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Abstract.This paper presents new method to build a decision tree with new Splitting criterion. Splitting 

criterion specifies the best splitting variable and its threshold for further splitting in a tree. This new criterion 

is based on concept of Preordonnance [1] whose advantage is its validity for an explanatory quantitative, 

categorical or ordinal variable. In the case of a categorical variable, the Splitting criterion is equivalent to d on 

the chi-2 contingency criterion.  In the case of quantitative explanatory variable Chamlal and Chah proved 

that the new criterion is more accuracy than that one based on the minimization of the intra class variance and 

the maximization (Fischer Snedecor test) [1]. The final model of the decision tree is applied with real dataset 

which cover the area of Marketing in the company of insurance. The model results are compared with three 

other classification techniques; CHAID decision tree, logistic regression and Discriminant analysis. 

Keywords—Decision Tree; Splitting Criterion,Preordonnace,Pshycor. 

 

1. Introduction 

The decision tree is one of the most important knowledge representation approaches 

which attempts to resolve problems of regression or classification. The tree is built by recursive 

process from top to bottom using splitting rules. The splitting criterion in a tree is specified by 

choosing the best splitting variable and its threshold for the further split. When applied to 

classification problems, terminal nodes represent classification groups. The following figure shows 

an example for the DT. 

 

 

 

 

 

 

Despite strong competitors like logit regression and linear regression, DTs have several 

advantages. Indeed, the selected model is a set of rules that can be easily implemented in the 

computer systems of companies, the DTs copes well with heterogeneous data, missing value and 

non linear effects Gepp and al. [3]. 

                Different building algorithms can be used to generate DTs that have a large variation in 

classification and prediction accuracy. CART algorithm Breiman and al. [4] selects split using the 

Twoing Criterion, tolerate all kind of variables, can be used for classification and regression 

problems and prune the tree by cost-complexity pruning. Another DT algorithm (C5.0) uses 

Fig.1.Example DT  
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information gain as splitting criterion, the C5.0 Quinlan [5] is an evolution of C4.5 Quinlan  [6] 

and ID3 Quinlan [7], C5.0 works by aiming to maximize  the information gain achieved by 

assigning each individual to a branch of the tree. It shares with CART its suitability for the 

investigation of all kind of variables, its exhaustive search for all the possible splits and devise for 

optimizing the tree by the building of maximal tree followed by its pruning. However, its pruning 

procedure is different from that of CART.C5.0 uses error-based pruning. Due the wide 

applicability of DT algorithm for data exploration, classification and regression, numerous 

researchers focus on improving this principal algorithm, or even propose a new splitting criterion 

with exclusive characteristics. 

            There are several old and new algorithms that work totally different from CART, 

C5.0.CHAID algorithm Kass [8] as an old one uses the    test to define the most significant 

variable for each node, so it can only be used with discrete or qualitative independent variables. An 

evolution of the CHAID algorithm  Loh and Shih [9] (QUEST) supports univariate and linear 

combination splits. For each split, the measure of association  between each input attribute and the 

target attribute use the ANOVA F-test or Levene’s test (for nominal attributes). Quadratique 

Discriminant Analysis (QDA) is applied to find the optimal splitting point for input attribute. 

Another algorithm based on the area under the Receiver Operating Characteristics (ROC) curve, 

named Roc-tree Maruf and al. [10], and has better simulation results on classifying sample 

databases then very common used algorithm like C4.5 and C5.0. 

                Most of researchers try optimizing the DTs algorithms by improving classic DTs 

characteristics, like changing splitting criterion, minimizing of DT or improving the DT pruning 

mechanism   by using the Automatic Programming, the researchers Hansen and Olsson [11]could 

improve the DT pruning mechanism (error-based pruning) of C5.0 decision tree. In Sieling [12] 

the author talkes about the minimization of DT and its importance in decision making speed, the 

author has demonstrated that, the minimizing of decision trees is hand to approximate. 

            The classification-based DTs are used in various fields, such as hospitals Yoshikazu and 

al.[13], for calculating the probability of cardiac arrest in the emergency department, in banks 

Wisaeng [14] and insurance Bhowmik [15], for calculating the probability of customer defaults 

and claims. The authors in Kazunor and al.[16] suggested a concept of adding fuzzy to C4.5 

algorithm. The addition of fuzzy to C4.5algorithm resulted in better results in terms of accuracy 

and interpretability. These examples are just covering some of many cases where classifications 

are used, and decision trees have been used successfully.  

We introduce in this paper a new method  to build a decision tree with the criterion  based 

on concept of Preordonnance  [1] whose advantage is its validity for an explanatory quantitative, 

categorical or ordinal variable. 

In the section 2 we introduce the  splitting criterion. In the section 3, we describe the 

algorithm of Decision tree with the new splitting criterion. In the section 4 we present an empirical 

study in order to challenge the new method and before the conclusion, we present some elements 

of discussion. 

2. Background 

As proposed DT uses a new criterion of division based on the concept of preordonance to find 

the best splitting variable and to stop the growth of the tree. Here we introduce this new Splitting 

criterion. 

2.1 Notation and Preliminary calculations  
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We suppose that we have a qualitative random variable to explain Y and p heterogeneous 

explanatory variables (   ….  ). 

E: a sample of n possible values {1, 2,3….n} 

H :{( i, j) Є    / i < j}  

      
      

 
    

A\B:a complementary set B in A 

Definition: we call preordonnance defined on E, a relation of weak order denoted P defines on H 

Definition: we call order relation, a reflexive and transitive binary relation 

A préordonnance P can be encoded in binary or ternary. 

 

  

           =            = 

 

 

                                     

   is centred                          

The >p symbol denotes that the pair (i, j) above the pair (k, l) in the order induced by P on H, =p 

denotes the fact the pairs are ties, <p denotes the fact that the pair (k, l) preceding the pair (i, j) 

A preordonnance P may be induced by a random variable X of any kind  

         if X is qualitative :        (i, j)   (k, l)                (X(i)=X(j))  et   (X(k)   X(l)) 

 if X is ordinale :           (i, j)   (k, l)                 |r(i)-r(j)|     <   |r(k)-r(l)| 

    if X is quantitative :      (i, j)   (k, l                 |X(i)-X(j)|    <   |X(k)-X(l)| 

Given two preordonnances P and Q, and,    and    associated coding, the covariance coefficient 

(resp. correlation) induced on all preordonnance, a measure of association denoted       

(resp.      )) 

          (      )  
∑                       

      
 

    
    

     (      )  
∑                       

√∑             ∑             
 

The summation covers all {((i, j), (j, k)) Є H *(H – {(i, j)})}. 

 

In the absence of ties 

1 si (i, j) >p (k, l) 

0 si (i, j) =p (k, l) 

-1 si (i, j) <p (k, l) 

1 si (i, j) >p (k, l) 

 0 sinon 

Codage ternaire Codage binaire 
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∑                                      

 

 

2.2  Splitting criterion 

Given a set of (ordinal, quantitative, nominal) explanatory variables and a qualitative 

dependent variable Y. The purpose of this test is to find the explanatory variable X that maximizes 

the association within the meaning of      (ou    ), with the dependent variable for each node: 

   
      

         
     

             
 ∑                                                             

      
 

                                     

                                    

An explanatory variable which maximize this criterion must bring together   two 

individuals unified by the dependent variable, and make away two individuals separated by this 

variable; in other words, the explanatory variable must satisfy this condition: 

                          <                              

 This ensures compactness and separability of groups described by the explanatory 

variable. 

 The  criterion based on       is finer because it measures the degree of agreement (    or 

     positive) or disagreement (      or      negative) between preordonnances.. 

In the following sections, we consider the       as a splitting criterion. It specifies the best 

splitting variable and its thre threshold for further splitting in a tree. 

2.3 Selection of Split point 

Given a node T, it is assumed that the random variable X was chosen to split the node. In this case 

we must seek an optimal cutting X. 

 If X is continuous, we sort at the first time the variable, then we test each possible 

threshold between two values of the variable by calculating the       ou (     ) of the 

binary variable created. 

 

 

  

 

 

1500 2500 3500 4500 

Amount of car insurance premiums 
         

 
 

 Discrétization example 
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   If the variable is qualitative, we look for a regrouping of the variable(merging 

categories)  that  give the best measure      (ou      ) and divide the node t in as many 

nodes as modality son after regrouping  of the variable 

 

2.4 Stopping Criterion  

Proposal [1]: the expressions     et      for Rate Kendall [18] induces measures of association 

between two variables of any kind (               ) : 

     (   
    

)            

    (   
    

)            

The demonstration of the equations above come from   the proposition s (1) and (2) in the Annex 

and the fact that: 

 

  (i, j)  Є H,   (k, l)  Є H  

 

This result allows us to have a criterion for stopping the deepening  of the tree coherent with the 

select criterion. 

Indeed, we accept the division if the      (ou     ) calculated on a peak is significantly higher 

than a threshold that we fixate. The Formalization involves a statistical hypothesis test: the null 

hypothesis (H0) is the independence of the explanatory variable X with the dependent  variable Y. 

if       (ou     ) calculated is above the threshold correspondent theoretical risk of error that can 

be fixed (often a risk level of 5%), we accept the Splitting[1].  

2.5 Handlin Missing values 

There are cases where the explanatory variable X has a rate of missing (and not the whole 

variable), so in this case we use «surrrogates variables» that can leave individuals (pretty near) in 

the same way as the original variable, these variables are called equally reducingNakache and 

Confais [19]. 

 

 

 

 

 

 

 

 

                            
           

                

 

                           
            

              

m = 1 or 2

 

M  

 

m = X or Y

 

M  
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3. Presentation of the Decision tree algorithm 

In this section we recapitulate the most steps followed in order to construct the decision tree with 

the new splitting criterion. 

