1

ajf
∗j
Y (t)−

min(d,t−1)∑
j=1

bj

(
t−1∑
u=1

fk (u) f∗jY (t− u)

)
for t ≥ 2.

The result follows immediately by replacing the coefficients aj and bj , j =
1, 2, . . . , k + 1 obtained in Lemma 1. �
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It is of interest to note that, when the random variables Y1, Y2, . . . follow
a phase-type distribution, one can evaluate the pmf of Sk by the aid of an
exact formula similar to (1). This can be achieved by exploiting the following
important result provided by Neuts[18]:

Proposition 2 (Neuts[18]). If {fN (v)} and {fX (t)} are the pmf’s of two
discrete phase-type distributions PHd (π, Λ) and PHc (ρ,M) of orders d and
c, respectively, then the mixture

∞∑
v=0

fN (v) f∗vX (t)

follows a phase-type distribution PHcd (σ, Σ) of order cd, with parameters

σ = ρ⊗ π (Id − αΛ)
−1

,

Σ = M ⊗ Id + uρ′ ⊗ (Id − αΛ)
−1
Λ,

where α = 1− ρ′1 and u = (Ic −M)1.

The notation A⊗B appearing above has been used to indicate the Kronecker
product of two matrices A and B, that is, if A = (aij)n1×n2

, then

A⊗B =


a11B a12B · · · a1n2

B
a21B a22B · · · a2n2B

...
...

...
an11B an12B · · · an1n2

B

 .

Proposition 3. Assume that the random variables Y1, Y2, . . . follow a phase-
type distribution PHc (ρ,M) of order c. Then Sk =

∑Tk

t=1 Yt follows a phase-
type distribution PHc(k+1) (σ, Σ) of order c (k + 1) with parameters

σ = ρ⊗ e1 (Ik+1 − αΛ)
−1

and
Σ = M ⊗ Ik+1 + uρ′ ⊗ (Ik+1 − αΛ)

−1
Λ,

where α = 1 − ρ′1 and u = (Ic −M)1. Therefore, the pmf of Sk can be
expressed as

fk (t) = P [Sk = t] = σ′Σt−1
(
Ic(k+1) −Σ

)
1, t = 1, 2, . . . .

Proof. By conditioning on the value of the scan statistic Tk and then using the
independence between Tk and Yi’s, we obtain

fk (t) = P

[
Tk∑
i=1

Yi = t

]
=

∞∑
j=2

P

[
Tk∑
i=1

Yi = t

∣∣∣∣∣Tk = j

]
P [Tk = j]

=

∞∑
j=2

P

[
j∑
i=1

Yi = t

∣∣∣∣∣Tk = j

]
P [Tk = j]

=

∞∑
j=2

P

[
j∑
i=1

Yi = t

]
P [Tk = j] =

∞∑
j=2

fTk
(j) f∗jY (t) .
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Since Yi ∼ PHc (ρ,M), i = 1, 2, . . . and Tk ∼ PHk+1 (π, Λ) with π =
(1, 0, . . . , 0)

′
= e1 and

Λ =



1− p p 0 0 · · · 0 0 0
0 0 1− p 0 · · · 0 0 0
0 0 0 1− p · · · 0 0 0
0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1− p 0
0 0 0 0 · · · 0 0 1− p

1− p p 0 0 · · · 0 0 0


(k+1)×(k+1)

,

we can easily apply Proposition 2 and the proof is complete. �

As an illustration, let k = 3 and assume that Y1, Y2, . . . have a geometric
distribution with pmf

P [Yi = y] = θ (1− θ)y−1
, y = 1, 2, . . . for i = 1, 2, . . .

Then the distribution of Y1, Y2, . . . can be considered as a phase-type distri-
bution PHc (ρ,M) of order c = 1 with ρ = (1)1×1 and M = (1− θ)1×1. Using
these quantities in the formulae given in Proposition 3 we obtain

α = 1− ρ′1 = 0,

u = (Ic −M)1 = (θ)1×1 ,

σ = ρ⊗ e1 (I4 − αΛ)
−1

= (e1)4×1 ,

and

Σ = M ⊗ I4 + uρ′ ⊗ (I4 − αΛ)
−1
Λ

=


1− θ 0 0 0

0 1− θ 0 0
0 0 1− θ 0
0 0 0 1− θ

+


θ (1− p) θp 0 0

0 0 θ (1− p) 0
0 0 0 θ (1− p)

θ (1− p) θp 0 0



=


1− θp θp 0 0

0 1− θ θ (1− p) 0
0 0 1− θ θ (1− p)

θ (1− p) θp 0 1− θ

 .

It is now obvious that Σ1 = (1, 1− θp, 1− θp, 1)
′

= 1 − θp (e2 + e3) and
(I4 −Σ)1 = 1−Σ1 = θp (e2 + e3). Therefore, the pmf of Sk can be evaluated
by the matrix formula

f3 (t) = P [S3 = t] = θpe′1Σ
t−1 (e2 + e3) , t = 1, 2, . . . .
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4 Numerical results

In Figures 1, 2, and 3 we have plotted the pmf of the compound scan statis-
tic Sk for k = 3 , k = 4, and k = 5, respectively, in the special case when
Y1, Y2, . . . have a geometric distribution with pmf P [Yi = y] = θ (1− θ)y−1

,
for i = 1, 2, . . . . In our analysis, we used two different sets of values for the
parameters p and θ. As made clear from those figures, the shape of the distri-
bution of Sk is unimodal in all the graphs.

Fig. 1. Compound scan statistic distribution for k = 3

Fig. 2. Compound scan statistic distribution for k = 4

Fig. 3. Compound scan statistic distribution for k = 5

In Table 1, for a fixed k, namely k = 3, the CPU times for computing the
pmf of Sk by the use of the recursive formula (given in Proposition 1) and
the nonrecursive formula (given in Proposition 3) are presented. The recursive
formula takes much more time than the nonrecursive one. Therefore, if the
random variables Y1, Y2, . . . have a phase-type distribution, the matrix-based
nonrecursive formula seems to be more efficient.
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t Method Used CPU Time t Method Used CPU Time

10 Recursive formula ≤ 1 second 16 Recursive formula ≈ 40 seconds
Nonrecursive formula ≤ 1 second Nonrecursive formula ≤ 1 second

12 Recursive formula ≈ 2 seconds 18 Recursive formula ≈ 5.5 minutes
Nonrecursive formula ≤ 1 second Nonrecursive formula ≤ 1 second

14 Recursive formula ≈ 5 seconds 20 Recursive formula > 20 minutes
Nonrecursive formula ≤ 1 second Nonrecursive formula ≤ 1 second

Table 1. CPU times for P [S3 = t] for several values of t when Yt’s follow a geometric
distribution

k p θ µ σ P
[
Sk > µ

]
k p θ µ σ P

[
Sk > µ

]
3 0.25 0.05 262.857 241.624 0.36947 10 0.25 0.05 166.494 127.446 0.38667

0.25 52.571 47.888 0.36919 0.25 33.299 24.961 0.38872
0.50 26.286 23.668 0.36492 0.50 16.649 12.143 0.38872
0.75 17.524 15.592 0.36837 0.75 11.100 7.863 0.36067
0.90 14.603 12.900 0.37048 0.90 9.250 6.434 0.36439

0.50 0.05 55.111 40.209 0.39231 0.50 0.05 80.078 56.164 0.40258
0.25 11.022 7.474 0.36904 0.25 16.016 10.647 0.38793
0.50 5.511 3.348 0.38779 0.50 8.008 4.933 0.36708
0.75 3.674 1.938 0.40674 0.75 5.339 3.006 0.38147
0.90 3.062 1.449 0.24822 0.90 4.449 2.352 0.39098

0.75 0.05 93.333 75.982 0.37654 0.75 0.05 53.333 36.999 0.40426
0.25 18.667 14.697 0.37917 0.25 10.667 6.799 0.41472
0.50 9.333 7.024 0.36164 0.50 5.333 2.981 0.38147
0.75 6.222 4.456 0.34278 0.75 3.556 1.663 0.40674
0.90 5.185 3.595 0.33208 0.90 2.963 1.194 0.54438

0.90 0.05 44.669 31.163 0.40628 0.90 0.05 44.444 30.712 0.40528
0.25 8.934 5.630 0.43316 0.25 8.889 5.533 0.43240
0.50 4.467 2.386 0.39149 0.50 4.444 2.331 0.39098
0.75 2.978 1.240 0.54438 0.75 2.963 1.194 0.54438
0.90 2.482 0.808 0.34390 0.90 2.469 0.761 0.34390

0.95 0.05 42.158 29.167 0.40103 0.95 0.05 42.105 29.057 0.40079
0.25 8.432 5.223 0.39920 0.25 8.421 5.200 0.39900
0.50 4.216 2.171 0.35105 0.50 4.211 2.157 0.35091
0.75 2.811 1.076 0.49234 0.75 2.807 1.064 0.49234
0.90 2.342 0.643 0.26898 0.90 2.339 0.630 0.26898

4 0.25 0.05 218.378 193.514 0.36943 20 0.25 0.05 160.340 123.813 0.40430
0.25 43.676 38.249 0.37084 0.25 32.068 22.192 0.39727
0.50 21.838 18.837 0.37510 0.50 16.034 10.729 0.38793
0.75 14.559 12.363 0.36937 0.75 10.689 6.889 0.41472
0.90 12.132 10.204 0.35409 0.90 8.908 5.618 0.43240

0.50 0.05 85.714 66.240 0.38592 0.50 0.05 80.000 55.858 0.40258
0.25 17.143 12.720 0.37075 0.25 16.000 10.583 0.38793
0.50 8.571 6.014 0.38066 0.50 8.000 4.899 0.36708
0.75 5.714 3.764 0.38889 0.75 5.333 2.981 0.38147
0.90 4.762 3.008 0.39098 0.90 4.444 2.331 0.39098

0.75 0.05 53.757 37.984 0.40519 0.75 0.05 53.333 36.998 0.40426
0.25 10.751 7.008 0.41535 0.25 10.667 6.799 0.41472
0.50 5.376 3.097 0.38174 0.50 5.333 2.981 0.38147
0.75 3.584 1.751 0.40674 0.75 3.556 1.663 0.40674
0.90 2.986 1.278 0.54438 0.90 2.963 1.194 0.54438

0.90 0.05 44.467 30.771 0.40532 0.90 0.05 44.444 30.712 0.40528
0.25 8.893 5.546 0.43242 0.25 8.889 5.533 0.43240
0.50 4.447 2.338 0.39098 0.50 4.444 2.331 0.39098
0.75 2.964 1.201 0.54438 0.75 2.963 1.194 0.54438
0.90 2.470 0.768 0.34390 0.90 2.469 0.761 0.34390

0.95 0.05 42.108 29.065 0.40080 0.95 0.05 42.105 29.057 0.40079
0.25 8.422 5.201 0.39900 0.25 8.421 5.200 0.39900
0.50 4.211 2.158 0.35091 0.50 4.211 2.157 0.35091
0.75 2.807 1.065 0.49234 0.75 2.807 1.064 0.49234
0.90 2.339 0.631 0.26898 0.90 2.339 0.630 0.26898

5 0.25 0.05 197.029 169.013 0.36928 30 0.25 0.05 160.019 112.539 0.40430
0.25 39.406 33.333 0.36837 0.25 32.004 21.932 0.39727
0.50 19.703 16.368 0.37288 0.50 16.002 10.595 0.38793
0.75 13.135 10.710 0.35508 0.75 10.668 6.807 0.41472
0.90 10.946 8.822 0.38585 0.90 8.890 5.540 0.43240

0.50 0.05 82.667 61.586 0.39345 0.50 0.05 80.000 55.857 0.40258
0.25 16.533 11.768 0.39148 0.25 16.000 10.583 0.38793
0.50 8.267 5.522 0.36961 0.50 8.000 4.889 0.36708
0.75 5.511 3.423 0.38147 0.75 5.333 2.981 0.38147
0.90 4.593 2.715 0.39098 0.90 4.444 2.331 0.39098

0.75 0.05 53.438 37.298 0.40435 0.75 0.05 53.333 36.998 0.40426
0.25 10.688 6.863 0.41476 0.25 10.667 6.779 0.41472
0.50 5.344 3.017 0.38147 0.50 5.333 2.981 0.38147
0.75 3.563 1.691 0.40674 0.75 3.556 1.663 0.40674
0.90 2.969 1.221 0.54438 0.90 2.963 1.194 0.54438

0.90 0.05 44.447 30.719 0.40528 0.90 0.05 44.444 30.712 0.40528
0.25 8.889 5.535 0.43240 0.25 8.889 5.533 0.43240
0.50 4.445 2.332 0.39098 0.50 4.444 2.331 0.39098
0.75 2.963 1.195 0.54438 0.75 2.963 1.194 0.54438
0.90 2.469 0.762 0.34390 0.90 2.469 0.761 0.34390

0.95 0.05 42.105 29.058 0.40079 0.95 0.05 42.105 29.057 0.40079
0.25 8.421 5.200 0.39900 0.25 8.421 5.200 0.39900
0.50 4.211 2.157 0.35091 0.50 4.211 2.157 0.35091
0.75 2.807 1.064 0.49234 0.75 2.807 1.064 0.49234
0.90 2.339 0.630 0.26898 0.90 2.339 0.630 0.26898

Table 2. Values of µ = E (Sk), σ, where σ2 = V ar (Sk), and P [Sk > µ] for several
values of k, p, and θ
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Finally, in Table 2 we present the mean µ = E (Sk), the standard deviation
σ, where σ2 = V ar (Sk), and the probability P [Sk > µ] for several values of k,
p, and θ. The mean times, standard deviations, and the respective probabilities
provided in Table 2 may be of special interest for a regulator practicing the
stress test model mentioned in the introduction, in order to set up a plan that
will acquire specific achievements (e.g. initiate early signals for Capital Ratio
deterioration of a monitored bank).
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Abstract. The concept of pattern arises in many applications comprising experimen-
tal trials with two or more possible outcomes in each trial. A binary scan of type r/k
is a special pattern referring to success-failure strings of fixed length k that contain at
least r-successes, where r, k are positive integers with r ≤ k. The task of determining
explicitly, in a sequence of independent and identically distributed binary trials (with

probability of success p), the probability distribution of the waiting time T
(k)
r for the

first occurrence of a scan of type r/k becomes extremely difficult and computationally
intractable, when r takes values either too large or not quite close to k. In the present
work, some new maximal inequalities for nonnegative N -demi(super)martingales are

proven and then new bounds for the cumulative distribution function of T
(k)
r are ob-

tained. A numerical study is also carried out for investigating the behavior of the
new bounds for various values of the parameters r, k, p.
Keywords: scan statistic, bound, N -demimartingale, N -demisupermartingale, demi-
martingale, demisubmartingale, i.i.d. binary trials..