Algorithm: Decision tree with new splitting criterion 

Input:  

 Training dataset described by categorical features    ….   and continuous features 

     ….   

 L: Minimum of individual in the leaf before splitting it 

 Minimum of individual in each leaf. 

 Confidence threshold α 

The algorithm: 

Create a new tree T  with single root node 

 

IF      individual in the node> L then  

          Mark T as leaf with the most common value of Y in dataset as a label 

ELSE 

 

1. IF d > 0 (there are continuous features) 

a. FOR i= 1,…….,d 

              the       statistic for feature    

b.                 arg               

c.               p-value of adequate   distribution for feature       

END FOR 

2. IF f > d (there are categorical features) 

a. FOR i= d+1,…….,f 

               p-value of the    test of independence between feature    and class 

labels 

b.                 arg                 

c.                       

END FOR 

3.             min(  ,   ) 

4. IF    =   THEN                         ELSE                           

5. Split        

6. IF d > 0 (there are continuous features) 

a. Sort      , then test each possible threshold between two values of the       by 

calculating the      of the binary variable created. 

b. Select threshold which gives the best      

7. IF  f > d (there are categorical features) 

a.  look for a regrouping of the        (merging categories)  that  give the best 

measure       and divide the node t in as many nodes as modality son after 

regrouping  of the        

b. Select variable after regrouping which gives the best    . 

8. Split node 

END IF 

9. FOR each child nodes  

IF individual in the node< L THEN Stop the growing of  the tree 

ELSE  Repeat steps  1-8 

             END FOR 
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4. Results Marketing Studies: 

4.1 Datasets Description: 

We describe in Table 1  the variables used in the empirical studies ( Marketing)  in order to 

compare the         and the measure of association. There are three kinds of variables: 

 Socio demographic variables 

 behavior variables 

 Dependent variable or variable to predict. 

 

 

 

 

 

 

 

4.2 Final Model Development  

  The decision tree model with the new Spitting Criterion has ultimately selected six 

variables: 

Property

Source

Sample Size 5822 total:5474 Buyer and 348 Not Buyer

Dependent variable Binary variable which describe whether the customers purchases the insurance caravan or not.

Buyer (1) Purchase an insurance caravan contract

Not Buyer (0) Don’t Purchase an insurance caravan contract

Explanatory Variables (18) Type

mt_auto Amount of automobile  insurance premium continues

mt_incendie Amount of fire  insurance premium continues

mt_RC Preium Civil Liability insurance continues

revenu_moyen Average income continues

mt_securite_soc Premium social security insurance continues

mt_moto Premium motorcycle insurance continues

mt_RC_entreprise Premium civil  liability insurance company continues

mt_bateau Amount of the premium ship insurance continues

mt_tracteur Amount  of the insurance premium tractor continues

mt_cyclomoteur Amount of the insurance premium motorcycle continues

mt_invalidite Premium disability insurance continues

mt_velo Premium  cyclomoteur insurance continues

mt_accident_famil Premium family accident insurance continues

nbpers_au_foyer number of homemake continues

age_moyen Average age continues

locataire tenant discrete; for example, if 

the tenant variable is 7,

it means that he lives an 

area composed of 76-88% 

Catholic

proprietaire Owner discrete.like  tenant

marie Marié discrete.like  tenant

niv_etud_bas Low level study discrete.like  tenant

PCSagri Socioprofessionale categoriy discrete.like  tenant

concubin concubine discrete.like  tenant

autre_relation other Relation discrete.like  tenant

celibataire Unmarried discrete.like  tenant

niv_etude_haut High level study discrete.like  tenant

sans_religion Without Religion discrete.like  tenant

auto0 Not owning car discrete.like  tenant

catholique Catholic discrete.like  tenant

autre_religion other  religion discrete.like  tenant

niv_etud_moy Average level study discrete.like  tenant

auto1 owning car discrete.like  tenant

PCSinter Socio Professional category intermediate discrete.like  tenant

mt_assur_vie Premium life insurance discrete.like  tenant

PCSouvr Socio professionnal category worker discrete.like  tenant

protestant Protestant discrete.like  tenant

PCStop Socio-professional category operator discrete.like  tenant

avec_enfant with children discrete.like  tenant

PCScadre Socio professionnal category executive discrete.like  tenant

sans_enfant childless discrete.like  tenant

PCSouvr_quali Socio professionnal category worker discrete.like  tenant

auto2 Two car possession discrete.like  tenant

Sentent Machine Research, Amsterdam, 2000

Table 1: The variables used in the computational techniques to identify the buyer Customers

value
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o The amount of car insurance premiums 

o The amount of fire insurance  premiums 

o The high level of study 

o The amount of RC insurance premiums 

o Purchasing power 

o Owner  

 

 The CHAID decision tree has ultimately selected six variables: 

o The amount of car insurance premiums 

o The amount of fire insurance  premiums 

o Socio professional category intermediate 

o The low level of study 

o The high level of study 

o The amount of RC insurance premiums 

 

 The resulting of logistic Regression ,which is significant at the 5% level, is : 

Logit Y=-2.9411 + (mt_auto>=6)*1.4911 - (mt_incendie<=2)*1.1303 - (mt_incendie>=5)* 

1.1303 -(mt_incendie= 3)* 0.2967 - (revenu_moyen<=3)*0.6029 + (niv_etud_bas<=2)*0.5460 

Here, probability that the     customer is buyer is obtained as follows: 

P (           is buyer) =        / (1+        ) 

 The Discriminant Analysis is also significant at the 5% level with the following equation: 

Discriminant Score=-15.50 + 0.242 mt_auto + 1.384 pouv_achat + 0.428 mt_bateau + 

0.95mt_RC + 1.546niv_etud_bas + 1.386marie 

Test and Training validation model : 
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DT with new Splitting criterion  Х  Х    Х    Х    Х  Х   76% 71% 

CHAID decision tree Х Х 
 

Х 
  

Х Х 
  

78% 73% 

Logistic Regression  Х  Х      Х    Х       78% 74% 

Discriminante Analysis  Х    Х  Х    Х        Х 75% 74% 

 

Analysis of result: 

 All the LA, DA, CHAID DT and DT with new splitting criterion models included the 

variable Amount of automobile insurance premium, which indicates that it was the most 

important in discriminating between potential buyer and others. This can be explained by 

the fact that this amount indirectly integrates the power of the vehicle, which determines 

much of its ability to tow a caravan. 

 To Conclude with the Discriminant Analysis, we see that the AUC ( 74%) in  validation 

is nearly as elevated as the AUC (75%) in learning sample, which is the sign of an 

excellent robustness of the model 

 The best logistic model was obtained by an appropriate selection of the explanatory 

variables, based on a combination of statistical tests. We sought to optimize validation 

AUC (not learning AUC), but we did not only relied on the latter. Last model obtained 
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was therefore selected as offering the best compromise between simplicity and 

performance with its 4 variables, 6 attributes and the validation AUC is equal to 74%. By 

contrast we have practically the same level of accuracy with the other methods; 

Discriminant Analysis (75%), CHAID DT (73%) and DT with new splitting criterion 

(71%) but with 6variables. 

  For the DT with the new Splitting criterion, the model finally selected contains six 

variables. The AUC in training sample is 76% equal to the AUC of the Discriminant 

Analysis and very close to that of the logistic regression and CHAID decision tree. In the 

other hand, validation AUC(71%)  has decreased by 5%. The significant difference 

between the area under the ROC curve in learning and validation reports an overfitting 

and lack of robustness of the tree, which can be explained by the small leaves (we have 

only 348 customers which have the target variable equal to 1). 

 

5. Discussion 

 

 The DT with the new splitting criterion yields comparable to that of logistic regression 

which according to practitioners remains by far the most used method performance. 

 The new selection criterion based on the notion of preordonnance only interested in 

positive associations. A negative association is a disagreement between the variable to 

predict and the explanatory variable; therefore the latter cannot be selected. Thus, we 

show that the proposed method allows to identify the potentially interesting variables and 

saves us from wasting time on variables that are not interesting from a statistical 

discrimination 

 The variable amount of the contribution of the tractor insurance (as described in the 

analysis of Marketing study) is concentrated on a single value, this variable is irrelevant 

for discrimination; we cannot keep it initially. However, our objective is to show that the 

        detects this kind of variables (variable with unbalanced distribution) and penalize 

them. 

 For continuous variables, we chose a binary discrimination. The drawback of this binary 

structure is that it produces trees which are ‘narrow’ but may be very deep, making the 

trees rather complex and difficult to read in some case. 

  Using the criterion                   requires the measure of association between each 

pair of individual to be classified and consequently a storage problem occurs especially if 

the sample is large. However, with the evolution of Big Data technology, strategies have 

been proposed to address the problem of storage and improve the speed of the system to 

large databases, without degrading performance Granville [20]. 

 

6. Conclusion 

In this paper, a new splitting criterion to build decision tree is proposed, the same criterion 

( 
   

  is used for stopping the growing of the tree. The number of possible separation condition 

allowed by the best splitting variable depends on its type. A continuous variable allows a single 

separation condition. For a qualitative variable, the node is divided in as many sub-nodes as 

modality son after regrouping this variable. The empirical studies show that the decision tree with 

the new splitting criterion gives as accurate results as those given by the CHAID DT, logistic 

regression or Discriminant Analysis. 
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Annex[18] 

Kendall tau τ 

Given             the rank variables induced by two random variables X and Y. 

Case of absence of ties  

Given P the number of pair (i, j) Є H which verifies: 

(            (           )    And Q the number of of pair (i, j) Є H which verifies:   

            (           )   .Set S = P – Q, the maximal number which can reach P is 

      

 
and τ(X,Y) is defined as:  

       
 

 
 

Proposition 1. Given A and B the coding comparison pair of the rank variables    and   : 

  

    =           =    =   =0 

 

Alors τ(X, Y)=cor (A, B)=cov (A, B)  

Indeed: ∑                       and  ∑    
      ∑    

             

Distribution under the independence assumption: 

The distribution of τ is tabulated for small values of n, but it can be approximated by a 

Laplace Gauss with mean equal to 0 and variance equal to 
       

       
. 

The approximation is valid as soon as n> = 10. In the calculation of the distribution of τ  

under the null assumption, we are interested in the quantity S which is approximated by a 

discrete and continuous variable, a correction continuity is done which consist on 

subtracting  1 from the observed value of S if it is positive, adding 1 if it is negative 

Case of Existence of ties 

In this case the coding for rank variables A and B : 

  

    =                                       =  

 

Beforehand, are assigned to pairs tied the arithmetic average of the ranks they would have 

if it does there was no tie. 

1 if         <       

 
 -1 if         >       

 

1 if         <       

 
 -1 if         >       

 

 0  if         =       

 

1 if         <       

 

1 if         <       

 

 -1 if         >       

 

 -1 if         >       

 

1 if         =       
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Precisely, suppose there is     (resp.   )  Ties for groups    (resp.  ) and denote by     (1 

<= i <=  ) (resp.  , 1 <= j <=   ) the number of individuals tied for the       (resp.     ) 

group. 

Two expressions τ  and τ  are proposed for the coefficient of Kendall, the first 1 is 

written in the form: 

        
   

√  
      

 
      

      
 

    

 

  
∑          

 
 ;     

∑          

 
 

 

Proposition 2. The other expression is written in the form: 

   
   

      
 

 

In the case of absence of ties:                                  

Distribution under the null assumption: 

In the case of the presence of a tie (the most common case) and if we denote S = P - Q 

then The distribution of S under the assumption of independence of X and Y follows a 

normal distribution with mean 0 and variance:  

 

  
[             ∑ (  (    )(     ))  ∑                 ]+ 

+ 
 

            
 ∑ (  (    )(    )) ∑                  + 

 

       
  ∑ (  (    )) ∑          ] 
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Abstract. In this paper, we study the existence and uniqueness of the solution for
Markov renewal equation (MRE) of a semi-Markov process with countable state space.
This method and its proof are based on an iterative scheme. A numerical solution is
also given as well as a case study on system reliability assessment.
Keywords: semi-Markov process, Markov renewal equation, semi-Markov chain,
semi-Markov transition function keyword.

1 Introduction

Markov renewal or semi-Markov process gives a general and more flexible pre-
sentation for processes having Markov properties for modeling real life problems
in finance (Janssen and Manca[5]), engineering (Grabski[4], Limnios[9],Gikhman
and Skorokhod[2]), biology(Barbu and Limnios[1]), etc. However, an important
drawback in these applications is the difficulty of obtaining tractable solution
in application with a large enough number of states. Several methods were
proposed in the past using algebraic and complementary variables approaches
(Cox[3], Limnois[7–9]) to obtain transition functions of the semi-Markov pro-
cess.

In this article, we study the existence and uniqueness solution of a Markov
renewal equation(MRE). We also propose a method solving Markov renewal
equations based on an iterative scheme inspired by n-fold convolution. Theo-
retical and numerical applications on system reliability and availability calcu-
lation as well as a case study on system availability and reliability assessment
are also provided in the following sections.
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2 Preliminaries and assumptions

In this section, we present the semi-Markov process framework which is used
in the following sections.

2.1 Semi-Markov process framework

Consider a regular semi-Markov process Zt, t ≥ 0 on a countable set E state
space (Limnios[9]). Let (Jn, Sn), n ∈ N, be the (embedded) Markov renewal
process (MRP) of Zt where S0 ≤ S1 ≤ ... are the time of jumps and Jn are
the nth visited states. This process satisfies the following Markov property
P(Jn+1 = j, Sn+1 − Sn ≤ t|J0, ..., Jn, S0, ..., Sn) = P(Jn+1 = j, Sn+1 − Sn ≤
t|Jn), almost surely (a.s.), for any n ∈ N, t ∈ R+ and j ∈ E.

The semi-Markov kernel Q, and the initial probability α are defined as
follows:

Qij(t) := P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn = i)

α(i) := P(J0 = i)

with i, j ∈ E.

Then the distribution function of the holding (sojourn) time in state i ∈ E,
Hi(t), is given by

Hi(t) :=
∑
j∈E

Qij(t)

Another important function is the semi-Markov transition function defined by

Pij(t) := P(Zt = j | Z0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal law of the process.

Notice that the chain (Jn, n ∈ N) also satisfies Markov property so that its
transition probabilities can be defined as follow

P (i, j) := Qij(∞) = lim
t→∞

Qij(t)

The counting process of jumps N(t), t ≥ 0, defined by N(t) = sup{n ≥ 0 :
Sn ≤ t}, gives the number of jumps of the Markov renewal process in the time
interval (0, t]. The semi-Markov process Zt can also be given by the relation

Zt = JN(t), t ≥ 0. (1)

2.2 Markov renewal function and n-fold convolution

Since Zt is regular, which means that the number of jumps in any finite time
interval is finite almost surely, we suppose that Zt is continuous on the right
having left limits in any point of time t > 0.
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Let φ(i, t), i ∈ E, t ≥ 0, be a real-valued measurable function, then the
convolution of φ by Q is defined as follows

Q ∗ φ(i, t) :=
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s). (2)

It is easy to prove the following fundamental equality

Q
(n)
ij (t) = Pi(Jn = j, Sn ≤ t). (3)

where Pi(·) means P(· | J0 = i) and Q
(n)
ij (t), i, j ∈ E, is the n-fold convolution

of Q by itself, i.e.

Q
(n)
ij (t) =


∑

k∈E
∫ t

0
Qik(ds)Q

(n−1)
kj (t− s)ds n ≥ 2

Qij(t) n = 1
δij1{t≥0} n = 0,

with δij = 1, if i = j and δij = 0, if i 6= j.

Then the Markov renewal function ψij(t), i, j ∈ E, t ≥ 0, can be defined by

ψij(t) :=

∞∑
n=0

Q
(n)
ij (t). (4)

Let us write the Markov renewal function (4) in matrix form

ψ(t) = (I(t)−Q(t))(−1) =

∞∑
n=0

Q(n)(t). (5)

This can also be written as

ψ(t) = I(t) +Q ∗ ψ(t), (6)

where I(t) = I (the identity matrix), if t ≥ 0 and I(t) = 0, if t < 0.

2.3 Markov renewal equation

Equation (6) is a special case of what is called Markov renewal equation (MRE)
which is generally defined as

U(t) = V (t) +Q ∗ U(t), (7)

where U(t) = (Uij(t))i,j∈E , V (t) = (Vij(t))i,j∈E are matrix-valued measurable
functions, with Uij(t) = Vij(t) = 0 for t < 0. The function V (t) is a given
matrix-valued function and U(t) is an unknown matrix-valued function.
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3 MRE solution given by iterative method

Assumption 1 Let B be the space of all locally bounded, on R+, matrix func-
tions U(t), i.e., ||U(t)|| = supi,j |Ui,j(t)| is bounded on sets [0, ξ], for every
ξ ∈ R+.

The following result is of our concern in the present paper.

Proposition 1 (Pyke[10], Limnios[9]). The transition function

P (t) = (Pij(t), i, j ∈ E)

satisfies the following MRE

P (t) = H̄(t) +Q ∗ P (t), (8)

which, under Assumption A, has the unique solution

P (t) = ψ ∗ H̄(t), (9)

Here H̄(t) = I(t)−H(t) with H(t) = diag(Hi(t)) is a diagonal matrix.

Let (Pn
ij(t), n ∈ N) a sequence of functions given by

Pn
ij(t) =

{
δijH̄i(t) if n = 0

δijH̄i(t) +
∑

k∈E
∫ t

0
Qik(ds)Pn−1

kj (t− s) if n ≥ 1.
(10)

where H̄i(t) := 1−Hi(t).

Proposition 2 For any fixed t ≥ 0 and i, j ∈ E, the limit

lim
n→∞

Pn
ij(t)

exists and it is the smallest solution of the MRE (8) that we denote by P̃ij(t).

Proof. From equation (10) we get

∑
j∈E

Pn
ij(t) = H̄i(t) +

∑
j∈E

∑
k∈E

∫ t

0

Qik(ds)Pn−1
kj (t− s)

≤ H̄i(t) +

∫ t

0

Hi(ds)

= 1.

On the other hand, we have Pn
ij(t) ≥ 0 for any n ≥ 0, i, j ∈ E and t ≥ 0.

Define

Dn
ij(t) :=

{
P 0
ij(t) if n = 0

Pn
ij(t)− P

n−1
ij (t) if n ≥ 1.

(11)
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Then we get

Dn
ij(t) =

∑
k∈E

∫ t

0

Qik(ds)Dn−1
kj (t− s), n ≥ 1. (12)

Since D0
ij(t) ≥ 0 we have Dn

ij(t) ≥ 0 for all n ≥ 1 and then Pn
ij(t) ≥ P

n−1
ij (t).

Finally, from the above inequality and the inequality 0 ≤ Pn
ij(t) ≤ 1 we get

the desired result that the limit P̃ij(t) exists.

Let us now prove that P̃ij(t) is the smallest solution of the MRE (8). The

fact that P̃ij(t) is a solution of the MRE is obtained directly by considering
limits in both sides of equation (10).

Now let us consider another solution of the MRE, say P ]
ij(t). Then we have

P ]
ij(t) ≥ δijH̄i(t) =: P 0

ij(t) and, suppose that P ]
ij(t) ≥ P

n−1
ij (t), we get

Pn
ij(t) = δijH̄i(t) +

∑
k∈E

∫ t

0

Qik(ds)Pn−1
kj (t− s)

≤ δijH̄i(t) +
∑
k∈E

∫ t

0

Qik(ds)P ]
kj(t− s)

= P ]
ij(t),

and passing to limit when n→∞, the proof is achieved.