1 Introduction and Preliminaries

By N is denoted the set of all natural numbers, while N0 := N ∪ {0}. The
symbol R stands for the set of all real numbers, while R+ := {x ∈ R : x ≥ 0}.
If d ∈ N, then Rd denotes the Euclidean space of dimension d. Moreover,
x∧ y := min{x, y}, x∨ y := max{x, y} and x+ := x∨ 0 for x, y ∈ R. For n ∈ N
and i ∈ {1, . . . , n} the i-canonical projection from Rn onto R is denoted by πi.

Throughout the paper we consider an arbitrary but fixed probability space
(Ω,Σ, P ). A set N ∈ Σ with P (N) = 0 is called a P -null set. The family of
all P -null sets is denoted by Σ0. For any two Σ-measurable maps Z1, Z2 on Ω
we write Z1 = Z2 P − almost surely (P -a.s. for short), if {Z1 ̸= Z2} ∈ Σ0.

Let {Xn}n∈N be a sequence of binary trials on (Ω,Σ, P ), each resulting in
either a success (that is the event {Xn = 1}) or a failure (that is {Xn = 0})
with probability p ∈ (0, 1) or q := 1−p, respectively. Then, for any fixed k ∈ N
and for each m ∈ N such that m ≤ k, the sequence Xn, Xn+1, . . . , Xn+m−1 of
random variables on Ω is said to be a moving window (for {Xn}n∈N) of
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length m. In particular, the term (P−)scan or (P−)generalized run of
type r/k refers to moving windows Xn, Xn+1, . . . , Xn+m−1 of length m ≤ k
such that the number of successes contained therein is (with non zero proba-
bility) at least r.

In what follows, we set X0 := 0 and assume that every sum over an empty
index set is equal to zero. For each n ∈ N and k ∈ N0 consider the random
variable Yn,k on Ω defined by

Yn,k :=
n∑

j=max{n−k+1,1}

Xj . (1)

For any fixed k ∈ N the sequence {Yn,k}n∈N will be called the enumerating
process of scanning width k for the sequence of binary trials {Xn}n∈N.

The random variable T
(k)
r defined on Ω by means of

T (k)
r := min{n ∈ N : Yn,k ≥ r}

is said to be the waiting time for the first occurrence of a scan of type
r/k. The importance of the above waiting time arises from the widespread
applicability of scan enumerating statistics in a substantial number of scientific
areas such as reliability theory and molecular biology. For more details, we
refer e.g. to Balakrishnan and Koutras [1].

In Bersimis et al. [2], a systematic approach for studying the waiting time

T
(k)
r for an almost perfect run (i.e. a r/k-scan with r ∈ {k − 1, k − 2}), in a

sequence of Bernoulli trials, is made possible via a recursive scheme. In this
paper, the problem of determining, in a sequence of independent and identically
distributed (i.i.d. for short) binary trials, the probability distribution of the

waiting time T
(k)
r is investigated under a different perspective. More precisely,

we focus on obtaining bounds for the cumulative distribution function (c.d.f.

for short) of T
(k)
r instead of computing it explicitly. Even though the latter may

seem as a drawback to our approach, we should point out that on the other side
of the balance the extracted results apply not only for almost perfect runs but
also for any kind of scan. Furthermore, bounds are widely used in the study of
scans and runs as an extensive literature related to this topic witnesses (cf e.g.
[1] for more details).

Since it is clear that for any fixed k ∈ N the sequence {Yn,k}n∈N is not P -
independent, and since it can be easily proven that for any fixed k ∈ N and for
all r, k, t ∈ N with r ≤ k condition

{T (k)
r ≤ t} =

{
max
1≤n≤t

Yn,k ≥ r
}

holds true, it seems reasonable enough to wonder whether maximal inequalities
can be exploited for obtaining some upper and lower bounds for the c.d.f.

Fr:k(t; p) := P (T
(k)
r ≤ t), see also e.g. [5], Chapters 2 and 3.

Motivated by the above question, in Section 2 and under the assumption
of i.i.d. binary trials {Xn}n∈N, the membership of {Yn,k}n∈N, for k ∈ N fixed,
in the classes of demi(sub)martingales and N -demi(super)martingales is first
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examined and then a relative N -demimartingale result is given (see Proposition
1). Next, in Section 3, some new maximal inequalities for nonnegative N -
demi(super)martingales are proven. As a consequence, some bounds for the

c.d.f. of the waiting time T
(k)
r in a sequence of i.i.d. binary trials are extracted

in Section 4. This paper concludes with Section 5 (and its Appendix), where
an investigation on the behavior of our new bounds for various values of the
parameters r, k, p is carried out.

2 Some results related to the enumerating process

We first recall some notions more, needed in this section.

By σ(Z) := {Z−1(B) : B ∈ B} is denoted the σ-algebra generated by the
Σ-measurable function Z, where B := B(R) stands for the Borel σ-algebra
of subsets of R. Setting TZ := {B ⊆ R : Z−1(B) ∈ Σ}, we clearly get that
B ⊆ TZ . Then we denote by PZ : TZ −→ R the image measure of P under
Z. The restriction of PZ to B is denoted again by PZ , while RZ stands for the
range of Z. The notation B(n, p), where n ∈ N and p ∈ (0, 1), stands for the
law of binomial distribution. Moreover, its probability mass and cumulative
distribution function at point x ∈ R will be denoted by b(x;n, p) and Fb(x;n, p),
respectively.

The family of all real-valued P -integrable functions on Ω is denoted by
L1(P ). Functions that are P -a.s. equal are not identified. The (unconditional)
expectation of the random variable Z is denoted by EP [Z]. If Z ∈ L1(P ) and

F is a σ-subalgebra of Σ, then each function Z̃ ∈ L1(P | F) satisfying for

each F ∈ F the equality
∫
F
Z dP =

∫
F
Z̃ dP is said to be a version of the

conditional expectation of Z given F , and it will be denoted by EP [Z | F ].
Furthermore, for any E ∈ Σ we set P (E | F ) := EP [χE | F ], where χE stands
for the indicator (or characteristic) function of the set E. Note that if W is a
random variable on Ω then EP [Z | W ] = EP [Z | σ(W )] P | σ(W )-a.s., while
for any A ∈ Σ with P (A) > 0 we have EP [Z | A] = 1

P (A)

∫
A
ZdP .

Every family {Fj}j∈N of σ-subalgebras of Σ, such that Fj ⊆ Fj+1 for
each j ∈ N, is called a filtration for the measurable space (Ω,Σ). Moreover,
a sequence {Zj}j∈N of random variables on Ω is said to be adapted to a

filtration {Fj}j∈N if each Zj is Fj-measurable. If Fj = σ(
∪j

i=1 σ(Zi)) for
each j ∈ N, then {Fj}j∈N is said to be the canonical filtration for {Zj}j∈N,

and it will be denoted by {F (Z)
j }j∈N.

Definitions 1 Let {Zj}j∈N be a sequence in L1(P ). Then {Zj}j∈N is said to
be:

(a) a P -martingale (with respect to {F (Z)
j }j∈N), if

EP [(Zj+1 − Zj)f(Z1, . . . , Zj)] = 0 for each j ∈ N (2)

and for every measurable function f on Rj such that the above expectations
exist.
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(b) a P -demimartingale, if condition (2) but with “≥” in the place of the
equality is satisfied for every coordinatewise nondecreasing function f on Rj

such that the above expectations exist.
(c) a P -demisubmartingale, if condition (2) but with “≥” in the place of
the equality is satisfied for every f as in (b) but with f ≥ 0.
(d) a N-demimartingale under P , if condition (2) but with “≤” in the place
of the equality is satisfied for every f as in (b). In particular, if f ≥ 0 then
{Zj}j∈N is said to be a N-demisupermartingale under P .

Remark 1 Obviously, the class of all P -martingales is included in that of all
P -demimartingales, which in its own turn is a subclass of all P - demisub-
martingales. For more on Definitions 1 we refer to [5], Section 2.1. It is also
clear that any N -demimartingale (under P ) is also a N -demisupermartingale.
For details on the last two classes of processes, see e.g. [5], Section 3.1.

In what follows, unless it is stated otherwise, we assume that {Xn}n∈N is a
P -i.i.d. sequence of binary trials.

The next result is an immediate consequence of the definition of conditional
expectation and the monotonicity of the involved functions.

Lemma 1 Let k ∈ N be arbitrary but fixed. For each n ∈ N with n ≥ k also
let f be a coordinatewise nondecreasing real-valued function on Rn as well as
{hi,k}i∈{1,...,n} be a sequence of such functions on Ri∧k. Then for each n ∈ N
with n ≥ k the following holds true:

ηn,k,0(hi,k; f) ≤ ηn,k,1(hi,k; f),

where

ηn,k,x(hi,k; f) := EP [f(h1(X1), . . . , hn(Xn−k+1, . . . , Xn)) | {Xn−k+1 = x}]

for any x ∈ {0, 1}. In particular,

EP [f(Y1,k, . . . , Yn,k) | {Xn−k+1 = 0}] ≤ EP [f(Y1,k, . . . , Yn,k) | {Xn−k+1 = 1}].

Lemma 2 Let k ∈ N be arbitrary but fixed. Then the sequence {Yn,k}n∈N is
neither a P -demisubmartingale nor a N -demisupermartingale under P .

Proof. First fix on an arbitrary k ∈ N. Then note that by (1) we get

Yn,k − Yn−1,k = Xn −X(n−k)+ for each n ∈ N; (3)

hence for each n ∈ N and for every measurable function f on Rn such that each
expectation

Hn,k(f) := Hn,k(Y1,k, . . . , Yn,k; f) := EP [(Yn+1,k − Yn,k)f(Y1,k, . . . , Yn,k)]

exists, we obtain that the equalities

EP [(Yn+1,k − Yn,k) | F (X)
n ] = EP [Xn+1 | F (X)

n ]−X(n−k+1)+ = p−X(n−k+1)+ ,

554



hold true P | F (X)
n -a.s., implying that

Hn,k(f) = EP [(p−X(n−k+1)+)f(Y1,k, . . . , Yn,k)].

If in addition, f is coordinatewise nondecreasing, it follows by Lemma 1 that

Hn,k(f) = pq[ηn,k,0(hi,k; f)− ηn,k,1(hi,k; f)] ≤ 0 for each n ∈ N with n ≥ k,
(4)

where hi,k(x(i−k+1)∨1, . . . , xi) :=
∑i

j=(i−k+1)∨1 xj for each k ∈ N and for each

(x(i−k+1)∨1, . . . , xi) ∈ Ri∧k, while it is immediate that

Hn,k(f) = pEP [f(Y1,k, . . . , Yn,k)] ≥ 0 for each n ∈ N with n < k. (5)

Suppose now that {Yn,k}n∈N is a P -demisubmartingale. It then follows that
for each n ∈ N and for every nonnegative coordinatewise nondecreasing function
f on Rn such that Hn,k(f) exists we have Hn,k(f) ≥ 0. The latter together
with an application of condition (4) for f = πn yields that Hn,k(πn) = 0 for
each n ∈ N with n ≥ k. But since by assumption {Xn}n∈N is P -independent,
it follows that

PYn,k
= B(n ∧ k, p) for each n ∈ N, (6)

implying

Hn,k(πn) = EP [(Yn+1,k − Yn,k)Yn,k]
(3)
= EP [Xn+1Yn,k]− EP [Xn−k+1Yn,k]

(6)
= kp2 − EP [X

2
n−k+1]−

n∑
j=n−k+2

EP [Xn−k+1Xj ] = −pq;

hence 0 = Hn,k(πn) = −pq for each n ∈ N with n ≥ k, a contradiction. Thus,
{Yn,k}n∈N cannot be a P -demisubmartingale.

Moreover, suppose that {Yn,k}n∈N is a N -demisupermartingale under P .
Then applying similar arguments with above but with considering f = 1 instead
of f = πn, we infer by condition (5) that 0 = Hn,k(1) = p for each n < k,
which is not valid; hence {Yn,k}n∈N cannot be a N -demisupermartingale under
P either. 2

Because of Lemma 2 none of the maximal inequalities applying either for
demi(sub)martingales or for N -demi(super)martingales can be exploited in the
case of the enumerating process {Yn,k}n∈N, where k ∈ N is arbitrary but
fixed. To overcome this difficulty, consider for any fixed k ∈ N the sequence
{Ỹn,k}n∈N0 of random variables on Ω defined by means of

Ỹn,k :=

Yn,k, if n ∈ {k, k + 1, . . .}
Yk,k, if n ∈ {1, . . . , k − 1}
0, if n = 0,

(7)

and note that RỸn,k
= {0, . . . , k} for each n ∈ N.

Proposition 1 For any fixed k ∈ N the following hold true:
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(i) The sequence {Yn,k}n∈N is adapted to {F (X)
n }n∈N.

(ii) The sequence {Ỹn,k}n∈N is a N -demimartingale under P . Moreover, it is
not a P -demisubmartingale.

Proof. Assertion (i) is immediate by (1). As for (ii), first fix on an arbitrary

k ∈ N. By virtue of (i) we get that {Ỹn,k}n∈N is adapted to {F (X)
n }n∈N. Fur-

thermore, note that for each n ∈ N and for every coordinatewise nondecreasing
function f on Rn such that each expectation

H̃n,k(f) := H̃n,k(Ỹ1,k, . . . , Ỹn,k; f) := EP [(Ỹn+1,k − Ỹn,k)f(Ỹ1,k, . . . , Ỹn,k)]

exists, it follows by (7) that

H̃n,k(f) =

{
Hn,k(f), if n ∈ {k, k + 1, . . .}

0, if n ∈ {1, . . . , k − 1},

implying together with condition (4) that H̃n,k(f) ≤ 0 for each n ∈ N. The

latter together with the clear fact that EP [Ỹn,k] = kp < ∞ for each n ∈ N
yields that the sequence {Ỹn,k}n∈N is a N -demimartingale under P .

Moreover, suppose that {Ỹn,k}n∈N is also a P -demisubmartingale. It then

follows that H̃n,k(f) = 0 for each n ∈ N and for every nonnegative coordi-

natewise nondecreasing function f on Rn such that each expectation H̃n,k(f)
exists. But then by the proof of Lemma 2, we infer for each n ∈ N with n ≥ k
that 0 = H̃n,k(πn) = Hn,k(πn) = −pq, a contradiction. 2

The fact that the modified enumerating process {Ỹn,k}n∈N is proved to be
a N -demimartingale does not suffice by itself for extracting proper bounds for

the c.d.f of the waiting time T
(k)
r . To this aim, some new maximal inequalities

for nonnegative N -demi(super)martingales are proved in the next section.

3 Maximal inequalities for nonnegative
N -demimartingales

Dai et al. [4] recently provided a counterexample for the validity of some Chow
type maximal inequalities for N -demimartingales. This counterexample also
applies to another well-known maximal inequality for N -demimartingales (see
[3], Theorem 2.1 or better see e.g. [5], Theorem 3.2.1), which could have been
of special interest for the purposes of this work, if it was true. The aim of
this section is to provide some useful alternatives to Theorem 2.1 from [3] for
sequences of P -a.s. nonnegative random variables.

Proposition 2 If {Zj}j∈N is a N -demimartingale under P such that Zj ≥ 0
P -a.s. for each j ∈ N, then for any fixed t ∈ N and for each ε > 0 the following
inequality holds true:

P
(
max
1≤j≤t

Zj > ε
)
≤ 1− 1

ε
EP [Z1] +

1

ε

t∑
l=1

EP [Zlχ{Zl>ε}]. (8)
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Proof. First fix on arbitrary t ∈ N and ε > 0. Define next the random variable
τt,ε : Ω −→ R by means of

τt,ε(ω) :=

{
inf{j ∈ {1, . . . , t} : Zj(ω) > ε}, if ω ∈

∪t
j=1{Zj > ε}

t, if ω ∈
∩t

j=1{Zj ≤ ε}

for each ω ∈ Ω. Clearly, τt,ε is a F (Z)
t -measurable function and Rτt,ε =

{1, . . . , t}; moreover, it is a coordinatewise nonincreasing function of Z1, . . . , Zt.
The latter together with our assumption that {Zj}j∈N is aN -demimartingale

under P yields that EP [Z1] ≤ EP [Zτt,ε∧t] (cf. e.g. [5], Theorem 3.1.7), and so
we get

EP [Z1] ≤ EP [Zτt,εχ{max1≤j≤t Zj>ε}] + EP [Ztχ{max1≤j≤t Zj≤ε}],

which implies that

εP
(
max
1≤j≤t

Zj ≤ ε
)
≥ EP [Z1]− EP [Zτt,εχ{max1≤j≤t Zj>ε}]. (9)

But since the last expectation equals

t∑
l=1

EP [Zτt,εχ{max1≤j≤t Zj>ε,τt,ε=l}] =

t∑
l=1

EP [Zlχ{max1≤j≤t Zj>ε,τt,ε=l}]

and all random variables Zn are P -a.s. nonnegative, it follows that

EP [Zτt,εχ{max1≤j≤t Zj>ε}] ≤
t∑

l=1

EP [Zlχ{max1≤j≤t Zj>ε,Zl>ε}] =

t∑
l=1

EP [Zlχ{Zl>ε}].

The latter together with (9) entails that

ε− εP
(
max
1≤j≤t

Zj > ε
)
≥ EP [Z1]−

t∑
l=1

EP [Zlχ{Zl>ε}];

hence we equivalently get condition (8). 2

Another alternative to Theorem 2.1 from [3] is next presented.

Proposition 3 If {Zj}j∈N is a N -demisupermartingale under P such that
Zj ≥ 0 P -a.s. for each j ∈ N, then for any fixed t ∈ N and for each ε > 0 the
following inequality holds true:

εP
(
max
1≤j≤t

Zj ≥ ε
)
≤

t∑
l=1

EP [Zlχ{max1≤j≤l Zj≥ε}].

Proof. First fix on arbitrary t ∈ N and ε > 0. Define next the random variable
τ̃t,ε : Ω −→ R by means of

τ̃t,ε(ω) := τ̃t,ε(Z1, . . . , Zt)(ω)

:=

{
sup{j ∈ {1, . . . , t} : Zj(ω) ≥ ε}, if ω ∈

∪t
j=1{Zj ≥ ε}

1, if ω ∈
∩t

j=1{Zj < ε}
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for each ω ∈ Ω. Clearly, τ̃t,ε is a F (Z)
t -measurable function and Rτ̃t,ε =

{1, . . . , t}; moreover, it is a coordinatewise nondecreasing function of Z1, . . . , Zt.
The latter together with our assumption that {Zj}j∈N is a N - demisuper-

martingale under P yields that EP [Z1] ≥ EP [Zτ̃t,ε∧t] (cf. e.g. [5], Theorem
3.1.7), and so we get

EP [Z1] ≥ EP [Zτ̃t,εχ{max1≤j≤t Zj≥ε}] + EP [Z1χ{max1≤j≤t Zj<ε}]

or equivalently

EP [Z1χ{max1≤j≤t Zj≥ε}] ≥ EP [Zτ̃t,εχ{max1≤j≤t Zj≥ε}].

But since all random variables Zn are P -a.s. nonnegative, it follows that

EP [Zτ̃t,εχ{max1≤j≤t Zj≥ε}] ≥ EP [Ztχ{max1≤j≤t Zj≥ε}∩{max1≤j≤t−1 Zj<ε,Zt≥ε}]

≥ εP
(

max
1≤j≤t−1

Zj < ε,Zt ≥ ε
)
;

hence putting ψ(t) := ψ(t; ε) := P (max1≤j≤t Zj ≥ ε), we obtain that

ε[ψ(t)− ψ(t− 1)] ≤ EP [Z1χ{max1≤j≤t Zj≥ε}] for each t ∈ N,

since t was chosen arbitrarily. Then by induction our proposition follows. 2

4 Bounds for Fr:k in a sequence of i.i.d. binary trials

Propositions 2 and 3 are exploited here for obtaining the bounds of interest for

the c.d.f. of the waiting time T
(k)
r , see Corollaries 1 and 2, respectively.

Corollary 1 For any fixed k ∈ N and for all r, t ∈ N with r ≤ k < t the
following holds true:

Fr:k(t; p) ≤ u1(r, k, t, p) := 1− kp

r − 1
+

t

r − 1

k∑
y=r

yb(y; k, p).

Proof. First fix on arbitrary r, k, t ∈ N with r ≤ k < t. Then note that by
virtue of Proposition 1 we may apply Proposition 2 for {Zj}j∈N = {Ỹn,k}n∈N
and ε = r − 1. So, inequality (8) becomes

(r − 1)P
(
max
1≤n≤t

Ỹn,k ≥ r
)

≤ (r − 1)− EP [Ỹ1,k] +

k∑
n=1

EP [Ỹn,kχ{Ỹn,k≥r}]

+
t∑

n=k+1

EP [Ỹn,kχ{Ỹn,k≥r}],

implying together with conditions (7) and (6) as well as condition

{T (k)
r ≤ t} =

{
max
k≤n≤t

Yn,k ≥ r
}

(10)
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that

Fr:k(t; p) ≤ 1− kp

r − 1
+

t

r − 1

k∑
y=r

yb(y; k, p),

which completes the proof. 2

Corollary 2 For any fixed k ∈ N and for all r, t ∈ N with r ≤ k < t the c.d.f.
Fr:k(t; p) is upper bounded by

u2(r, k, t, p) :=
t

r

k∑
y=r

yb(y; k, p)+
1

r

t∑
l=k+1

r−1∑
y=r+k−l

yb(y; k, p)[1−Fb(r−1−y; l−k, p)].

Proof. First fix on arbitrary r, k, t ∈ N with r ≤ k < t.

Next note that Proposition 1 togetether with Remark 1 implies that we
may apply Proposition 3 to get the inequality

rP
(
max
1≤n≤t

Ỹn,k ≥ r
)
≤

t∑
l=1

EP [Ỹl,kχ{max1≤n≤l Ỹn,k≥r}],

which taking into account conditions (7), (10) and (6), entails that

rFr:k(t; p) ≤
k∑

l=1

EP [Yk,kχ{Yk,k≥r}] +
t∑

l=k+1

EP [Yl,kχ{maxk≤n≤l Yn,k≥r}]

or equivalently that

rFr:k(t; p) ≤ k

k∑
y=r

yb(y; k, p) +

t∑
l=k+1

EP [Yk,kχ{maxk≤n≤l Yn,k≥r}]. (11)

But since Yn,k =
∑n

j=1(Yj − Yj−1,k) for each n ∈ N, we get by (3) that

Yl,k − Yn,k =
l∑

j=n+1

(Xj −X(j−k)+) =
l∑

j=n+1

Xj −
l−k∑

j=n−k+1

Xj+ .

for each n, l ∈ N such that l > n. Setting now

ϖ̃r,k,t(y) := P (Yk,k = y, max
k≤n≤l

Yn,k ≥ r)

as well as

U(r, k, l, p) := EP [Yk,kχ{maxk≤n≤l Yn,k≥r}]
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for any fixed l ∈ N with l > k and for each y ∈ N0, it follows by (1) and the
P -independence of the binary trials {Xn}n∈N, that for each y ∈ {0, . . . , k}

ϖ̃r,k,t(y) = P

(
Yk,k = y, max

k≤n≤l

( n∑
j=k+1

Xj −
n−k∑
j=1

Xj

)
≥ r − y

)

≤ P

(
Yk,k = y, max

k≤n≤l

n∑
j=k+1

Xj ≥ r − y

)

= P

(
Yk,k = y,

l∑
j=k+1

Xj ≥ r − y

)
= b(y; k, p)[1− Fb(r − 1− y; l − k, p)],

which implies that

U(r, k, l, p) ≤
r−1∑
y=1

yb(y; k, p)[1− Fb(r − 1− y; l − k, p)] +

k∑
y=r

yb(y; k, p)

=
r−1∑

y=r+k−l

yb(y; k, p)[1− Fb(r − 1− y; l − k, p)] +
k∑

y=r

yb(y; k, p);

hence

t∑
l=k+1

U(r, k, l, p) ≤
t∑

l=k+1

r−1∑
y=r+k−l

yb(y; k, p)[1− Fb(r − 1− y; l − k, p)]

+ (t− k)
k∑

y=r

yb(y; k, p).

The latter together with (11) results in proving the corollary. 2

The following result is an immediate consequence of Corollaries 1 and 2.

Proposition 4 For any fixed k ∈ N and for all r, t ∈ N such that r ≤ k < t,
the following holds true:

Fr:k(t; p) ≤ (u1 ∧ u2)(r, k, t, p),

where u1 and u2 are as in Corollaries 1 and 2, respectively.

Remark 2 A first look in the upper bounds of Proposition 4 suggests that
although we may not decide in general which of the two bounds is more efficient,
u2(r, k, t, p) as a more sophisticated one is expected to outperform u1(r, k, t, p).
Also note that Proposition 4 yields limp→0+ Fr:k(t; p) ≤ limp→0+ u2(r, k, t, p) =
0, implying the intuitively natural fact that as the success probability p of each

binary trial tends to zero, the probability P (T
(k)
r ≤ t) does so.
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5 Numerical Results

In the Appendix, a series of tables providing the computed values for the upper
bounds of Fr:k(t; p) given in Proposition 4, together with its minimum as well
as with the exact or simulated (depending on the examined type of scan) c.d.f.

of T
(k)
r , is presented. Note that for almost perfect runs the exact c.d.f. is

computed by exploiting Proposition 1 of Bersimis et al. [2]; otherwise the

computation of the empirical c.d.f. of T
(k)
r is performed via simulation. More

precisely, a sequence of i.i.d. binary trials with success probability p is generated
each time and the number of trials needed until a scan of type r/k appears is
recorded; the number of such sequences simulated equals 1000.

In Tables 1 to 4 the values in bold stand for the most appropriate bound
between u1(r, k, t, p) and u2(r, k, t, p) at each time time t. Also note that in the
last column each of these tables we compute the relative error

(u1 ∧ u2)(r, k, t, p)− κ(r, k, t, p)

κ(r, k, t, p)

for the upper bound (r.e. for short), where κ(r, k, t, p), for p ∈ (0, 1), r, k ∈ N
with r ≤ k and t ≥ k+1, is the exact or simulated (depending on the examined
type of scan) c.d.f..

Remarks. In brief, the performed numerical study suggested that:

(a) For the case of almost perfect runs, the relative error in general behaves
as a nonincreasing function of p, for fixed r, k, t. The most common exception
to this rule occurs for t = k + 1 (compare Tables 1 and 2). Furthermore,
the relative error usually increases whenever t does so and r, k, p remain the
same. However, for some time intervals it may behave as follows: up to a
trial, say t1, increases with t, then it becomes a nonincreasing function of t
until another trial, say t2, and so forth (see Table 3); in other words, its graph
versus time may resemble a multimodal function. It is also worth noticing that
fixing on r, k, t the upper bound u2(r, k, t, p) proves to be the tightest one (as
expected by Remark 2) for small values of p (p ≤ 0.1). On the contrary, the
larger values the success probability takes the more u1(r, k, t, p) outperforms
u2(r, k, t, p). For moderate or large p (p > 0.2), though, all upper bounds seem
to be inadmissible. Here it should be noted that for any fixed triplet (r, k, p) the
first upper bound tends to be more efficient as t increases, while the opposite
happens for u2(r, k, t, p). The above facts are confirmed not only in Tables 1 to
3 but also by a similar numerical study conducted for the 3/5- and 5/6-almost
perfect runs.

(b) The only pattern from those described in (a) that remains valid for scans
other than almost perfect runs is that referring to which of the two upper
bounds is tighter for the various values of t. All other comments made in there
do not apply in general. In fact, for most r/k-scans with r /∈ {k−2, k−1} even
the tightest of the upper bounds computes inadmissible values beyond some of
the first t. However, exceptions as the one presented in Table 3 may occur.
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Appendix: Tables of Section 5

t exact | u1 u2 | u1 ∧ u2 || r.e.