Moreover, the probabilistic meaning of Pn
ij(t) can be given by

Pn
ij(t) = Pi(Zt = j, Sn+1 > t) (13)

It indicates that for a fixed instant t, the convergence speed of the sequence
Pn
ij(t) depends on distribution of the jump number N(t) or Hi(t), the sejourn

distribution of each states i
As the time t increases, the minimal n needed to obtain a precise value of

Pij(t) using our method increases too.

Proof. Let us start with n = 0

P 0
ij(t) = δijH̄i(t) = Pi(Zt = j, S1 > t)

If for n ∈ N the proposition stands, then at n+ 1, we have

Pn+1
ij (t) = δijH̄i(t) +

∑
k∈E

∫ t

0

Qik(ds)Pn
kj(t− s), n ≥ 1

= Pi(Zt = j, S1 > t) +
∑
k∈E

∫ t

0

P(J1 = k, S1 ∈ ds|J0 = i) ·

P(Zt−s = j, Sn+2 − S1 > t− s|J1 = k, S1 = s)

= Pi(Zt = j, S1 > t) +
∑
k∈E

∫ t

0

Pi(Zt = j, S1 ∈ ds, Sn+2 > t, J1 = k)

= Pi(Zt = j, S1 > t) + Pi(Zt = j, S1 ≤ t < Sn+2)

= Pi(Zt = j, Sn+2 > t)
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The hypothesis also stands. Finally, we prove equality (13) for all n ∈ N, and
we also have

Dn
ij(t) = Pi(Zt = j,N(t) = n)

4 Application on system reliability assessment

Besides transition functions, Proposition 2 is also valuable for other probability
functions under the same framework. In this section, the method proposed here
is applied on system survival or reliability functions and availability assessment.

Let us consider the survival or reliability function in the case where a subset
of down states is given, i.e., say D ⊂ E, and the lifetime of the system T is
defined by T := inf{t ≥ 0 : Zt ∈ D}. The survival function is then Ri(t) :=
Pi(T > t), i ∈ E \ D. This function satisfy the following MRE (see, e.g.,
Limnios[9])

Ri(t) = H̄i(t) +
∑

k∈E\D

∫ t

0

Qik(ds)Rk(t− s).

In that case we can use also the above iterative scheme, i.e.,

Rn
i (t) =

{
H̄i(t) if n = 0

H̄i(t) +
∑

k∈E\D
∫ t

0
Qik(ds)Rn−1

k (t− s) if n ≥ 1.

Similarly, the availability is defined by Ai(t) := Pi(Zt ∈ E \D) and satisfy
the following MRE

Ai(t) = 1{E\D}(i)H̄i(t) +
∑
k∈E

∫ t

0

Qik(ds)Ak(t− s).

with the corresponding iterative scheme

An
i (t) =

{
1{E\D}(i)H̄i(t) if n = 0

1{E\D}(i)H̄i(t) +
∑

k∈E
∫ t

0
Qik(ds)An−1

k (t− s) if n ≥ 1.

where 1{E\D}(i) is the indicator function gives 1 if i ∈ E \D, 0 otherwise.

In both cases, the limits R̃i(t) := limn→∞Rn
i (t) and Ãi(t) := limn→∞An

i (t)
give the smallest solutions of the above corresponding MREs. It can be also
applied directly on Markov renewal equation of semi-Markov chains (Barbu
and Limnios[1]).

5 Numerical application: A case study

In this section, we apply our method discussed in the previous section on a
specific case study: a multi-task machine.
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5.1 System description

Consider a multi-task machine which performs three different tasks T1, T2 and
T3 whose arrival times follow exponential distributions with parameter λ = 2,
density function fexp(x;λ) and cumulative distribution function Fexp(x;λ).
The arrival proportion is 0.45, 0.35 and 0.20 for Task T1, T2 and T3 respec-
tively. The time to complete of each task follows lognormal distribution with
different parameters:

- Task T1: µ1 = 1.3550, σ1 = 0.25;
- Task T2: µ2 = 1.4728, σ2 = 0.25;
- Task T3: µ3 = 1.5782, σ3 = 0.25.

whose distribution function Flogn(x;µi, σi) and density function flogn(x;µi, σi).
We assume that at the end of each operation, the machine is maintained and
failures happen only during the operations with a failure time following Weibull
distribution with scale parameter a = 56.4190 and shape parameter b = 2:
for x ≥ 0 the cumulative distribution function and the density function are
respectively given by Fwbl(x; a, b) and fwbl(x; a, b). Once the machine fails,
it takes 20 hours to repair it which indicates the repair time follows a Dirac
distribution with parameter c = 20 whose cumulative distribution function is
a unit step function.

5.2 Semi-Markov modeling

According to the description, the system can be presented by a five-state semi-
Markov process (Fig. 1) where each state corresponds a specific system state
(Table 1) and the Markov kernel (Qij(t)) are shown in Table 2 using method
mentioned in Korolyuk and Tomusyak[6]. (The conditional reliability and avail-
ability are shown in Fig. 5 and Figure 4).

State Description

1 Machine fails

2 Machine waits for new task

3 Operation task T1

4 Operation task T2

5 Operation task T3

Table 1. States and their description

Using our proposed method, the obtained conditional reliability Rn
i (tc) and

availability An
i (tc) at instant tc = 100 on function of iteration number n are

shown in Fig. 3 and Fig. 2.
Except the constant sojourn time of state 1, we observe that the obtained

system reliability and availability estimates have the same order as their ex-
pected sojourn times. The convergence rates of all curves are almost the same
as they share the same jumping count process N(t).
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6 Conclusion

In this article, we studied the existent and unique solution for Markov renewal
equation and proposed an iterative method for solving MRE. We proved the ex-
istence and uniqueness of the obtained solution. The advantage of this method
is that there is little limitation on state space which can be extended to infinite
and its simplicity. The convergence speed of our method depends on the jump
count process which is easier to be estimated. We also applied it on calculating
system reliability and availability. The future work will focus on simplifying
for long term study and application on large scale state space.
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Fig. 1. The semi-Markov process of the case study

Q12(t) H(t; 20)

Q23(t) 0.45Fexp(t;λ)

Q24(t) 0.35Fexp(t;λ)

Q25(t) 0.20Fexp(t;λ)

Q31(t)
∫ t

0
(1 − Flogn(s;µ1, σ1))fwbl(s; a, b)ds

Q32(t)
∫ t

0
flogn(s;µ1, σ1)(1 − Fwbl(s; a, b))ds

Q41(t)
∫ t

0
(1 − Flogn(s;µ2, σ2))fwbl(s; a, b)ds

Q42(t)
∫ t

0
flogn(s;µ2, σ2)(1 − Fwbl(s; a, b))ds

Q51(t)
∫ t

0
(1 − Flogn(s;µ3, σ3))fwbl(s; a, b)ds

Q52(t)
∫ t

0
flogn(s;µ3, σ3)(1 − Fwbl(s; a, b))ds

Table 2. Qij(t) for passage between states(for those mot mentioned Qij(t) = 0)
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Abstract. It often happens in longitudinal studies that repeated measurements of markers are observed with various
data features of a heterogeneous population comprising of several subclasses, left-censoring due to a limit of detection
(LOD) and covariates measured with error. Moreover, repeatedly measured markers in time may be associated with a
time-to-event of interest. Inferential procedures may become very complicated when one analyzes data with these features
together. This article explores a finite mixture of hierarchical joint models of event times and longitudinal measures with
an attempt to alleviate departures from homogeneous characteristics, tailor observations below LOD as missing values,
mediate accuracy from measurement error in covariate and overcome shortages of confidence in specifying a parametric
time-to-event model with a nonparametric distribution. The Bayesian joint modeling is employed to not only estimate all
parameters in mixture of joint models, but also evaluate probabilities of class membership. A real data example is analyzed
to demonstrate the methodology by jointly modeling the viral dynamics and the time to decrease in CD4/CD8 ratio in the
presence of CD4 cell counts with measurement error and the analytic results are reported by comparing potential models
for various scenarios.
Keywords: Bayesian joint modeling ; Dirichlet process; Limit of detection; Longitudinal data analysis; Mixture of
joint models; Time-to-event.

1 Introduction

Many studies aim at exploring the relationship between a time-to-event outcome and a longitudinal marker. For
example, the relationship of HIV viral suppression and immune restoration after a treatment has received great
attention in HIV/AIDS research [1]. One is often interested in simultaneously studying the HIV dynamics and
immune restoration, which may be characterized by the time to CD4/CD8 ratio decline [2]. Relatively little work
has been published about statistical analysis for the particular association of HIV viral dynamics and time trend
in CD4/CD8 ratio in the presence of CD4 covariate process. The research was motivated by an AIDS Clinical
Trials Group study 388 (ACTG388) [1] to understand within-subject patterns of change in HIV-1 RNA copies
(also referred to as viral load) or CD4 cell count, and to study the relationship of features of viral load and CD4
profiles with time to decrease in CD4/CD8 ratio.