8 0.000011| 0.860062 0.000066|0.000066|| 4.818
13 0.000038| 0.860100 0.001240|0.001240|| 34.616
18 0.000058| 0.860139 0.009118|0.009118|| 155.740
23 0.000082| 0.860177 0.034884|0.034884|| 426.343
28 0.000105| 0.860216 0.092585|0.092585|| 880.048
33 0.000129| 0.860254 0.195339|0.195339||1518.700
38 0.000152| 0.860293 0.352587|0.352587||2318.790
43 0.000175| 0.860331 0.568994|0.568994||3242.170
48 0.000199| 0.860370 0.844688|0.844688||4245.890
53 0.000222|0.860408 1.176250 |0.860408||3868.670

Table 1. Computed bounds Vs exact c.d.f.: (r, k) = (6, 7) and p = 0.1

t exact | u1 u2 | u1 ∧ u2 || r.e.

8 0.000119| 0.790670 0.000702|0.000702|| 4.907
13 0.000353| 0.791088 0.010881|0.010881|| 29.846
18 0.000587| 0.791507 0.066946|0.066946||113.129
23 0.000820| 0.791926 0.217233|0.217233||263.807
28 0.001054| 0.792344 0.495718|0.495718||469.297
33 0.001287|0.792763 0.911289 |0.792763||614.641
38 0.001521|0.793181 1.452190 |0.793181||520.384
43 0.001755|0.793600 2.095760 |0.793600||451.235
48 0.001988|0.794019 2.816890 |0.794019||398.340
53 0.002222|0.794437 3.593080 |0.794437||356.571

Table 2. Computed bounds Vs simulated c.d.f.: (r, k) = (6, 7) and p = 0.15
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t exact | u1 u2 | u1 ∧ u2 || r.e.

7 0.001999| 0.811984 0.010082|0.010082|| 4.043
12 0.005456| 0.820544 0.051558|0.051558|| 8.450
17 0.008892| 0.829104 0.171246|0.171246||18.258
22 0.012317| 0.837664 0.392290|0.392290||30.850
27 0.015729| 0.846224 0.718710|0.718710||44.692
32 0.019130|0.854784 1.141880 |0.854784||43.683
37 0.022519|0.863344 1.647090 |0.863344||37.338
42 0.025897|0.871904 2.218100 |0.871904||32.669
47 0.029262|0.880464 2.839810 |0.880464||29.089
52 0.032616|0.889024 3.499370 |0.889024||26.257

Table 3. Computed bounds Vs simulated c.d.f.: (r, k) = (4, 6) and p = 0.15

t exact| u1 u2 | u1 ∧ u2 || r.e.

30 0.046| 0.587144 0.122368|0.122368|| 1.660
32 0.047| 0.595518 0.147594|0.147594|| 2.140
33 0.049| 0.599705 0.166470|0.166470|| 2.397
37 0.052| 0.616453 0.305068|0.305068|| 4.867
39 0.053| 0.624826 0.426376|0.426376|| 7.045
41 0.054| 0.633200 0.593177|0.593177|| 9.985
45 0.055|0.649947 1.091080 |0.649947||10.817
47 0.056|0.658321 1.432420 |0.658321||10.756
50 0.057|0.670882 2.067290 |0.670882||10.770
52 0.061|0.679255 2.572470 |0.679255||10.135
54 0.062|0.687629 3.141010 |0.687629||10.091

Table 4. Computed bounds Vs simulated c.d.f.: (r, k) = (14, 28) and p = 0.25
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Abstract. In the present article, we introduce a new bivariate semiparametric Shewhart-
type control chart which is based on the bivariate statistic (X(r),Y(s)), where X(r) and Y(s) are 

the order statistics of the respective X and Y test samples. The suggested bivariate control 

chart is very simple and consists a straightforward generalization of the well known 

univariate median (non-parametric) control chart.  
An expression for the operating characteristic function of the new control chart is 

obtained. A key advantage of the chart is that, although the performance of it is typically 

affected by the dependence structure of the bivariate observations under study, the values 

of the false alarm rate and the in-control run length do not seem to change dramatically 
when different copulas are used. Tables are provided for the implementation of the chart 

for some typical ARL values and false alarm rates. The performance of the proposed 

chart is compared to that of the traditional χ2 chart as well as to the nonparametric SN 

2 
and SR2 charts introduced by Boone and Chakraborti [5]. 

Keywords: Order statistics, nonparametric control charts, semiparametric control charts, 

false alarm rate, average run length, statistical quality control, copulas. 

 

1 Introduction 
 

It is commonly believed that the quality improvement of a single product or 

of an entire production is the main purpose of Statistical Quality Control. This 

can be achieved through the identification and reduction of the natural 

variability (as much as possible), which is an inherent part of any process. In 

recent years, the non-parametric control charts have drawn the interest of many 

researchers, as they can be useful alternatives to their parametric counterparts in 

cases where there is no information on the distribution of the underlying process 

or where the distribution is not normal. 

The construction of a non-parametric control chart is as follows. Firstly, a 

random reference sample is drawn from an unknown continuous distribution, 

which is assumed to be in-control. Based on this sample, reliable control limits 

are set using specific order statistics. Then successive test samples are collected 

in order to decide whether the process remains in control or has shifted to an 

out-of-control distribution. 
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Janacek and Meikle [8] proposed a univariate non-parametric two-sided 

(Shewhart-type) control chart for the median. Due to the use of the median, the 

main advantage of this chart is that it is insensitive to measurement errors and 

can be used in situations that the quality characteristic involves ordinal data. 

Generalizing the above idea, Chakraborti et al. [6] suggested a chart for a test 

sample quantile. Recently, Balakrishnan et al. [4] improved the median chart 

and its extensions by incorporating an additional condition (based on the 

number of observations from the test sample falling between the control limits).  

Extending the idea of Chakraborti et al. [6], we introduce a bivariate 

semiparametric control chart based on order statistics, which is actually a 

straightforward generalization of the classical univariate non-parametric control 

chart for the median. In Section 2, we perform a detailed study of the 

characteristics of the new control chart. Our numerical experimentation 

indicated that, although the new chart is typically affected by the dependence 

structure of the bivariate observations under study, the values of the false alarm 

rate do not change dramatically when different copulas or distributions are used. 

In Section 3, we compare the new chart to the traditional parametric χ
2
 chart and 

also the nonparametric SN 
2
 and SR

2
 charts of Boone and Chakraborti [5]. For 

this purpose, a simulation study was carried out. Finally, in Section 4, some 

concluding remarks, suggestions and recommendations are provided for the 

proposed chart.  
 

2 A New Bivariate Semiparametric Control Chart 
 

In order to interpret the new chart, we will describe a similar technique to 

the one commonly used for the construction of the univariate median control 

chart and its extensions. Firstly, let us assume that a random bivariate reference 

sample ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2( , ),  ( , ),  ...,  ( , )R R R R R R

m mX Y X Y X Y  is collected from an in-control 

distribution which is described by a joint cumulative continuous distribution 

function (cdf) ( ) ( , ) ( , )RF x y F x y  with marginal distributions ( )XF x  and 

( )YF y . Subsequently, successive test samples are independently drawn of each 

other (and also the reference sample) from the underlying process, in order to 

decide whether the process has shifted to an out-of-control cdf 
( ) ( , ) ( , )TF x y G x y  with marginal distributions ( )XG x  and ( )YG y . For this 

reason, we choose four particular order statistics from the reference sample, 

which are used as control limits of the proposed chart, i.e., 
( ) ( ) ( ) ( )

: : : :,  ,  ,  ,R R R R

X a m X b m Y c m Y d mLCL X UCL X LCL Y UCL Y     

with 1 a b m    and 1 d m  c . After the test sample is collected, the rth 

and sth order statistics ( )

:

T

r nX  and 
( )

:

T

s nY , respectively. In particular, the underlying 

process is declared to be "in-control", if the following two conditions hold true: 
( ) ( ) ( ) ( ) ( ) ( )

: : : : : : and R T R R T R

a m r n b m c m s n d mX X X Y Y Y      (1) 

It is worth mentioning that if the medians of the test sample are used, both ,  r s  

are set equal to ( 1) / 2n , when n  is odd and equal to / 2n , when n  is even. 
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For these cases, it is quite reasonable to resort to control limits symmetrically 

placed around the median, and therefore the design parameters b and d are 

selected as 1b m a    and 1d m c   .  

In the sequel, we shall be denoting by ( , )C u v  and ( , )D u v  the bivariate 

copulas associated with ( , )F x y  and ( , )G x y , respectively. Then, according to 

Sklar's theorem, Sklar [9], the joint distributions ( , )F x y  and ( , )G x y  are given 

by  

( , ) ( ( ), ( ))X YF x y C F x F y  and ( , ) ( ( ), ( ))X YG x y D G x G y  (2) 

In general, a bivariate copula combines the joint cdf with its univariate 

margins and is used to describe the dependence structure between two random 

variables. If the marginal distributions are continuous, then the copula is unique.  

If the test sample comes from a continuous cdf ( , )G x y , the probability that 

the proposed chart does not signal is given by 
( ) ( ) ( ) ( ) ( ) ( )

, : : : : : :( , ; , , , ; , ) (  and )R T R R T R

F G a m r n b m c m s n d mp p m n a b c d r s p X X X Y Y Y       (3) 

which is, in fact, the operating characteristic function of the new chart, while 

1 p  provides the signaling probability of an event. We will now introduce the 

following Lemma which will be used to calculate the above probability p.  

 

Lemma 1. Let ( , ) ~ ( , ), 1,2,...,i iX Y F x y  i n  with marginals ( ),  ( )X YF x F y  and 

associated copula ( , )C x y . Then the joint cdf of the random variables  

: : : :( )  ( )r n X r n s n Y s nU F X and V F Y   

is given by the formula  

     ( ) ( )

, : : :( , ) , , , , , ; ,
n n

C C

r s n r n s n n n

i r j s k

F u v P U u V v a i j k q i j k u v
 

     

for 1   1r n and s n    , where  

       

 

( ) , , ; , ( , ) ( , ) ( , )

                                   1 ( , ) ,

k i k j kC

n

n i j k

q i j k u v C u v u C u v v C u v

u v C u v

 

  

    

   
 

 

(4) 

 
     

!
, ,

,  ,  ,  ! ! ! !
n

nn
a i j k

k i k j k n i j kk i k j k n i j k

 
   

          
 

and the inner summation is performed for (0 ) ( )max ,i i n k min i, j    . 

 

Proof. It is obvious that 
( ) 1 1

, : : : : :( , ) ( ( ) , ( ) ) ( ( ), ( ))C

r s n X r n Y s n r n X s n YF u v P F X u F Y v P X F u Y F v        

and the result follows immediately on making use of the well known formula 

(see Arnold et. al [2] and David and Nagaraja [7])  

 

 min ,

: :

max 0,

( , ) ( , , )( ( , )) ( ( ) ( , ))

( ( ) ( , )) (1 ( ) ( ) ( , )) .

i jn n
k i k

r n s n n X

i r j s k i j n

j k n i j k

Y X Y

P X x Y y a k i j F x y F x F x y

F y F x y F x F y F x y



    

   

   

    

 
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The proof of the lemma is completed by taking into account the expression (2) 

and by noticing that 1 1 1 1( ( ), ( )) ( ( ( ), ( ( ))) ( , )X Y X X Y YF F u F v C F F u F F v C u v     , 

1( ( )X XF F u u   and 1( ( ))Y YF F v v  .                 

 

At this point, it should be mentioned that the copula of the random variables 

: :( )r n X r nU F X  and 
: :( )s n Y s nV F Y  is equal to the copula of the random 

variables 
:r nX  and 

:s nY , i.e. 
: : : :, ,( , ) ( , ).

r n s n r n s nX V U VC u v C u v  For more information 

on this result, please refer to the paper of Anjos et al. [1] and Avérous et al. [3]. 

We can now establish the exact formula for the operating characteristic 

function (3) of the proposed chart. 

 

Proposition 1. The operating characteristic function of the control chart 

defined by (1) is given by  

,

2
1 1

( ) 1 1 ( )

, :
0 0

( , ; , , , ; , )

( ( ( )), ( ( ))) ( ; , , , ; , ) 

F G

D C

r s n X X Y Y

p p m n a b c d r s

F G F u G F v H m a b c d u v dudv
u v

 






  
  

(5) 

where 
1 1

1 1 1 1 1

min( , )1 1
( ) ( )

1 1 1 1 1 1

max(0, )

( ; , , , ; , ) ( , , ) ( , , ; , )
i jb d

C C

m m

i j c k i j m

H m a b c d u v a i j k q i j k u v
 

    

 
a

 

and ( )

, : ( , )D

r s nF w t  is the joint cdf described in Lemma 1 for 1( ( ))X Xw G F u  and 

1( ( ))Y Yt G F v .  

 

Proof. Firstly, treating p of (3) as a mean with respect to the joint distribution of  
( ) ( ) ( ) ( )

: : : :,  ,  ,  R R R R

a m b m c m d mX X Y Y , we write the desired probability in the equivalent form  

( ) ( ) ( ) ( ) ( ) ( )

: : : : : :( ( ) ( ) ( ) and ( ) ( ) ( ))R T R R T R

X a m X r n X b m Y c m Y s n Y d mP F X F X F X F Y F Y F Y     

and then apply the conditioning-unconditioning principle on the random 

variables 
( ) ( ) ( ) ( )

: : : : : : : :( ),  ( ),  ( ),  ( )R R R R

a m X a m b m X b m c m Y c m d m Y d mU F X U F X V F Y V F Y     

to gain the integral expression  
2 2

: : : :

1 1
( ) ( )

1 : 2 1 : 2
0 0 0 0

, ; , 1 2 1 2 1 2 1 2

( ( )  and ( ) )

 ( , , , ) ,
a m b m c m d m

v u
T T

X r n Y s n

U U V V

p P u F X u v F Y v

f u u v v du du dv dv

    



     
 

 

(6) 

where 
: : : :, ; , 1 2 1 2( , , , )

a m b m c m d mU U V Vf u u v v  is the joint pdf of : : : :, , ,a m b m c m d mU U V V .  

Let us now write the probability appearing inside the quadruple integral in the 

following form 
1 ( ) 1 1 ( ) 1

1 : 2 1 : 2

1 ( ) 1 1 ( ) 1

1 : 2 1 : 2

[ ( ) ( ) and ( ) ( )]

[ ( ( )) ( ) ( ( )), ( ( )) ( ) ( ( ))]

T T

X r n X Y s n Y

T T

X X X r n X X Y Y Y s n Y Y

P F u X F u F v Y F v

P G F u G X G F u G F v G Y G F v

   

   

    

   

and exploit the Lemma 1 to get 
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( ) 1 1 ( ) 1 1

, : 2 2 , : 1 1

( ) 1 1 ( ) 1 1

, : 1 2 , : 2 1

( ( ( )), ( ( ))) ( ( ( )), ( ( ))) 

( ( ( )), ( ( ))) ( ( ( )), ( ( ))).

D D

r s n X X Y Y r s n X X Y Y

D D

r s n X X Y Y r s n X X Y Y

F G F u G F v F G F u G F v

F G F u G F v F G F u G F v

   

   



 
  

(7) 

Now by substituting the expression (7) in the integral (5) and changing the order 

of integration the following four integrals pop up  

: :

: :

: :

1 1
( ) 1 1

1 , : 2 2 ; 2 2 2 2
0 0

1 1
( ) 1 1

2 , : 1 1 ; 1 1 1 1
0 0

1
( ) 1 1

3 , : 1 2 ; 1 2 1 2
0

( ( ( )), ( ( ))) ( , )

( ( ( )), ( ( ))) ( , )

( ( ( )), ( ( ))) ( , )

b m d m

a m c m

a m d m

D

r s n X X Y Y U V

D

r s n X X Y Y U V

D

r s n X X Y Y U V

I F G F u G F v f u v du dv

I F G F u G F v f u v du dv

I F G F u G F v f u v du dv

 

 

 







 

 

: :

1

0

1 1
( ) 1 1

4 , : 2 1 ; 2 1 2 1
0 0

( ( ( )), ( ( ))) ( , ) ,
b m c m

D

r s n X X Y Y U VI F G F u G F v f u v du dv 

 

 

 

where ( )

, : ( , )C

r s nf u v is the joint density function of the cdf described in Lemma 1. 

In view of the above results the integral (6) reduces to  
1 1

( ) 1 1

, :
0 0

( ) ( ) ( ) ( )

, : , : , : , :

2
1 1

( ) 1 1 ( )

, :
0 0

( ( ( )), ( ( )))

 ( , ) ( , ) ( , ) ( , )

( ( ( )), ( ( ))) ( ; , , , ; , ) ,

D

r s n X X Y Y

C C C C

b d m a c m a d m b c m

D C

r s n X X Y Y

p F G F u G F v

f u v f u v f u v f u v dudv

F G F u G F v H m b c d u v dudv
u v



 

 



     




 

 

 

 

where  

1 1

1 1 1 1 1

( ) ( ) ( ) ( ) ( )

, : , : , : , :

min( , )1 1
( )

1 1 1 1 1 1

max(0, )

( ; , , , ; , ) ( , ) ( , ) ( , ) ( , )

( , , ) ( , , ; , ).

C C C C C

b d m a c m a d m b c m

i jb d
C

m m

i a j c k i j m

H m a b c d u v F u v F u v F u v F u v

a i j k q i j k u v
 

    

   

 
 

Finally, a direct application of the previous lemma yields  

 

 

( ) 1 1

, :

min ,

( ) 1 1

max 0,

( ( ( )), ( ( )))

( , , ) ( , , ; ( ( )), ( ( )))

D

r s n X X Y Y

i jn n
D

n n X X Y Y

i r j s k i j n

F G F u G F v

a i j k q i j k G F u G F v

 

 

    



 
 

where ( ) ( , , ; , )D

nq i j k u v  is calculated by formula (4), with C replaced by D, and 

the proof is over.                   

 

An exact formula for the alarm rate of the new chart is given below. 

 

Proposition 2. If X XF G  and Y YF G , then the Alarm Rate (AR) of the 

control chart can be expressed as follows  
2

1 1
( , ) ( ) ( )

, :
0 0

( , ; , , , ; , ) 1 ( , ) ( ; , , , ; , ) C D D C

r s nAR AR m n a b c d r s F u v H m a b c d u v dudv
u v


  

    

or equivalently by 
1 1

1 1 1 1 1

min( , )min( , ) 1 1

1 1 1

max(0, ) max(0, )

( , )

1 1 1

1 ( , , ) ( , , )

 ( , , ; , , )

i ji jn n b d

n m

i r j s k i j n i a j c k i j m

C D

AR a i j k a i j k

Q i j k i j k

 

         

 



   
 

 

 

(8) 
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 where  

 
1 2 3

31 2 1 2

1 1
( , ) ( ) ( )

1 1 1 1 1 1
0 0

( )

0 0 0 31 2

( , , ; , , ) ( , , ; , ) ( , , ; , ) ,

, , ; ,

 ( 1) (1 ) ( ( , ))

C D D C

n m

j k n i j ki k
D

n

r r r

r n k ri j r r r r

Q i j k i j k q i j k u v q i j k u v dudv
u v

n i j ki k j k
q i j k u v

rr r

u v u v D u v

   

  

   

 
 

 

       
    

   

   

 

 

1 2 3

1 1 1 1 1 1 1

1 2 3

3 1 1 2 31 1 1 2 1 2

1 1 11 1 1 1( )

1 1 1

0 0 0 31 2

,

( , , ; , )

 ( 1) (1 ) ( ( , )) .

r r

i k j k m i j k
C

m

s s s

s m k s s si j s s s s

m i j ki k j k
q i j k u v

ss s

u v u v C u v

 

    

  

     

       
    

   

   

  

 

 

Proof. Since 
X XF G  and 

Y YF G , we have 1( ( ))X XG F u u  , 1( ( ))Y YG F v v   

and the formula (5) of Proposition 1 takes on the form 
2

1 1
( , ) ( ) ( )

, :
0 0

( , ; , , , ; , ) 1 ( , ) ( ; , , , ; , ) C D D C

r s nAR AR m n a b c d r s F u v H m a b c d u v dudv
u v


  

  
Let us now apply integration by parts in double integral of the above expression. 

The first summand which appears is 
 1

1
( ) ( )

, :
0

 0

( , ) ( ; , , , ; , )   D C

r s n

u

I F u v H m a b c d u v dv
v 

 
  

  , 

where 

 

( ) ( ) ( ) ( ) ( )

, : , : , : , :

,

,

,

,

( ; , , , ; , ) ( , ) ( , ) ( , ) ( , )

 ( ( , 1), ( , 1))

( ( , 1), ( , 1))

( ( , 1), ( , 1))

( ( , 1), (

b d

a c

a d

b c

C C C C C

b d m a c m a d m b c m

U V u v

U V u v

U V u v

U V u v

H m a b c d u v F u v F u v F u v F u v

C I b m b I d m d

C I a m a I c m c

C I a m a I d m d

C I b m b I c

   

    

    

    

   , 1))m c 

 

and 

1 1

0

( , ) 1
( , ) (1 )

( , ) ( , )

x
a bx

x

B a b
I a b t t dt

B a b B a b

     

denotes the incomplete beta function ratio. The integral I  is equal to zero. This 

result is direct by taking into account the properties: ( ,1)C u u , (1, )C v v , 

( ,0) (0, ) 0C u C v   and noticing that  

( ) ( )( ; , , , ;1, ) ( ; , , , ;0, ) 0C CH m a b c d v H m a b c d v  . 

So, the AR  can equivalently be written as 

1 1
( ) ( )

, :
0 0

1 ( , ) ( ; , , , ; , ) .D C

r s nAR F u v H m a b c d u v dudv
u v

 
 

    

Taking into account Lemma 1, we get 
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1 1

1 1 1 1 1

min( , )min( , ) 1 1
( , )

1 1 1 1 1 1

max(0, ) max(0, )

1 ( , , ) ( , , ) ( , , ; , , )
i ji jn n b d

C D

n m

i r j s k i j n i a j c k i j m

AR a i j k a i j k Q i j k i j k
 

         

    

where 
1 1

( , ) ( ) ( )

1 1 1 1 1 1
0 0

( , , ; , , ) ( , , ; , ) ( , , ; , ) C D D C

n mQ i j k i j k q i j k u v q i j k u v dudv
u v

 
 

   . 

Observe next that the multiplicands appearing inside the double integral of the quantity  
( )( , , ; , ) ( ( , )) ( ( , )) ( ( , )) (1 ( , ))D k i k j k n i j k

nq i j k u v D u v u D u v v D u v u v D u v           

can be expressed by the aid of the binomial expansion as 

 

 

 

1 1 1

1

2 2 2

2

3 3

3

0 1

0 2

0 3

( , )  ( 1) ( ( , ))

( , ) ( 1) ( ( , ))

1 ( , ) (1 ) ( ( , )) .

i k
i k r i k r i k r

r

j k
j k r j k r j k r

r

n i j k
n i j k r n i j k r

r

i k
u D u v u D u v

r

j k
v D u v v D u v

r

n i j k
u v D u v u v D u v

r


    




    



  
      



 
   

 

 
   

 

   
      

 







 

Algebraic operations can now be easily carried out to obtain the next alternative 

expression for  

 
1 2 3

3 1 2 31 2 1 2

( )

0 0 0 31 2

, , ; ,

 ( 1) (1 ) ( ( , ))

j k n i j ki k
D

n

r r r

r n k r r ri j r r r r

n i j ki k j k
q i j k u v

rr r

u v u v D u v

   

  

     

       
    

   

   

 
 

and similar results apply to the quantity ( )

1 1 1( , , ; , )C

mq i j k u v . Combining all the 

above expressions we derive the AR and the proof is over.             

 

It is worth mentioning that if X XF G , Y YF G  and in addition C D , the 

False Alarm Rate (FAR) of the suggested chart is obtained, i.e.  
2

1 1
( , ) ( ) ( )

, :
0 0

( , ; , , , ; , ) 1 ( , ) ( ; , , , ; , ) .C C C C

r s nFAR AR m n a b c d r s F u v H m a b c d u v dudv
u v


  

  
 

3 Performance Study - Numerical Comparisons 
 

As already mentioned, in this Section we will present tables for the 

implementation of the new chart for some typical in-control ARL values and 

false alarm rates. The ARL and the FAR can be evaluated numerically for any 

choice of the design parameters. In order to reduce the parameters tabulated, 

from all the several available choices, r and s (with r s ) were set equal to 

( 1) / 2n  , because the medians of test and the reference sample were used, 

while ,  a b  and ,  c d  were chosen symmetrically ( 1b m a   , 1d m c   ). 

As a result, the control limits utilized are symmetric order statistics, i.e.  
( ) ( ) ( ) ( ) ( ) ( )

: : 1: : : 1:,  ,  ,  R R R R R R

X a m X b m m a m Y c m Y d m m c mLCL X UCL X X LCL Y UCL Y Y         . 

The design parameters were suitably determined, to attain the pre-specified 

value of ARL and FAR as close to their target values as possible.  
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 (m = 40) Mean Shift ( ) ( )( )T T

out X Y     

n 
( )
( , )
a,b
c d

 -2 -1.5 -1 0.5 0 0.5 1 1.5 2 

F-G-M Copula 
1 2( 0.3)     

5 (4, 37) 0.98 0.85 0.50 0.16 0.05 0.16 0.50 0.85 0.98 

 (5, 36) 1 0.91 0.62 0.23 0.08 0.23 0.60 0.91 0.99 

 (6, 35) 1 0.95 0.70 0.31 0.12 0.30 0.71 0.95 1 

11 (7, 34) 1 0.99 0.79 0.26 0.05 0.26 0.79 1 1 

 (8, 33) 1 1 0.86 0.35 0.08 0.35 0.86 1 1 

 (9, 32) 1 1 0.91 0.44 0.13 0.45 0.91 1 1 

25 (9, 32) 1 1 0.93 0.35 0.04 0.35 0.94 1 1 

 (10, 31) 1 1 0.97 0.46 0.06 0.46 0.97 1 1 

 (11, 30) 1 1 0.99 0.54 0.10 0.58 0.99 1 1 

A-M-H Copula 1 2( 0.3)     

5 (4, 37) 0.98 0.85 0.49 0.15 0.05 0.16 0.49 0.85 0.98 

 (5, 36) 0.99 0.92 0.60 0.23 0.08 0.23 0.61 0.92 0.99 

 (6, 35) 1 0.95 0.71 0.30 0.13 0.30 0.70 0.95 1 

11 (7, 34) 1 0.99 0.78 0.26 0.05 0.25 0.79 0.99 1 

 (8, 33) 1 1 0.85 0.36 0.09 0.35 0.86 1 1 

 (9, 32) 1 1 0.91 0.44 0.13 0.44 0.91 1 1 

25 (9, 32) 1 1 0.94 0.34 0.03 0.35 0.94 1 1 

 (10, 31) 1 1 0.97 0.47 0.06 0.46 0.97 1 1 

 (11, 30) 1 1 0.98 0.58 0.10 0.58 0.99 1 1 

Clayton-Pareto Copula 1 2( 2)    

5 (4, 37) 0.97 0.81 0.46 0.14 0.05 0.15 0.47 0.81 0.97 

 (5, 36) 0.99 0.88 0.56 0.21 0.08 0.22 0.57 0.88 0.98 

 (6, 35) 0.99 0.93 0.66 0.28 0.12 0.28 0.66 0.92 0.99 

11 (7, 34) 1 0.98 0.74 0.24 0.05 0.25 0.75 0.98 1 

 (8, 33) 1 0.99 0.81 0.32 0.08 0.33 0.82 0.99 1 

 (9, 32) 1 0.99 0.88 0.41 0.13 0.42 0.87 0.99 1 

25 (9, 32) 1 1 0.90 0.32 0.03 0.33 0.91 1 1 

 (10, 31) 1 1 0.90 0.43 0.06 0.44 0.95 1 1 

 (11, 30) 1 1 0.97 0.53 0.10 0.53
71 

0.98 1 1 

Table I. AR for a given design 
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   Bivariate Normal Data  Bivariate t Data with 5 d.f. 

n 
Mean  

Shift 

 2SN  2SR  2  New Chart  2SN  2SR  2  New Chart 

 UCL=8.69 UCL=8.78 UCL=10.60 166a c    UCL=8.70 UCL=8.73 UCL=12.2

2 
166a c   

15 (0.0, 0.0)  199.96 199.63 202.05 199.785  206.289 200.296 196.207 201.14 

 (0.2, 0.2)  75.35 66.42 51.40 66.18  53.46 46.73 74.60 57.85 

 (0.4, 0.4)  18.94 15.19 9.52 15.04  11.79 9.55 15.32 11.26 
 (0.6, 0.6)  6.52 4.94 2.91 4.71  4.80 3.30 4.07 3.30 

 (0.8, 0.8)  2.92 2.29 1.47 2.20  2.05 1.78 1.70 1.57 

 (1.0, 1.0)  1.75 1.41 1.10 1.37  1.43 1.29 1.15 1.12 

   UCL=9.80 UCL=9.72 UCL=10.60 250,  245a c 

 