Joint analysis of event times and longitudinal measures is an active area of biostatistics and statistics re-
search. There have been a considerable number of statistical approaches in the literature. Researchers may often
confront the task of developing inference where longitudinal outcomes of interest may follow heterogeneous (not
homogeneous) characteristics, suffer from left-censoring due to a limit of detection (LOD), and measure with
substantial error. Modeling such data has many challenges due to the following issues of inherent data features.
First, in the literature, most studies of longitudinal modeling assume that all subjects come from a homogeneous
population where large between- and within-individual variations were accommodated by random-effects and/or
time-varying covariates in the models. These typical between- and within-individual variations are shown in
Figure 1(a), viral load trajectory profiles of three representative patients in ACTG388 (see Section 2 for details
of this study and data description); these viral load trajectories can be roughly classified into three classes, which
are biologically and clinically interpretable. We, therefore, can reasonably assume that these patients are from a
population which consists of three relatively distinct classes and, thus, we consider a finite mixture of nonlinear
mixed-effects (NLME) models for such data set. Second, the outcome of a longitudinal study may be subject to
LOD because of the low sensitivity of current standard assays [3]. For example, for the ACTG388 study, which
was designed to collect data on every individual at each assessment, the response (viral load) measurements may
be subject to left-censoring due to an LOD. It can be seen from Figure 1(a) that for some patients their viral loads
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are below LOD. The proportion of data censored may not be trivial, so failure to account for censoring in the
analysis may result in significant biases in the estimates of the fixed-effects and variance components [4,5]. Third,
measurement error in covariates is another typical feature of longitudinal data and ignoring this phenomenon
may result in unreliable statistical inference. This is the usual case in the longitudinal studies; for instance, CD4
cell counts are often measured with substantial measurement error [6–8]. Finally, it is a commonplace in clinical
and public health research that longitudinal studies consist of repeated measurements on continuous variables, an
observation on a possibly censored time-to-event and additional covariate information collected for each subject.
Interest often focuses on interrelationships among these variables [9]. A joint model that links the event time
to these longitudinal measures, which can also incorporate information about left-censoring due to LOD and
measurement error in covariates, is becoming increasingly important in many applications.
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Fig. 1. Profile of viral load in log10 scale, CD4 cell count and CD4/CD8 ratio trajectories for three representative patients.
Trajectory class 1: decrease rapidly and constantly in a short-term period (dotted line with solid dot sign); class 2: decrease
at the beginning and then maintain stable at a low level (solid line with circle sign) and class 3: decrease at the beginning,
but rebound later (dashed line with plus sign).

Although joint modeling of both longitudinal and event time data has received a great deal of attention in the
statistical literature in recent years, the majority of the statistical literature for the joint modeling of longitudinal
and/or event time data has focused on the development of models that aim at capturing only specific aspects of the
motivating studies. These specific data features considered in the literature include longitudinal data with, but
are not limited to, censored response [4,5,8,10], mixture response [11–14], covariate measurement error [6–8,15],
and longitudinal-survival (or event time) data [9,16–19]. However, there is relatively few studies on simultaneous
inference for longitudinal data with features of heterogeneity and left-censoring due to LOD in response and
measurement error in covariate as well as event time data incorporated. It is not clear how heterogeneity,
left-censoring, covariate measurement error and event time of data may interact and simultaneously influence
inferential procedures. Statistical inference and analysis complicate dramatically when all of these issues are
present. In this article, we develop a mixture of mixed-effects joint model to investigate the effects on inference
when all of these typical data features exist.

We employ a Bayesian framework for a mixture of nonlinear mixed-effects joint (MNLMEJ) models for lon-
gitudinal response and time-to-event in the presence of covariates with measurement error to accommodate a
large class of data structures with various features. In particular, we consider the MNLMEJ model with the
following components to quantify these data features: (i) a mixture of NLME models for viral load response
process in connection with a Tobit model [20] to tailor observations below LOD; (ii) nonparametric mixed-effects
model for CD4 covariate process to modulate accuracy from measurement error; and (iii) an accelerated failure
time (AFT) model for time to decline of CD4/CD8 ratio using the nonparametric Dirichlet process (DP) prior
as a distribution [21,22], which is linked to longitudinal models through random-effects, providing further bridge
between time-to-event and longitudinal observations. To the best of our knowledge, there has been relatively
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little work done to address the simultaneous impact of longitudinal data with heterogeneity, left-censoring due
to LOD, measurement error in covariate and event time by joint modeling the three processes above based on
Bayesian MNLMEJ model. It is noted that some models published in the literature [6,12,19] can be treated as
special cases of MNLMEJ model proposed in this article when our model is tailored in this way. Approaching
the mixture joint modeling problem from the Bayesian perspective is more natural and straightforward. It avoids
many complicated approximations required by the frequentist approach. Yet, with noninformative priors, we can
still get maximum likelihood-type estimates.

The remainder of this article evolves as follows. Section 2 describes the data set that motivated this research
and discusses the specific MNLMEJ models, where mixture models are formulated by three nonlinear mean
functions of different mixture components for viral load response with left-censoring, CD4 covariate process with
measurement errors and AFT model for time to decline of CD4/CD8 ratio. Simultaneous Bayesian inferential
procedure for estimating both parameters and probabilities of class membership are presented in Section 3. In
Section 4, we demonstrate to apply the proposed methodologies to an AIDS data set described in Section 2 and
report the analytic results. Finally, we conclude the article with discussion in Section 5.

2 Motivating data set and a mixture of joint models for HIV dynamics

2.1 Motivating data set

The data set that motivated this research is from ACTG388 study [1]. ACTG388 study was a randomized,
open-label study comparing 2 different 4-drug regimens with a standard 3-drug regimen for 517 subjects with no
or limited previous experience with antiretroviral treatment (ART) who had a CD4 cell count ≤200 cells/mm3

or a plasma HIV-1 RNA level ≥ 80,000 copies/mL at screening. The planned study duration was 72 weeks,
which was subsequently increased to 96 weeks beyond the enrollment of the last subject. The plasma HIV-1 RNA
(viral load) is repeatedly quantified at weeks 0, 4, 8, 16, and every 8 weeks until the last patient on study. The
number of viral load measurements for each individual varies from 2 to 18. Out of total 517 patients, sixty-five
subjects had no viral load measurements because all RNA assay results are not available for these subjects and
twenty-five subjects had less than three viral load measurements (which is not suitable for classification) because
of permanently discontinued study prior to study completion with various reasons, which were excluded from
this study. The remaining 427 subjects whose viral load measurements vary from 3 to 18 were included in data
analysis. Thirty four percent of viral load observations were measured below the LOD of 25 copies/mL in our
data. The CD4 and CD8 cell counts were also measured throughout study on a similar scheme. The detailed
data description can be found in Fischl et al.[1]. The log10 transformation of viral load and square-root of CD4
were used in the analysis in order to make data more symmetric, to stabilize the variation of the measurement
errors and to speed up estimation algorithm. In addition, in order to avoid too small or large estimates which
may be unstable, we rescaled the original time (in days) so that the time scale is between 0 and 1.

Since viral load is an important marker for assessing virologic response of an ART regimen, our objective is to
develop a mixture of joint modeling for characterizing population-level and individual-level viral load trajectories.
As discussed in Section 1, viral load trajectory profiles of three representative patients displayed in Figure 1(a)
can be roughly classified into three classes in terms of the effect of treatment on viral load responses: For class 1,
patient’s viral loads decrease rapidly and constantly in a short-term period (dotted line with solid circle sign) due
to the fact that some patients withdrew too early to be clustered into either class 2 (with viral load suppression or
without viral load rebound) or class 3 (with viral load rebound); for class 2, patient’s viral loads decrease at the
beginning and then stay stable at a low level (solid line with circle sign). The classes 1 and 2 with suppression of
plasma HIV-1 RNA levels indicate that the treatment can be thought successful without serious clinical problems
arose, suggesting a confirmed virologic response. While for class 3 patient’s viral loads decrease at the beginning,
but they experience viral load increase, which results in viral load rebound eventually (dashed line with plus
sign), implying a virologic failure. Along with these observations, we can reasonably assume that patients from
a population consist of three relatively homogeneous classes.

Figure 1 presents the trajectories of HIV viral load, CD4 cell count and CD4/CD8 ratio of three representative
subjects from ACTG388 study [1]. While the data indicate a close association of the longitudinal viral load, CD4
cell count and CD4/CD8 ratio, the data show a large variation in the association across subjects and over time
within each subject. This observation together with the published researches in the area [7,12,16,19,23] led us to
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propose the following MNLMEJ models for HIV dynamics in connection with three outcome variables of concern.
Due to the fact that our objective in this study is HIV viral dynamics, we choose viral load as a response variable
and consider CD4 cell count as a covariate [5,7,8,16] to develop MNLMEJ models below.

2.2 Measurement error models

Denote the number of subjects by n and the number of measurements on the ith subject by ni. Let zi =
(zi1, . . . , zini)

T , where zij is time-varying CD4 covariate for the ith subject at time tij (i = 1, 2, . . . , n; j =
1, 2, . . . , ni). As is evident from Figure 1(a), the inter-patient variations in viral load appear to be large and
these variations change over time. Previous studies suggest that the inter-patient variation in viral load may be
partially quantified by time-varying CD4 cell count [6–8]. The covariate (CD4 cell counts) often have substantial
measurement errors, and ignoring these errors may lead to misleading results [24]. With CD4 measures collected
over time, we may model the CD4 process to partially address the measurement errors [8]. However, the CD4
trajectories are often complicated, and there is no well established model for the CD4 process. We, thus, model
the CD4 process empirically using a nonparametric mixed-effects model, which is flexible and works well for
complex longitudinal CD4 data as follows.

zij = w(tij) + hi(tij) + ϵij (≡ z∗ij + ϵij) ϵi
iid∼ Nni(0, σ

2
1Ini), (1)

where w(tij) and hi(tij) are unknown nonparametric smooth fixed-effects and random-effects functions, respec-
tively, and ϵi = (ϵi1, . . . , ϵini)

T follows a multivariate normal distribution. z∗ij = w(tij) + hi(tij) are the true (but
unobservable) covariate values at time tij . The fixed smooth function w(t) represents population average of the
covariate process, while the random smooth function hi(t) is introduced to incorporate the large inter-individual
variation in the covariate process. We assume that hi(t) is the realization of a zero-mean stochastic process.