 UCL=9.76 UCL=9.64 UCL=11.4

9 
250,  245a c   

30 (0.0, 0.0)  204.98 198.08 199.79 201.022  199.81 197.77 199.68 198.68 

 (0.3, 0.6)  3.37 2.21 1.75 2.88  6.72 4.93 6.45 5.02 
 (0.3, 0.9)  1.38 1.10 1.03 1.23  2.58 1.91 1.7078 1.64 

 (0.6, 0.3)  3.31 2.18 1.75 2.72  6.60 4.94 6.47 5.54 

 (0.6, 0.9)  1.26 1.08 1.03 1.18  2.19 1.81 1.73 1.55 

 (0.9, 0.3)  1.39 1.09 1.03 1.20  2.61 1.92 1.75 1.72 
 (0.9, 0.6)  1.27 1.09 1.03 1.15  2.22 1.83 1.71 1.60 

   UCL=10.08 UCL=10.05 UCL=10.60 166a c    UCL=10.06 UCL=10.0
3 

UCL=11.1
7 

166a c   
50 (0.0, 0.0)  202.77 194.58 200.97 204.82  200.14 197.70 199.02 206.56 

 (0.2, 0.2)  20.31 14.64 12.50 21.74  11.80 9.77 14.86 12.97 

 (0.6, 0.6)  1.14 1.06 1.04 1.12  1.06 1.03 1.05 1.03 

   UCL=10.08 UCL=10.05 UCL=10.60 294,  299a c 

 

 UCL=10.06 UCL=10.0

3 

UCL=11.1

7 
294,  299a c   

 (0.3, 0.6)  1.70 1.25 1.15 1.52  1.27 1.13 1.17 1.13 
 (0.9, 0.3)  1.05 1.00 1.00 1.02  1.00 1.00 1.00 1.00 

Table II. Comparison of the ARLout of control charts with approximately the same ARLin 
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The performance of a control chart is usually assessed by checking its 

potential to detect process shifts as fast as possible. The typical method used is 

to pre-specify a common value for the FAR and then look at the out-of-control 

values (AR) for several process mean shifts. In Table I, we have considered 

three different FAR levels (from approximately 5 to 10%) for three copulas with 

standard normal marginal distributions. For our calculations we used the Farlie-

Gumbel-Morgenstern, the Ali-Mikhail-Haq (A-M-H) and the Clayton-Pareto 

copula which are respectively given by  

 

2

2

( , ) [1 (1 )(1 )],       1 1

( , ) /[1 (1 )(1 )] ,    1 1

( , ) ( 1 ) ,                         0.

C u v uv u v

C u v uv u v

C u v u v





 



 

 

 

      

      

   

 

It should be mentioned that the suggested chart remains unaffected by the 

choice of the marginal distributions. Then, we computed the AR as the means 
( ) ( )T T

X Y 
 
of the test sample shift from the in-control value ( ) ( ) 0R R

X Y   . 

 It is obvious that our chart is quite sensitive and capable of identifying process 

mean shifts quickly. In addition, the tables presented clearly indicate that no matter 

what copula is used the FAR is almost the same for fixed values of the parameters m, 

n, r, s, a, b, c, d, which can be used for the design of the new chart. Consequently, 

the performance of the chart might be typically affected by the dependence structure 

of the underlying characteristics, but the FAR does not change crucially. The same 

holds true for the in-control ARL, as we will see below. 

In order to study and compare the performance of the proposed chart to its 

parametric and nonparametric counterparts, data from multivariate normal and t 

distribution (with 5 degrees of freedom) were generated and used for the calculation 

of the ARL values. It is worth mentioning here that the t distribution is one of the 

most popular multivariate non-normal distributions used in simulation studies. The 

distribution parameters utilized are the same as those considered in the publication 

of Boone and Chakraborti [5], which are presented below as follows 

0 1 0.5
,

0 0.5 1
 

   
      
   

   and (5)

0.6 0.3

0.3 0.6
t

 
 
 

  . 

It is important to note that ( )t   was suitably chosen in order to achieve the 

same covariance matrix for both distributions. Moreover, we assume that a c , 

when equal shifts occur and a c  otherwise. In what follows, the new chart is 

compared to the SN
2
 and SR

2
 charts of Boone and Chakraborti [5] as well as to the 

traditional χ
2
 in terms of its out-of-control ARL. The control limit values of SΝ

2
, 

SR
2
 and χ

2
 were the same proposed by Boone and Chakraborti [5]. For the study, 

the ARLin was set to 200 (or nearly) with FAR being equal to 0.005. To estimate 

the in and out-of-control ARL values for the proposed chart, the same assumptions 

were made, as previously. The results are presented in Tables II and III. 

The simulation study carried out reveals that the charts perform very similarly. 

In the case that the data are multivariate normal, the χ
2
 chart performs slightly better. 

This was expected as the parametric distributional assumption holds true. When the 

data are not normal, the charts seem to perform almost the same, with the new and 

the SR
2
 chart performing sometimes better than the χ

2
 chart. The SR

2
 chart detects a 
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shift more quickly than the SN 

2
 chart, which can be explained by the fact that the 

Wilcoxon signed-rank test is more powerful than the sign test in cases of symmetric 

and light-tailed distributions. Although the attained ARLin values are sometimes 

higher than desired, it should be noted that the proposed chart detects shifts very 

quickly. Finally, the new chart seems to outperform the others, when both means 

shift unequally from their in-control values.  

 

4 Conclusions 
 

As the simulation study revealed, the new control chart offers a simple tool 

which is equivalent or slightly better, in terms of performance power, to the SR
2
, 

SN
2
 and χ

2
 charts. Although the new chart is typically affected by the 

dependence structure of the characteristics under study, the values of FAR and 

ARLin are almost the same when different distributions or copulas are used; this 

is an appealing property, since it could be used as a fully non-parametric control 

chart (although formally it should be labelled as a semiparametric one). Besides 

its simplicity, the implementation of the new chart does not require any 

assumptions on the form of the bivariate distribution that the characteristics 

under study follow. This is a strong advantage when compared to other non-

parametric control charts available in the literature. For example, the SR
2
 chart 

can only be used under the assumption of diagonal symmetry on the underlying 

bivariate distribution (otherwise its test statistic cannot be computed), while 

both the SN
2
 and SR

2
 charts require the inversibility of the estimation of the 

process covariance matrix. Hence, the new chart seems to be a highly useful tool 

to a quality practitioner, not only because of its simplicity and high performance 

but for offering a valid tool for cases where alternative non-parametric control 

charts cannot be used. 
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Abstract. In the paper the basic notions of the ageing multistate systems reliability 
analysis are introduced. The system multistate components and the multistate system 

reliability functions are defined and the mean values of the multistate system lifetimes in 

the reliability state subsets and in the particular reliability states are determined. The 

notion of the multistate system risk function and the moment of the system exceeding the 
critical reliability state are introduced. The series and series - parallel reliability 

structures of the multistate systems with ageing components with hot single reserve are 

defined and their reliability functions and mean values are determined. Further, in the 

developed reliability models, it is assumed that the system's components have the 
multistate Weibull reliability functions with various parameters in their different 

reliability state subsets. Under this assumption, the proposed multistate system reliability 

models are applied in maritime transport to the reliability analysis of a bulk cargo 

transportation system and its reliability function, moreover other main characteristics are 
determined. 

Keywords: multistate system, reliability function, risk function, redundancy    

 

 

1  Introduction 
 

Taking into account the complexity of the failure processes of real technical 

systems, it seems reasonable to expand the two-state approach to multi-state 

approach [1] in the system reliability analysis. The assumption that the system is 

composed of multistate components with reliability states degrading in time [2] 

gives possibility for more precise analysis of its reliability. This assumption 

allows us to distinguish a system reliability critical state, which exceeded is 

either dangerous for the environment or does not assure the necessary level of 

the effectiveness of its operations process. Then, an important system reliability 

characteristic is the time to the moment of exceeding the system reliability 

critical state and its distribution, which is called the system risk function. This 

distribution is strictly related to the system multistate reliability function, which 

is a basic characteristic of the multistate system. Next, the assumption that the 

system's components have single hot reserve gives the possibility to improve the 
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system's reliability and extend the time to the moment of exceeding the system 

reliability critical state. This approach may be successfully applied to a wide 

class of real ageing technical systems, for instance to reliability analysis, 

identification and prediction of the bulk cargo terminal transportation system, 

which is demonstrated in the paper. 

 

2  Multistate approach to system reliability analysis  
 

In the multistate reliability analysis to define a system composed of n, n  N 

ageing components we assume that: 

– Ei, i = 1,2,...,n, are components of a system, 

– all components and a system under consideration have the set of reliability 

states {0,1,...,z}, z ≥ 1, 

– the reliability states are ordered, the state 0 is the worst and the state z is the 

best, 

– the component and the system reliability states degrade with time t, 

– Ti(u), i = 1,2,...,n, n  N, are independent random variables representing the 

lifetimes of components Ei in the reliability state subset {u,u + 1,...,z}, while 

they were in the reliability state z at the moment t = 0, 

– T(u) is a random variable representing the lifetime of a system in the 

reliability state subset  {u,u + 1,...,z}, while it was in the reliability state z at 

the moment t = 0, 

– si(t) is a component Ei reliability state at the moment t, t0,), given that it 

was in the reliability state z  at the moment t = 0, 

– s(t) is the system reliability state at the moment t, t0,), given that it was in 

the reliability state z at the moment t = 0. 

The above assumptions mean that the reliability states of the ageing system and 

components may be changed over time only from better to worse.  

Definition 1. A vector  

)],(,),1,(),0,([),( ztRtRtRtR iiii  ,  for t0,), i = 1,2,...,n,                    (1) 

where 

))(())0(|)((),( tuTPzsutsPutR iiii                                                    (2) 

for t0,), ,,,1,0 zu  is the probability that the component Ei is in the 

reliability state subset },...,1,{ zuu   at the moment t, t0,), while it was in 

the reliability state z at the moment t = 0, is called the multistate reliability 

function of a component Ei. 

Definition 2. A vector 

)],,(,),1,(),0,([),( ztttt RRRR  ),,0 t                                                      (3) 

where   

),( utR  = P(s(t)  u  s(0) = z) = P(T(u) > t)                                                       (4) 

for t0,), u = 0,1,...,z, is the probability  that the system is in the reliability 

state subset {u,u + 1,...,z} at the moment t, t0,), while it was in the 

reliability state z at the moment t = 0, is called the multistate reliability function 
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of a system.  The reliability functions ),( utRi
and R(t,u), t0,), u = 0,1,...,z, 

defined by (2) and (4) are called the coordinates of the components and the 

system multistate reliability functions ),( tRi
 and R(t , ) are given by 

respectively (1) and (3). It is clear that from Definition 1 and Definition 2, for 

,0u  we have Ri(t,0) = 1 and  .1)0,( tR   

Under the above definitions, the mean value of the system lifetime T(u) in the 

reliability state subset {u,u+1,...,z} is given by 




0

,),()( dtutu R  u = 1,2,…,z.                                                                 (5) 

Moreover, the mean values of the system lifetimes in particular reliability states 

are given by 

),1()()(  uuu   u = 0,1,...,z – 1, ),()( zz                    (6) 

where (u)  u = 0,1,...,z are given by (5). 

Further, if r is the system critical reliability state, then the system risk function 

is given by [2], [3] 

),,(1)( rtRtr   t0,), (7) 

and if τ is the moment when the system risk function exceeds a permitted level 

δ, then if )(1
tr


 exists we have 

)(1 δ rτ , (8) 

where )(1
tr


 is the inverse function of the risk function )(tr . 

Now, after introducing the notion of the multistate reliability analysis, we may 

define basic multistate reliability structures. 

Definition 3. A multistate system is called a series if its lifetime T(u) in the 

reliability state subset {u,u + 1,...,z} is given by T(u) = )}({min
1

uTi
ni

, u = 1,2,...,z.  

The reliability function of the multistate series system is given by the vector  

),( tR  = [1, )1,(tR ,..., ),( ztR ]  (9) 

with the coordinates    

),( utR  = 


n

i
i utR

1

),( , ),,0 t  u = 1,2,...,z.  (10) 

Definition 4. A multistate system is called series-parallel if its lifetime T(u) in 

the reliability state subset  {u,u + 1,...,z} is given by T(u) = )}}({min{max
11

uTij
ljki in 

,  

u = 1,2,...,z.   

The reliability function of the regular multistate series-parallel system is given 

by the vector  

R(t , ) = [1, R(t,1),..., R(t,z)],  (11) 

with the coordinates   

R(t,u) =  
 

n ik

i

l

j
ij utR

1 1

)],(1[1 , t (–,), u = 1,2,...,z, (12) 

where nk  is the number of series subsystems linked in parallel and il  is the 

number of components in the series subsystem. 
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3  Multistate approach to system reliability improvement 

analysis  
 

Definition 5. A multi-state series system is called a series system with a hot 

reserve of its components if its lifetime T
)
(u) in the state subset {u,u+1,...,z} is 

given by [5] ,)}}({max{min)(
211

uTuT ij
jni 

  u = 1,2,...,z,               

where Ti1(u) are the lifetimes of the system's basic components and Ti2(u) are the 

lifetimes of their reserve components. 

 

The scheme of this kind of series system is shown in Figure 1. 

 

     

 

 

 

 

Figure 1. The scheme of a series system with a hot reserve of its components. 

 

The reliability function of the non-homogeneous  multi-state  series system  

with a hot  reserve  of  its  components is  given by a vector 

IR (t , ) = [1, IR (t,1),..., IR (t,z)],                                                                  (13) 

where 

 


n

i
i utFut

1

2 ])],([1[),(IR , ),,0 t  u = 1,2,...,z.                         (14) 

Definition 5. A multistate system is called series-parallel system with a hot 

reserve of its components if its lifetime T(u) in the reliability state subset  

{u,u + 1,...,z} is given by  T(u) = )}}}({max{min{max
2111

uTijk
kljki in 

,  u = 1,2,...,z,  

where Tij1(u) are the lifetimes of the system's basic components and Tij2(u) are 

the lifetimes of the reserve components. 

The reliability function of the regular multistate series-parallel system with a hot  

reserve  of  its  components is given by the vector  

IR(t , ) = [1, IR(t,1),..., IR(t,z)],  (15) 

with the coordinates   

IR(t,u) =   
 

n ik

i

l

j
ij utF

1 1

2 ])],([1[1[1 , t (–,), u = 1,2,...,z,  (16) 

where 
nk  is the number of series subsystems linked in parallel and 

il  is the 

number of components in the series subsystem. 

 

4  Bulk cargo transportation system - technical description  
 

The considered bulk cargo terminal placed at the Baltic seaside is designated for  

storage and reloading of bulk cargo such as different kinds of fertilizers e.g.: 

E11 E21 En-11 
En1 

E12 E22 En-12 En2 
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ammonium sulphate, but its main area of activity is to load bulk cargo on board 

the ships for export.  There are two independent transportation systems: 

1. The system of reloading rail wagons.  2. The system of loading vessels. 

Cargo is brought to the terminal by trains consisting of self discharging wagons, 

which are discharged to a hopper and then by means of conveyors are 

transported into the one of four storage tanks (silos). Loading of fertilizers from 

storage tanks on board the ship is done by means of a special reloading system, 

which consists of several belt conveyors and one bucket conveyor, which allows 

for the transfer of bulk cargo in a vertical direction. Researched system is a 

system of belt conveyors, reffered to as the transport system. In the conveyor 

reloading system, we distinguish three bulk cargo transportation subsystems, the 

belt conveyors S1, S2 and S3.  The conveyor loading system is composed of six 

bulk cargo transportation subsystems, the dosage conveyor S4, the horizontal 

conveyor S5, the horizontal conveyor S6, the sloping conveyor S7,  the dosage 

conveyor with buffer S8, and the loading system S9.  

The bulk cargo transportation subsystems are built, respectively:  

- the subsystem 1S  composed of 1 rubber belt, 2 drums, a set of 121 bow 

rollers, and a set of 23 belt supporting rollers,  

- the subsystem 2S  composed of 1 rubber belt, 2 drums, a set of 44 bow rollers, 

and a set of 14 belt supporting rollers,  

- the subsystem 
3S  composed of 1 rubber belt, 2 drums, a set of 185 bow 

rollers, and a set of 60 belt supporting rollers,  

- the subsystem 4S  composed of three identical belt conveyors, each composed 

of 1 rubber belt, 2 drums, a set of 12 bow rollers, and a set of 3 belt supporting 

rollers,  

- the subsystem 5S  composed of 1 rubber belt, 2 drums, a set of 125 bow 

rollers, and a set of 45 belt supporting rollers,  

- the subsystem 6S  composed of 1 rubber belt, 2 drums, a set of 65 bow rollers, 

and a set of 20 belt supporting rollers,  

- the subsystem 
7S  composed of 1 rubber belt, 2 drums, a set of 12 bow rollers, 

and a set of 3 belt supporting rollers,  

- the subsystem 8S  composed of 1 rubber belt, 2 drums, a set of 162 bow 

rollers, and a set of 53 belt supporting rollers,  

- the subsystem 
9S  composed of 3 rubber belts, 6 drums, a set of 64 bow 

rollers, and a set of 20 belt supporting rollers.  

The scheme of the bulk cargo transportation system is presented in Figure 2.  
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Figure 2. The scheme of port bulk cargo transportation system. 

 

Further, assuming that the system is in the reliability state subset {u,u+1,…,z}, 

if all of its subsystems are in this subset of reliability states, we conclude that 

the bulk cargo transportation system is a series system [4] of series subsystems 

1S , 2S ,
3S ,

5S ,
6S ,

7S ,
8S ,

9S  and series-parallel subsystem 4S , with a scheme 

presented in Figure 3. 
 

 

 

 

 
Figure 3. The scheme of port bulk cargo transportation system reliability structure 

 

5  Reliability parameters of bulk cargo transportation system 
 

After discussion with experts, in the reliability analysis of the bulk cargo 

transportation system we distinguish the following four reliability states (z = 3) 

of the considered system and its components: 

 reliability state 3 – ensuring the highest efficiency  of the conveyor,  

 reliability state 2 – ensuring lower efficiency of the working conveyor, which 

is spilling cargo out of the belt caused by partial damage to some of the rollers  

or misalignment  of the belt,  

 reliability state 1 – ensuring lower efficiency of the working conveyor 

controlled directly by an operator, 

 reliability state 0 – the conveyor is unable to work, which my be caused by 

e.g.: breakage of the belt or failure of the rollers.  
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4S  
)()4( uij

3,2,1j  
5S  )()5( ui  6S  

 

)()6( ui  

1i   1i   1i   

1u  0,01208 1u  0,01208 1u  0,01208 

2u  0,02190 2u  0,02190 2u  0,02190 

3u  0,04909 3u  0,04909 3u  0,04909 

3,2i    3,2i   3,2i   

1u  0,00189 1u  0,00189 1u  0,00189 

2u  0,00238 2u  0,00238 2u  0,00238 

3u  0,00292 3u  0,00292 3u  0,00292 

15

,...,4i
 

 

128

,...,4i
 

 67

,...,4i
 

 

1u  0,02806 1u  0,00739 1u  0,00739 

2u  0,02986 2u  0,01208 2u  0,01208 

3u  0,03205 3u  0,02112 3u  0,02112 

18

,...,16i

 
  173

,...,129i

 
 88

,...,68i

 
 

1u  0,00594 1u  0,00204 1u  0,00204 

2u  0,01003 2u  0,00246 2u  0,00246 

3u  0,02011 3u  0,00302 3u  0,00302 

 

7S  
 

)()7( ui  

 

8S  

 

)()8( ui  9S  
 

)()9( ui  

1i   1i   3,2,1i

 

 

1u  0,01208 1u  0,01208 1u  0,01208 

2u  0,02190 2u  0,02190 2u  0,02190 

3u  0,04909 3u  0,04909 3u  0,04909 

3,2i   3,2,1i

3,2i  

 9,..,4i

 
 

1u  0,00189 1u  0,00189 1u  0,00189 

2u  0,00238 2u  0,00238 2u  0,00238 

3u  0,00292 3u  0,00292 3u  0,00292 

15

,...,4i
 

 165

,...,4i
 

 

73

,...,10i

 

 

1u  0,02806 1u  0,00739 1u  0,00466 

2u  0,02986 2u  0,01208 2u  0,00754 

3u  0,03205 3u  0,02112 3u  0,01208 

18

,...,16i

 

 218

,...167i

18,17

,16i
 

 93

,...,74i

 

 

1u  0,00594 1u  0,00204 1u  0,00119 

2u  0,01003 2u  0,00246 2u  0,00181 

3u  0,02011 3u  0,00302 3u  0,00238 

 

 

1S  )()1( ui  2S  )()2( ui  3S  
 

)()3( ui  

1i   1i   1i   

1u  0,01208 1u  0,01208 1u  0,01208 

2u  0,02190 2u  0,02190 2u  0,02190 

3u  0,04909 3u  0,04909 3u  0,04909 

3,2i    3,2i    3,2i    

1u  0,00189 1u  0,00189 1u  0,00189 

2u  0,00238 2u  0,00238 2u  0,00238 

3u  0,00292 3u  0,00292 3u  0,00292 

124

,...,4i
 

  47

,...,4i

 

  188

,...,4i
 

  

1u  0,00739 1u  0,00739 1u  0,00739 

2u  0,01208 2u  0,01208 2u  0,01208 

3u  0,02112 3u  0,02112 3u  0,02112 

147

,...,125i

 

  61

,...,48i

 

  248

,...,189i

 

  

1u  0,00204 1u  0,00204 1u  0,00204 

2u  0,00246 2u  0,00246 2u  0,00246 

3u  0,00302 3u  0,00302 3u  0,00302 

 

We assume that the transitions between the components reliability states are 

possible only from a better to a worse state and we fix the system and its 

components critical reliability state to be r = 2. 

Moreover, we assume that the system elements and their reserve elements 
)(

iE , 

)(
ijE  having the lifetimes )()( uTi


= )()(

1 uTi


= ),()(

2 uTi


 )()( uTij

 )()(

1 uTij

  

),()(

2 uTij

  i = 1,2,…,i
(υ)

, j = 1,2,…, ,)(
ij  u = 1,2,3,  = 1,2,…,9, in the reliability 

states subsets {1,2,3}, {2,3}, {3} respectively, have the reliability functions 

respectively given by the vector: 

),()( tRi


=[1, )1,()( tRi


, )2,()( tRi


, )3,()( tRi


], ),()( tRij

 =[1, )1,()( tRij

 , )2,()( tRij

 )3,()( tRij

 ] 

with the Weibull probability functions: 

],)(exp[))((),( 2)()()( tutuTPutR iii

    t0,), or  

],)(exp[))((),( 2)()()( tutuTPutR ijijij

   t0,), with the parameters )()( ui

 , 

)()( uij

 , i = 1,2,...,i
()

, j = 1,2,..., ,)(
ij  u = 1,2,3,  = 1,2…,9, presented in Tables 

1-3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1, 2 . Bulk cargo transportation subsystem S1, S2, S3, S4, S5, S6 component 

parameters )()( uk

i
 , )()( uk

ij
 , 3,2,1u  

 

 

 

 

 

 
 

 

 

 
 

 

Table 3. Bulk cargo transportation subsystem S7, 

S8, and S9, component parameters )()( uk

i
 , 3,2,1u  
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6  Bulk cargo transportation system reliability prediction 

 

Considering that the described system is a series system composed of 

subsystems S,  = 1,2,…,9, after applying the formulae (9)-(12), (14)-(15), its 

reliability function is given by  

),( tR  = [1, )1,(tR , )2,(tR , )3,(tR ], t0,),                                                  (17) 

where the coordinates have the following forms 

R(t,u) = 


9

1

)( ),(


 utR ,  = 1,2,…,9, for t0,), u = 1,2,3, 

),,(),( )1(
147

1

)1( utRut i
i




R ),,(),( )1(
61

1

)2( utRut i
i




R                                    (18)-(19) 

),,(),( )1(
248

1

)3( utRut i
i




R 


18

1

3)4()4( )],(1[1),(
i

ij utRutR ,                     (20)-(21)              

),()5( utR =


173

1

)5( ),(
i

i utR , ),()6( utR =


88

1

)6( ),(
i

i utR ,                                    (22)-(23) 

),()7( utR =


18

1

)7( ),(
i

i utR , ),()8( utR = 


218

1

)8( ),(
i

i utR ,                                   (24)-(25) 

),()9( utR =


93

1

)9( ),(
i

i utR .                                                                                    (26) 

 

Applying the formulas (18)-(26) and considering the parameters given in 

Tables 1-3, the coordinates of the system reliability function given by (17) are 

as follows: 

)1,(tR  ]95697.0exp[ 2t ]36958.0exp[ 2t  ]50541.1exp[ 2t         

              ]37040.0exp[3[ 2t ]]11120.1exp[]740801.0exp[3 22 tt   

               ]03141.1exp[ 2t ]53701.0exp[ 2t  ]37040.0exp[ 2t  

              ]32116.1exp[ 2t  ]36962.0exp[ 2t  

           = ]83196.6exp[3 2t ]20236.7exp[3 2t ]57276.7exp[ 2t ,         (27) 

)2,(tR  ]54492.1exp[ 2t ]59262.0exp[ 2t  ]40906.2exp[ 2t    

              ]41507.0exp[3[ 2t ]]24521.1exp[]830141.0exp[3 22 tt   

               ]64736.1exp[ 2t ]86108.0exp[ 2t  ]41507.0exp[ 2t     

              ]11400.2exp[ 2t  ]59874.0exp[ 2t , 

          = ]59790.10exp[3 2t ]01297.11exp[3 2t  ]42804.11exp[ 2t ,     (28) 

)3,(tR  ]67991.2exp[ 2t ]02649.1exp[ 2t  ]143331.4exp[ 2t  

              ]49986.0exp[3[ 2t ]]49958.1exp[]999721.0exp[3 22 tt   

               ]83083.2exp[ 2t ]48813.1exp[ 2t  ]49986.0exp[ 2t  

              ]63643.3exp[ 2t ]98551.0exp[ 2t  
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           = ]79035.17exp[3 2t ]29021.18exp[3 2t ]79007.18exp[ 2t        (29) 

Their graphs are presented in Figure 4.  
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Figure 4. The graph of bulk cargo transportation system reliability function. 

 

Considering (27)-(29), the expected values of the bulk cargo transportation 

system lifetimes in the reliability states subsets {1,2,3}, {2,3}, {3}, according to 

(5), are respectively  

,3486.0)1(   ,2777.0)2(  .2131.0)3(                                                  (30) 

And further, the standard deviations of this system lifetimes in the reliability 

state subsets {1,2,3}, {2,3}, {3}, according to (6) are 

)1( 0176.0 , )2( 0112.0 , 0066.0)3(  .                                              (31) 

Consequently, according to (6), the mean values of the maritime ferry technical 

system lifetimes in the particular reliability states 1, 2, 3, are respectively: 

)1( 0.0709, )2( 0.0646, )3( 0.2131.                                                (32) 

Since the critical reliability state is r = 2, the system risk function of the bulk 

cargo transportation system, according to (7), is given by 

r(t) = 1 – R(t,2), 

where R(t,2) is given by (28) and r(t) is illustrated in Figure 6. 

Hence, by (8), the moment when the system risk function exceeds a permitted 

level, for instance  = 0.05, is given as follows 

 = r
–1

()   0.0710.                                                                                 (33) 

 

7  Bulk cargo transportation system reliability improvement 

prediction 

 

To obtain better expected values of the bulk cargo transportation system 

lifetimes in the reliability states subsets {1,2,3}, {2,3}, {3}, we assume that the 

described bulk cargo transportation system is a series system with hot single 

redundancy of bow rollers  and supporting rollers in all subsystems 

S, = 1,2,…,9. After applying the formulae (9)-(10), (13)-(14) and (15)-(16), 

its reliability function is given by   

),( tIR  = [1, )1,(tIR , )2,(tIR , )3,(tIR ], t0,),                                     (34) 

where  
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


9

1

)( ),(),(


 utut IRIR ,  = 1,2,…,9, 

],)],([1[)],()[,(),( 2)1(

1

147

4

2)1(

2

)1(

1

)1( utFutRutRut i
i




IR  (35) 

],)],([1[)],()[,(),( 2)2(

1

61

4

2)2(

2

)2(

1

)2( utFutRutRut i
i




IR  (36) 

],)],([1[)],()[,(),( 2)3(

1

248

4

2)3(

2

)3(

1

)3( utFutRutRut i
i




IR  (37) 

),()4( utIR  ,]])],([1[)],()[,(1[1 32)4(

1

18

4

2)4(

2

)4(

1 utFutRutR i
i




 (38) 

],)],([1[)],()[,(),( 2)5(

1

173

4

2)5(

2

)5(

1

)5( utFutRutRut i
i




IR  (39) 

],)],([1[)],()[,(),( 2)6(

1

88

4

2)6(

2

)6(

1

)6( utFutRutRut i
i




IR  (40) 

],)],([1[)],()[,(),( 2)7(

1

18

4

2)7(

2

)7(

1

)7( utFutRutRut i
i




IR  (41) 

],)],([1[)],()[,(),( 2)8(

1

218

4

2)8(

2

)8(

1

)8( utFutRutRut i
i




IR  (42) 

],)],([1[)],([)],([),( 2)9(

1

93

10

6)9(

2

3)9(

1

)9( utFutRutRut i
i




IR                                 (43) 

for t0,), u = 1,2,3. 