Model (1) is more flexible than parametric mixed-effects models. To fit model (1), we apply a regression
spline method to w(t) and hi(t). The working principle is briefly described as follows and more details can be
found in literature [25,26]. The main idea of regression spline is to approximate w(t) and hi(t) by using a linear
combination of spline basis functions. For instance, w(t) and hi(t) can be approximated by a linear combination
of basis functions Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T and Φq(t) = {ϕ0(t), ϕ1(t), ..., ϕq−1(t)}T , respectively. That
is,

w(t) ≈ wp(t) =

p−1∑
l=0

αlψl(t) = Ψp(t)
Tα, hi(t) ≈ hiq(t) =

q−1∑
l=0

ailϕl(t) = Φq(t)
Tai, (2)

where α = (α0, . . . , αp−1)
T is a p × 1 vector of fixed-effects and ai = (ai0, . . . , ai,q−1)

T (q ≤ p) is a q × 1 vector

of random-effects with ai
iid∼ Nq(0,Σa). Based on the assumption of hi(t), we can regard ai as iid realizations

of a zero-mean random vector. Substituting w(t) and hi(t) by their approximations wp(t) and hiq(t), we can
approximate model (1) by the following linear mixed-effects (LME) model.

zij ≈ Ψp(tij)
Tα+Φq(tij)

Tai + ϵij ≈ z∗ij + ϵij , ϵi
iid∼ Nni(0, σ

2
1Ini), (3)

For this model, we consider natural cubic spline bases with the percentile-based knots. To select an optimal
degree of regression spline and numbers of knots, i.e., optimal sizes of p and q, the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) is often applied [25]. Following the study in Liu and Wu [7],
we set ψ0(t) = ϕ0(t) = 1 and take the same natural cubic splines in the approximation (2) with q ≤ p ( in order to
limit the dimension of random-effects). The numbers of knots (see equation (2) in detail), p and q, are determined
based on the AIC/BIC criteria. For the ACTG388 data, the AIC/BIC values are evaluated for various models
with (p, q) = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} which was found that the model with (p, q) = (3, 3) has the
smallest AIC/BIC values being 5733.5/5749.8. We, thus, adopted the following CD4 covariate model.

zij ≈ (α0 + ai0)ψ0(tij) + (α1 + ai1)ψ1(tij) + (α2 + ai2)ψ2(tij) + ϵij(≡ z∗ij + ϵij) (4)

where zij is the observed
√
CD4 value at time tij , ψ1(·) and ψ2(·) are two basis functions given in Section 2.1,

α = (α0, α1, α2)
T is a vector of population (fixed-effects) parameters, ai = (ai0, ai1, ai2)

T is a vector of random-
effects.
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2.3 A mixture of NLME Tobit models for HIV dynamics

Let yij be the value of viral load response for the individual i at time tij (i = 1, 2, . . . , n; j = 1, 2, . . . , ni). In order
to introduce Tobit model to deal with observations below LOD in our mixture joint modeling framework, denote
the observed value yij by (qij , dij), where dij is the censoring indicator and qij is the latent response variable.
The latent qij is observed, as yij , if and only if yij > ρ (a known constant LOD). When qij is observed we have
dij = 0. Otherwise we have dij = 1. Let yi = (yi1, . . . , yini)

T , qi = (qi1, . . . , qini)
T and di = (di1, . . . , dini)

T .
Finite mixture models for longitudinal studies were considered in the literature [13,14], where the latent classes
corresponding to the mixture components and cluster individuals may provide a better inference. However, most
finite mixture models for longitudinal data are currently based on linear (polynomial) [13] or piecewise linear
[14] mean functions. The partial reason is that the computation can be conveniently carried out because the
likelihood function of a model based on these ‘linear’ mean functions has a closed form [13]. However, in practice,
most longitudinal trajectories appear to be nonlinear patterns. When a mixture model is extended to incorporate
nonlinear mean functions which will be conducted in this article, inferential procedures complicate dramatically
because a closed form of likelihood function no longer exists.

We assume that there are K plausible nonlinear trajectory classes with mean functions gk(·) (k = 1, ...,K),
which are known to be specified (in our case conducted K=3). The true trajectory mean function of the ith

subject might be gk(·) with unknown probability πk = P (ci = k) which satisfies
∑K

k=1 πk = 1, where ci is a latent
indicator. For the response process with left-censoring, an NLME model for ith subject, given ci = k, can be
formulated by

(yi|ci = k) = gk(ti,Akβij) + ei, ei
iid∼ Nni(0, σ

2
2Ini), (5)

where ti = (ti1, . . . , tini)
T , the vector of random errors ei = (ei1, ..., eini)

T
follows a multivariate normal distri-

bution with mean zero and unknown variance parameter σ2
2 , and βij = (β1ij , . . . , βsij)

T is a vector of individual
parameters for the ith subject, which is expressed by

βij = Zijβ +Xbi, (6)

where Zij (s × r) is a design matrix including time-independent and/or time-varying covariates such as CD4

cell count, X (s × m) is random-effects related indicator matrix; β = (β1, ..., βr)
T

is a vector of population

parameters, and the vector of random-effects bi = (bi1, . . . , bim)T
iid∼ Nm(0,Σb) with an unknown variance-

covariance matrix Σb (m × m). We assume one of the elements in Zij , z
∗
ij in model (3), is a summary of

true (but unobservable) time-varying covariate value at time tij . It is noted that r ≥ s ≥ m. gk(ti,Akβij) =

(gk(ti1,Akβi1), . . . , gk(tini ,Akβini
))T , and Ak (k = 1, . . . ,K) is known s × s square-matrix indicator, of which

diagonal elements are either 0 or 1 and off-diagonal elements are all 0. Ak is introduced because the mean
functions of yij (i = 1, . . . n; j = 1, . . . , ni), specified by the nonlinear functions g1(·), . . . , gK(·), may only involve
different subsets of βij . By introducing Ak, Akβij will set unrelated elements of βij to 0 in the kth trajectory
class, respectively. We will illustrate the choice of Ak and specify nonlinear mean functions gk(·) in the HIV
dynamic application below.

Similar to discussion in Pauler and Laird [14] and Lu and Huang [12], model (5) can be specified conditionally
and marginally, respectively, by

(yi|ci = k) ∼ Nni(gk(ti,Akβij), σ
2
2Ini), (7)

yi ∼
∑K

k=1 πkNni(gk(ti,Akβij), σ
2
2Ini). (8)

Thus, equation (8) along with the Tobit formulation forms the finite mixture of NLME Tobit models for response
variable with missing values due to LOD in the presence of measurement error model (3). In (8) the vector

of mixture probabilities π = (π1, . . . , πK)
T

can be also viewed as the mixture weights of all plausible compo-
nents within the finite mixture model framework. Model (8) is identifiable, as long as each of the component
models is identifiable and distinguishable from each other; when the component models are identifiable but not
distinguishable from each other, some constraints may be required to make model (8) identifiable[27].

For the viral load response in HIV dynamics, we consider one- and two-compartment models (see Appendix A
in detail) with constant decay rate(s) for trajectory classes 1 and 2, respectively, and a two-compartment model
with a time-varying decay rate in the second compartment for trajectory class 3 described above. Toward this
end, the mean functions of K = 3 components in the mixture model are specified by
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1. One-compartment model with a constant decay rate for class 1 trajectory

g1(tij ,A1βij) = log10(e
p1i−λ1itij ), (9)

2. Two-compartment model with constant decay rates for class 2 trajectory

g2(tij ,A2βij) = log10(e
p1i−λ1itij + ep2i−λ2itij ), (10)

3. Two-compartment model with constant and time-varying decay rates for class 3 trajectory

g3(tij ,A3βij) = log10(e
p1i−λ1itij + ep2i−λ2ijtij ). (11)

In (9)–(11),

β1i = p1i = β1 + bi1, β2i = λ1i = β2 + β3zi0 + bi2, β3i = p2i = β4 + bi3,
β4i = λ2i = β5 + bi4, β5ij = λ2ij = β5 + β6E(zij) + bi4,

βij = (β1i, β2i, β3i, β4i, β5ij)
T
, β = (β1, β2, β3, β4, β5, β6)

T
, bi = (bi1, . . . , bi4)

T ,
A1 = diag(1, 1, 0, 0, 0),A2 = diag(1, 1, 1, 1, 0),A3 = diag(1, 1, 1, 0, 1),

Zij =


1 0 0 0 0 0
0 1 zi0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 z∗ij

 and X =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 , (12)

where zi0 is the baseline
√
CD4 and E(zij) = z∗ij is true (but unobservable) value of

√
CD4 at time tij defined

in (4). The decay rate of the second compartment in (11), β5ij , is time-varying due to z∗ij , but other parameters
in βij are time independent. As mentioned previously, the mean functions in different components may involve
different subsets of βij ; for example, g1(·) only involves parameters β1i and β2i, and g2(·) and g3(·) share the
same parameters β1i, β2i, and β3i but have different second-phase decay rate, β4i and β5ij , respectively. The
diagonal indicator matrices, A1, A2, andA3, determine which elements of βij are involved and set other unrelated
parameters to be 0 in the mean functions, g1(·), g2(·), and g3(·), respectively. It is noted that (11) is a natural
extension of (10) to consider a time-varying decay rate for capturing viral rebound in class 3 trajectories. With
this mixture clustering, our mixture modeling can be used to estimate probabilities of class membership which is
either viral rebound eventually, suggesting virologic failure (class 3) or viral decrease continuously, indicating a
confirmed shorter-term virologic suppression (class 1) and longer-term virologic suppression (class 2).

2.4 Time-to-event models with an unspecified distribution

Various accelerated failure time (AFT) models for time-to-event were investigated in the literature [9,16]. How-
ever, the common assumption of distributions for model errors is log-normal and this assumption may lack the
robustness and/or may violate the agreement with observed data. Thus, statistical inference and analysis with
log-normal assumption may lead to misleading results. We consider AFT models with error term to have a
nonparametric prior distribution, which follows a Dirichlet process (DP) prior [21,22]. The event time ℑi is
likely related to the longitudinal response and covariate processes. We specify the association by assuming that,
conditional on the random-effects ai and bi, the event time is related to the longitudinal processes through the
random-effects that characterize the individual-specific effects [16,19].

Assume that ℑi is time to the first decline in the CD4/CD8 ratio for the ith subject (i = 1, 2, . . . , n). We
are interested in the association of time to immune suppression of the individual-specific initial viral decay rates
and the true CD4 trajectory, which are characterized by the random-effects in the viral load response and CD4
covariate models. We may view the (unobservable) random-effects as error-free covariates in time-to-event models.
The associated inference can be computationally challenging when joint models consist of (nonlinear) longitudinal
models and the semiparametric Cox proportional hazards model for time-to-event, a commonly used failure time
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model [9], especially when the event times are interval censored. To focus on the primary interests discussed in
the article, we consider the following AFT model for time to first decline of the CD4/CD8 ratio.

ln(ℑi) = γT τ i + εi, εi ∼ G(·),
G(·) ∼ DP (ηG0), G0 ∼ N(ζ0, σ

2
0), η ∼ Γ (η10, η20).

(13)

where τ i = (1, ai0, ai1, ai2, bi2, bi4)
T with unknown coefficients γ = (γ0, γ1, . . . , γ5)

T and we assume εi follows
an unspecified distribution G(·) that is the DP prior [21,22] with the concentration parameter η and the base
measure G0 following a Gamma distribution and a specified normal distribution, respectively. Note that the
parameter G0 is the prior mean of G(·) and represents a guess; the other parameter of the DP prior, η, reflects
the degree of closeness of G(·) to the prior mean G0. Large values of η make G(·) very close to G0, while small
values of η allow G(·) to deviate from G0. This nonparametric analysis of specifying the distribution of εi is
robust to misspecification of the distributional assumptions about the model error. To implement the AFT model
with the Dirichlet Process (DP) prior distribution, a popular way for specifying the DP prior DP (ηG0) is the
stick-breaking prior representation [22]. That is, the distribution of εi can be expressed as

εi ∼
∞∑
g=1

wgN(µg, κg) with µg = µ∗
g −

∞∑
g=1

wgµ
∗
g, (µ

∗
g, κg) ∼ G0,

where wg is a random probability weight chosen to be independent of (µ∗
g, κg) such that 0 ≤ wg ≤ 1 and∑∞

g=1 wg = 1. For the sake of computational convenience, we consider the following mixture formulation of the
truncated approximation DP.

εi ∼
L∑

g=1

wgN(µg, κg), with µg = µ∗
g −

L∑
g=1

wgµ
∗
g, (µ

∗
g, κg) ∼ G0, (14)

where 0 ≤ G <∞ and wg is defined by the following stick-breaking procedure.

w1 = ν1 and wg = νg

g−1∏
l=1

(1− νl) for g = 2, . . . , G, (15)

where νg ∼ Beta(1, η) for g = 1, 2, . . . , L − 1 and νL = 1 so that
∑L

g=1 wg = 1. The prior distribution for the
unknown parameter η is given by Γ (η10, η20) with prespecified hyperparameters η10 and η20, and the details for
selecting L can refer to the publication [22].

In model (13), the random-effects bi2 and bi4 represent individual variations in the first- and second-phase
viral decay rates, respectively, so they may be predictive for event times. While bi1 and bi3 represent variations in
the baseline viral loads, they do not appear to be highly predictive of event time, so they are excluded from the
model to reduce the number of parameters. Model (13) offers the following advantages: (i) the random-effects in
the covariate model summarize the history of the covariate process and the summary quantities are likely better
predictors than the covariates at several particular times; (ii) the random-effects in the response model summarize
individual variations in the first- and second-phase viral decay rates to predict time to immune suppression; (iii)
the link among the three models is made clear by the shared random-effects; (iv) the model error is assumed to
be more flexible and unspecified distribution that has DP prior; (v) it is easy to implement.

Model (13) may be a good choice when the event times are thought to depend on individual-specific longitudinal
trajectories, such as initial intercepts and slopes, or summaries of the longitudinal trajectories, and it is closely
related to so-called shared parameter models [28]. As pointed out in the studies by Tsiatis and Davidian [9]
and Wu et al.[16], in some practical situations, the event times cannot be observed but are only known as being
contained in some time intervals, i.e., being interval-censored. In the AIDS study mentioned previously, for
example, given that CD4 and CD8 were collected at a finite number of times, we can only know that the time to
the first occurrence of CD4/CD8 decrease in a subject is between two data collection time points. The observed
event time data are then (ui, vi], i = 1, . . . , n, where (ui, vi] is the smallest observed interval containing ℑi. We
take ui as the subject’s latest time in the study and vi = ∞ if the ith subject did not experience the event of
interest during the whole study period.
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3 Simultaneous Bayesian inferential approach

In a longitudinal study, such as the AIDS study described previously, the longitudinal response, the covariate
processes, and the time-to-event are usually connected physically or biologically. Models (3), (6) and (8) in
connection with the time-to-event (13) define the MNLMEJ models considered in this article. They can be
jointly modeled through the shared random-effects. Statistical inference on all of the model parameters can then
be made simultaneously. Although a simultaneous inferential method based on a joint likelihood for the response,
covariate and event time data may be favorable, the computation associated with the simultaneous likelihood
inference in the MNLMEJ models can be extremely complex and may lead to convergence problems; in some cases
it can even be computationally infeasible [7–10]. Here, we propose a simultaneous Bayesian inferential method
via Markov chain Monte Carlo (MCMC) procedure to estimate both probabilities of class membership and all
model parameters. The MNLMEJ models-based Bayesian inferential approach may pave a way to balance the
computational burdens and convergence problems for such complex model setting.

Let θ = {α,β,γ, σ2
1 , σ

2
2 ,Σa,Σb} be the collection of unknown parameters in the MNLMEJ models except for

the mixture weight π in (8). Under the Bayesian framework, we next need to specify prior distributions for all
the unknown parameters in the MNLMEJ models as follows.

α ∼ N3(τ 1,Λ1), β ∼ N6(τ 2,Λ2), γ ∼ N6(τ 3,Λ3),
σ2
1 ∼ IG(ω1, ω2), σ

2
2 ∼ IG(ω3, ω4), Σa ∼ IW (Ω1, ν1), Σb ∼ IW (Ω2, ν2),

(16)

where the mutually independent Normal (N), Inverse Gamma (IG) and Inverse Wishart (IW ) prior distributions
are chosen to facilitate computations. The super-parameter matrices Λ1, Λ2, Λ3, Ω1 and Ω2 can be assumed
to be diagonal for convenient implementation. By its definition, the latent indicating variables ci (i = 1, ..., n)
follow a Categorical distribution(Cat)

ci
iid∼ Cat((1, 2, 3), (π1, π2, π3)), (17)

in which π = (π1, π2, π3)
T
follows a Dirichlet distribution(Dir)[11],

π ∼ Dir(ϕ1, ϕ2, ϕ3). (18)

Under the umbrella of the MNLMEJ models (3), (6), (8) and (13), the MCMC procedure consists of the
following two iterative steps:
(i). Sampling class membership indicators ci (i = 1, ..., n), conditional on population parameters, θ, and individ-
ual random-effects, ai and bi.

Generate ci (i = 1, ..., n) from

P (ci = k|ai, bi,θ,yi) =
πkf(yi|ai,bi,ci=k,θ)∑3

m=1 πmf(yi|ai,bi,ci=m,θ)
, (19)

where f(yi|ai, bi, ci = k,θ) (k = 1, 2, 3) is a conditional density function of yi based on (7). Then, the probability
π can be updated from the following distribution for next iteration

(π|num1, num2, num3) ∼ Dir(ϕ1 + num1, ϕ2 + num2, ϕ3 + num3), (20)

where numk =
∑n

i=1 I(ci = k), (k = 1, 2, 3), in which I(·) is an indicator function.

(ii). Sampling parameters θ, and individual random-effects ai and bi, conditional on class membership indicator

c = (c1, . . . , cn)
T
.

It can be shown, conditional on ci determined in step (i), that zi and yi (in the presence of left-censoring)
with respective random-effects ai and bi in conjunction with the time-to-event model (13) can be hierarchically
formulated as

zi|ai ∼ Nni(z
∗
i , σ

2
1Ini), ai ∼ N3(0,Σa),

yi|ai, bi, ci ∼ Nni(gci(ti,Aciβi), σ
2
2Ini), bi ∼ N4(0,Σb),

ℑi|τ i ∼ G
(
ln(ti)− γT τ i

)
,

(21)
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where z∗
i = (z∗i1, ..., z

∗
ini

)
T
.

Let f(·|·), F (·|·) and h(·) denote a probability density function (pdf), cumulative density function (cdf) and
prior density function, respectively. Conditional on the random variables and some unknown parameters, with
the specification of the Tobit model, a detectable measurement yij contributes f(yij |bi,ai, ci), whereas a non-
detectable measurement contributes F (ρ|bi,ai, ci) ≡ P (yij < ρ|bi,ai, ci) in the likelihood. We assume that
α,β,γ, σ2

1 , σ
2
2 ,Σa,Σb are independent of each other, i.e., h(θ) = h(α)h(β)h(γ)h(σ2

1)h(σ
2
2)h(Σa)h(Σb). After

we specify the models for the observed data denoted by ℜ = {(qi,di, zi, zi0, ui, vi), i = 1, . . . , n} and the prior
distributions for the unknown model parameters, we can make statistical inference for the parameters based
on their posterior distributions under Bayesian framework. Thus, the joint posterior density of θ based on the
observed data ℜ and classification indicator c can be given by

f(θ|ℜ, c) ∝ {
n∏

i=1

∫ ∫
Lyi

f(zi|ai)F
∗(ui, vi|τ i)f(ai)f(bi)daidbi}h(θ), (22)

where F ∗(ui, vi|τ i) = G
(
ln(vi)− γT τ i

)
− G

(
ln(ui)− γT τ i

)
; Lyi

=
ni∏
j=1

f(yij |bi,ai, ci)
1−dijF (ρ|bi,ai, ci)

dij is

the likelihood for the observed response data in which dij is the censoring indicator such that yij = qij is observed
if dij = 0 and yij is left-censored (i.e., treated as missing) if dij = 1.