 

Applying the formulas (35)-(43) and considering the parameters given in 

Tables 1-3, the coordinates reliability function of the system with hot single 

reserve of its components given by (34) are as follows: 

]46156.6exp[)1,( 2tt IR
7022 ])00739.0exp[2( t 2152 ])00204.0exp[2( t  

122 ])02806.0exp[2( t 642 ])00466.0exp[2( t 32 ])00594.0exp[2( t

202 ])00119.0exp[2( t ]3704.0exp[3[ 2t 122 ])02806.0exp[2( t  

32 ])00594.0exp[2( t ]7408.0exp[3 2t 242 ])02806.0exp[2( t  

   
62 ])00594.0exp[2( t ]1112.1exp[ 2t 362 ])02806.0exp[2( t  

   ]])00594.0exp[2( 92t               (44) 

]18283.10exp[)2,( 2tt IR
7022 ])01208.0exp[2( t 2152 ])00246.0exp[2( t  

   
32 ])01003.0exp[2( t 642 ])00754.0exp[2( t 122 ])02986.0exp[2( t  

   
202 ])00181.0exp[2( t ]41507.0exp[3[ 2t 122 ])02986.0exp[2( t  

   
32 ])01003.0exp[2( t ]83014.0exp[3 2t 242 ])02986.0exp[2( t  

   
62 ])01003.0exp[2( t ]24521.1exp[ 2t 362 ])02986.0exp[2( t  

   ]])01003.0exp[2( 92t                                                                            (45) 

]29049.17exp[)3,( 2tt IR
7022 ])02112.0exp[2( t 2152 ])00302.0exp[2( t  
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32 ])02011.0exp[2( t 642 ])01208.0exp[2( t 122 ])03205.0exp[2( t  

202 ])00238.0exp[2( t  ]49986.0exp[3[ 2t 122 ])03205.0exp[2( t  

32 ])02011.0exp[2( t ]9972.0exp[3 2t 242 ])03205.0exp[2( t  

62 ])02011.0exp[2( t ]49958.1exp[ 2t 362 ])03205.0exp[2( t  

]])02011.0exp[2( 92t                                                                           (46) 

Their graphs are presented in Figure 5 
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Figure 5. The graph of reliability function of the bulk cargo transportation system with 

hot single reserve of its components. 

 

Considering (44)-(46), the expected values of the bulk cargo transportation 

system lifetimes in the reliability states subsets {1,2,3}, {2,3}, {3}, according to 

(5), respectively are 

,5604.1)1(   ,2375.1)2(  .9101.0)3(                                                  (47) 

And further, the standard deviations of this system lifetimes in the reliability 

state subsets {1,2,3}, {2,3}, {3}, are 

)1( 5973.0 , )2( 4839.0 , 3698.0)3(  .                                              (48) 

Consequently, according to (7), the mean values of the maritime ferry technical 

system lifetimes in the particular reliability states 1, 2, 3, are respectively: 

)1( 0.3229, )2( 0.3274, )3( 0.9101.                                                (49) 

Since the critical reliability state is r = 2, then the system risk function of the 

bulk cargo transportation system with hot single redundancy, according to (7), is 

given by 

rh(t) = 1 – IR(t,2), 

where IR(t,2) is given by (44) and rh(t)  is illustrated in Figure 6. 

Hence, by (9), the moment when the system risk function exceeds a permitted 

level, for instance  = 0.05, is given as follows 

 = rh
–1

()   0.4224.                                                                                        (50) 
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Figure 6. The graph of risk functions of a bulk cargo transportation system. 

 

Conclusions 
 

The multistate approach to system reliability analysis and improvement, and the 

reliability models of typical multistate system structures, like that considered in 

the paper, can be applied in the reliability analysis of a wide class of complex 

technical systems. This possibility is illustrated through an example of a bulk 

cargo transportation system, for which reliability analysis and reliability 

improvement and reliability characteristics predictions were achieved. From the 

graph of the system risk functions of a system without reserve and a system with 

hot reserve, we can see how the quantitative redundancy prolongs the time to 

the moment when the system exceeds the critical level and the mean values of 

system lifetimes in particular states. Finally, we can search for a factor  in the 

Weibull reliability functions, which will allow us to improve system's basic 

components and obtain the same risk function and mean values like for a system 

with hot reserve.  
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Abstract. In the present paper, a patient’s quality of life is defined through a non 
homogeneous semi Markov reward model. The patient’s expected interval reward is 

calculated by means of the basic parameters of the system. The above mean reward could 

operate as a tool for indicating the quality of life status for all health states. The expected 

interval rewards are illustrated numerically with synthesized data. 
Keywords: Semi Markov, Quality of Life, Rewards. 

 
 

1. Introduction  

 
In literature, basic definitions and theoretical results for the homogeneous 

semi-Markov reward processes can be found in Howard [5]. De Dominicis and 

Manca [4] provided the first results on the transient behaviour of the semi-

Markov reward processes and applied them to insurance disability problems. In 

Balcer and Sahin [2] two extensions of a semi Markov reward model of pension 

accumulation are examined and expressions for the mean expected benefits are 

derived. A multivariate reward process defined on a semi Markov process is 

studied in Masuda and Sumita [12] and transform results for the distributions of 

the multivariate reward processes are derived. In Masuda [11] partially 

observable semi-Markov reward processes are examined and the conditional 

distribution of the vector with total rewards is studied. A general definition of 

rewards can be found in Limnios and Oprisan [10] and the study of the 

asymptotic behaviour of semi Markov reward process in Reza Soltani and 

Khorshidian [19]. Later, in Papadopoulou [16] closed analytic forms for the 

main formulas of the expected reward that the semi Markov system generates 

are provided. In Jianyong and Xiaobo [8] average reward semi-Markov decision 

processes with multichain structure are examined. Also, McClean et al. [13] 

provides formulas for semi Markov rewards by means of probability generating 

functions. In Papadopoulou and Tsaklidis [18] reward paths for semi Markov 

models with stochastic selection of the transition probabilities are studied. 

Furthermore, transition rewards are studied in Janssen and Manca [7] and higher 
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order moments and variance for semi Markov rewards are treated numerically in 

Stenberg et al. [20] for the homogeneous case and Stenberg et al. [21] for the 

non-homogeneous case. In Papadopoulou et al [15] theoretical results 

concerning the moments and consequently the distribution of interval costs are 

obtained and provided in analytic form for a semi Markov reward model with 

discounting and the results are applied to an open healthcare system. Last, in 

Papadopoulou [17] rewards/costs are attached in a semi Markov model and 

analytic forms for the means, variances and moments of the total interval 

rewards/costs produced by Web navigation are provided.  

 The quality of life is recognized as an important element which is generally 

treated at least as primary or secondary criterion in most clinical trials. So, its 

measurement and statistical analysis remain an issue. Many researchers have 

studied the quality of life through Markov processes considering that a 

patient΄s observed quality of life at any time is a discrete variable (state) which 

could be accessed  through a self-rated questionnaire (Limnios et al [9],  

D'Amico [3], Heute and Heuber [6]). In many cases the deterioration of the 

patient's health status is often observed during the trial either because the 

toxicity of treatment or the progression of disease. This deterioration is very 

likely to be reflected in the patient's quality of life (Awad et al [1], Mesbah 

[14]).  

 In section 2 the expected semi Markov reward is calculated to evaluate the 

quality of life status in relation to each health status by means of the basic 

parameters of the system. In section 3 the above results are illustrated with 

synthesized data. 

 

2. The expected semi Markov interval reward for the patient’s 

quality of life 

 
 The basic idea in the present section is to provide a non homogeneous semi 

Markov model for which the health status is defined as an independent 

variable, while the quality of life is dependent on the health status (Mesbah 

[14]). Thus, we have two processes for each patient, one for its health status 

and the other for its quality of life status, related to each other.  

 Let us now consider a semi Markov chain with finite state space, 

E={1,2,…,l}, where the states define the patient’s health status, 

Ph(t)={pij(t)}i,jЄE is the transition probability matrix of the embedded Markov 

chain and H(m)={hij(m)i,jЄE is the holding time mass function matrix for the 

semi Markov chain. Also, let us consider a Markov chain with finite state 

space, S={(1,1), (1,2),...,(l,s)}, where its states define a patient’s status by 

considering the health and the quality of life status together, s denotes the 

number of the quality of life states and Pq(k,t)={p(i,x),(j,y)(k,t)}(i,x),(j,y)ЄS  be the 

corresponding transition probability matrix for the process where p(i,x),(j,y)(k,t) 

equals to the probability of a patient which is in health state i and quality state x 
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to move to health state j and quality state y in the period (t, t+1] while the 

patient’s time occupancy in  state i at time t is k. 

 In what follows, we extend the above model by including rewards of 

making a transition from one (either health or quality) state to another. This 

model could be used for strategic approaches to planning and evaluating a 

patient’s quality of life status. 

Let now    
       be the reward produced of making a transition from the i 

health state to j and    
        be the reward produced of making a transition 

from the x quality of life state to y. 

Also, let us define as       
   

 the interval reward produced by a patient’s 

movement to various health and quality states through the interval (t, t+n], 

given that the patient was in the i health state and in the x quality of life state at 

time t and entered to the i health state at time t-k. Then, we can define as 

   (     ) the interval expected reward produced by a patient as follows:  

 

   (     )   (       
   )                                                    

                                (     ]                                            
                                                                    

                                         ]                
 

In the following theorem we provide with the equations for the mean of the 

interval reward produced by a patient’s movement to various states by means 

of the basic parameters of the system.    

 

Theorem 1 

The interval expected reward produced by a patient’s movement through the 

interval (t, t+n] given that the patient was in the i health state and the x quality 

of life state at time t and entered to the i health state at time t-k, is described by 

the following equation :  
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   ) 

 ∑
∑  (   ) (   )(   )
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 ∑∑
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Proof  

Using probabilistic argument we can result to the following recursive equation:  

   (     )   (       
   ) 
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The initial condition for the above equation is 

   (     )                      . 

 

 

 3. Illustration  

 
In the present section we illustrate the previous theoretical results with 

synthesized data for HIV patients. The process of infection by HIV is 

characterized by two fundamental markers. The first is the viral load (VL) and 

the second CD4 lymphocyte. Hence, the history of the disease can be considered 

as a series of stages through which a patient progresses. The first stage is called 

primary infection. And the corresponding symptoms vary to duration that is 

twenty eight days in average and at least one week. At this stage there are no 

specific symptoms and often they are not recognized as signs of HIV infection. 

Even if a patient goes to a doctor or a hospital, he might be misdiagnosed. The 

second stage is called clinically asymptomatic stage lasts for an average of ten 

years and, as its name suggests, that is free from major symptoms. The HIV 

antibodies are detectable in the blood, so antibody tests will show a positive 

result. On the third stage called symptomatic HIV the lymph nodes and tissues 

are damaged because of the years of activity, HIV mutates and becomes more 

pathogenic, leading to more T helper cell destruction and the body fails to keep 

up with replacing the lost T helper cells. Antiretroviral treatment is usually 
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started once an individual's CD4 index falls to a low level which is an indication 

that the immune system is deteriorating. Finally, on the fourth stage called 

progression for AIDS as the immune system becomes more and more damaged 

the individual may develop increasingly severe opportunistic infections and 

cancers, leading eventually to an AIDS diagnosis. 

 Using these markers and the above mentioned four stages we can describe 

the progress of HIV by a semi Markov model considering four health state as 

follows: 

Primary infection → First stage: VL≤400 and CD4≤200 

 Asymptomatic stage → Second stage: VL≤400 and CD4>200  

Symptomatic HIV → Third stage: VL>400 and CD4>200 

Progression for AIDS → Fourth stage: VL>400 and CD4≤200  

From the above, we can consider a non homogeneous semi Markov process 

with discrete and finite state space symbolized by S={1, 2, 3, 4}.  Using as 

markers of infection the virus load and the CD4 lymphocyte we define four 

stage that mentioned above so, we consider that the health state space is 

E={1,2,3,4}.  

The quality of life of a patient with HIV can be measured by different tools 

(questionnaires) such as FL36, MOS-HIV, MQoL-HIV and WHOQOL-HIV .  

We suppose that the score of quality of life instrument ranging from 0 to 100 

and we define the quality of life space S={1,2,3}. 

State 1 → scores between 0-33 (low level) 

State 2 → scores between 34-66 (medium level)  

State 3 → scores between 67-100 (high level). 

So, the state space is defined as Z={(1h, 1q), (1h, 2q), (1h, 3q), (2h, 1q), (2h, 2q), 

(2h, 3q), (3h,1q), (3h, 2q), (3h,3q), (4h, 1q), (4h, 2q), (4h, 3q)}. 

And we suppose that the rewards for transition in quality of life states are: 

   
        

{
  
 

  
 

                   →   

                   →       →    

                    →  

                  →       →    

                  →   

 

Also, we suppose that the rewards for transition in health states are: 

   
       

{
  
 

  
 

                   →       →   

                   →       →       →   

                           
                  →       →       →   

                  →       →   
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Now by applying equation (1) we can estimate the interval reward produced by 

a patient movement indicating his quality of life for all health states. In Figures 

1, 2 and 3 the results for the expected interval rewards given that the process 

started from quality of life states 1, 2 and 3 for the intervals [0,n], n=1, 2, 3, 4 

and 5 are presented.  

  
Figure 1 Expected reward given that the initial quality of life state is 1 

 
Figure 2 Expected reward given that the initial quality of life state is 2  
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Figure 3  Expected reward given that the initial quality of life state is 3 
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