In general, the integrals in (22) are of high dimension and do not have a closed form. Analytic approximations
to the integrals may not be sufficiently accurate. Therefore, it is prohibitive to directly calculate the posterior
distribution of θ based on the observed data and class membership. As an alternative, the MCMC procedure
can be used to sample population parameters, θ, and random-effects, ai and bi as well as latent class indicator
ci (i = 1, ..., n), from conditional posterior distributions, based on (22), using the Gibbs sampler along with the
Metropolis-Hastings (M-H) algorithm. Steps (i) and (ii) considered in the MCMC procedure above are repeated
alternatively in iterations of MCMC procedure until convergence is reached. An important advantage of the above
representations based on the hierarchical models is that they are easily implemented using the freely available
WinBUGS software [29] interacted with a function called bugs in a package R2WinBUGS of R. Note that when
WinBUGS software is used to implement our modeling approach, it is not necessary to explicitly specify the full
conditional posterior distributions or proportional functions of the density functions of full conditional posterior
distributions for parameters to be estimated. Although their derivations are straightforward by working the
complete joint posterior, some cumbersome algebra will be involved and are not present here to save space.

4 Analysis of AIDS clinical data

4.1 Model implementation

We conducted the following scenarios of modeling comparison. First, we proposed the joint modeling (JM)
approach based on the MNLMEJ model (denoted as Model I) in Section 3. Here, we estimated the model
parameters by using the “naive” method (denoted by NM), which ignores measurement error in CD4 covariate.
That is, the “naive” method uses only the observed CD4 value zij rather than expected (unobservable) CD4 value
E(zij) = z∗ij in the mixture model for viral load response (denoted by Model II). We used it as a comparison to
the JM approach. This comparison attempted to investigate how the measurement errors in CD4 contribute to
modeling results. Second, we further investigated a commonly used NLME joint model (Model III, ignoring data
feature of heterogeneous population) where the mean function is specified by (11) alone. This NLME model has
been widely applied to analyze viral load data [7,8,26] in significantly advancing the understanding of pathogenesis
of HIV infection and the assessment of effectiveness of ART. We compared Model III with Model I proposed in
this article to explore how heterogeneous feature influences modeling results.

To carry out the Bayesian inference, we took weakly-informative prior distributions for the parameters. In
particular, (i) fixed-effects were taken to be independent normal distribution N(0, 100) for each element of the
population parameter vectors α, β and γ; (ii) we assume a noninformative inverse Gamma prior distribution
IG(0.01, 0.01), which has mean 1 and variance 100, for variance parameters σ2

1 and σ2
2 ; (iii) the priors for the

variance-covariance matrices of the random-effects Σa and Σb were taken to be inverse Wishart distributions
IW (Ω1, ν1) and IW (Ω2, ν2), where the diagonal elements for diagonal variance matrix Ω1 and Ω2 were 0.01,
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and ν1 = ν2 = 4; and (iv) we set hyper-parameters of Dirichlet distribution in (18), ϕ1 = ϕ2 = ϕ3 = 1, assuming
individuals have equal probabilities of coming from any one of three classes initially. (v) The hyper-parameters for
the DP prior are assigned by ζ0 = 0, η10 = 0.5, η20 = 0.01 and σ2

0 = 100. The MCMC sampler was implemented
using WinBUGS software [29] interacted with R2WinBUGS of R, and the program codes for mixture joint model
are available from author upon request. When the MCMC procedure was applied to the actual clinical data,
convergence of the generated samples was assessed using standard tools within WinBUGS software such as trace
plots and Gelman-Rubin (GR) diagnostics [30]. We observed from the plots of trace, autocorrelation and GR
diagnostics that the algorithm has approached convergence. Along with the diagnostic convergence, we proposed
that, after an initial number of 50,000 burn-in iterations of three chains of length 100,000, every 50th MCMC
sample (i.e., thin set equal to 50) was retained from the next 50,000 for each chain. Thus, we obtained a total of
3,000 samples of targeted posterior distributions of the unknown parameters for statistical inference.

4.2 Results of data analysis

The Bayesian joint modeling approach in conjunction with the three models for the viral load response, the CD4
covariate and the time to first decline of CD4/CD8 ratio with different scenarios was used to fit the data. From
the model fitting results, we have seen that, in general, all the models provided a reasonably good fit to the
observed viral load data above LOD for most patients in our study, although the fitting for a few patients was
not completely satisfactory due to unusual data fluctuation patterns for these patients, particularly for Models II
and III. As an example, the three representative individual estimates of viral load trajectories based on Models I
(solid lines), II (dash lines) and III (dotted lines) are displayed in Figure 2. The following findings are observed
from joint modeling . The estimated individual trajectories for Model I fit the originally observed values above
LOD more closely than those for Models II and III which are comparable.
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Fig. 2. Individual fitted curves of viral load for three representative patients based on Models I (solid lines), II (dash lines)
and Model III (dotted lines). The observed values are indicated by circle “◦”. The horizontal lines represent LOD at
1.398=log10(25).

The population posterior mean (PM), corresponding standard deviation (SD) and 95% credible interval (CI)
for fixed-effects parameters based on Models I, II and III with two methods are presented in Tables 1 and 2. The
following findings are observed for estimated results of parameters.

In the mixture of NLME response model with the three components (9)–(11), the findings, particularly for the
fixed-effects (β5, β6), which are parameters related to second-phase viral decay rate, show that these estimates
are different from zero for the three Models since the 95% credible intervals do not contain zero. Nevertheless,
for the estimate of the coefficient of CD4 covariate β6, although its estimate based on Model I (0.098) is much
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Table 1. Summary of estimated posterior mean (PM) of population (fixed-effects) parameters, the corresponding standard
deviation (SD), and lower limit (LCI) and upper limit (UCI) of 95% equal-tail credible interval (CI).

Method Model β1 β2 β3 β4 β5 β6 α1 α2 α3 σ2
1 σ2

2

JM I PM 11.36 103.8 1.854 2.604 -3.157 0.098 13.53 8.712 68.27 4.871 0.940
LCI 11.04 92.09 0.307 1.740 -4.836 0.027 13.00 7.997 49.93 4.677 0.872
UCI 11.62 115.7 3.303 3.527 -0.892 0.184 13.98 9.536 86.99 5.058 1.023
SD 0.145 6.015 0.720 0.510 1.059 0.052 0.271 0.426 9.405 0.097 0.043

NM II PM 11.34 95.88 2.364 2.106 -5.693 0.245 13.56 8.648 67.11 4.877 0.912
LCI 11.04 78.06 0.462 0.853 -7.665 0.168 12.98 7.707 48.58 4.679 0.853
UCI 11.58 111.8 4.105 3.274 -3.181 0.312 14.15 9.557 85.83 5.081 0.997
SD 0.134 10.37 0.999 0.711 1.269 0.036 0.290 0.471 9.507 0.103 0.040

JM III PM 11.39 104.9 2.097 2.038 -9.012 0.157 13.50 8.854 65.56 4.863 0.915
LCI 11.16 95.01 1.047 1.360 -7.966 0.079 12.96 8.057 47.71 4.671 0.872
UCI 11.62 115.8 3.213 2.823 -3.883 0.237 13.99 9.732 84.87 5.061 0.967
SD 0.115 5.485 0.540 0.368 0.039 0.039 0.264 0.427 9.443 0.101 0.024

Table 2. Summary of estimated posterior mean (PM) of population (fixed-effects) parameters, the corresponding standard
deviation (SD), and lower limit (LCI) and upper limit (UCI) of 95% equal-tail credible interval (CI) as well as DIC and
EPD values.

Method Model γ0 γ1 γ2 γ3 γ4 γ5 DIC EPD

JM I PM -2.783 -0.155 -0.265 1.251 0.054 0.026 10368.9 1.675
LCI -2.870 -0.493 -0.864 -0.502 -0.478 -0.036
UCI -2.706 0.750 0.219 2.458 1.127 0.230
SD 0.043 0.335 0.375 0.735 0.326 0.065

NM II PM -2.802 -0.073 -0.110 -0.050 -0.020 -0.005 12572.8 1.932
LCI -2.890 -0.401 -1.389 -2.068 -0.246 -0.034
UCI -2.715 0.270 0.766 1.085 0.026 0.026
SD 0.045 0.158 0.599 0.778 0.064 0.015

JM III PM -2.785 -0.112 -0.177 0.485 0.001 -0.003 14099.1 2.637
LCI -2.871 -0.581 -0.943 -1.611 -0.004 -0.027
UCI -2.701 0.307 0.271 1.446 0.004 0.019
SD 0.044 0.199 0.322 0.763 0.003 0.012

smaller than the counterpart based on Models II and III (0.245 and 0.157), its estimate is always significantly
positive. This means that CD4 has a significantly positive effect on the second-phase viral decay rate, suggesting
that the CD4 covariate may be an important predictor of the second-phase viral decay rate during the treatment.
The fixed-effects (β2, β3), which are parameters of the first-phase viral decay rate, show that the estimate of β3,
the coefficient of baseline CD4 count, is significantly positive, indicating that the baseline CD4 has positive effect
on the first-phase viral decay rate.

For parameter estimates of the CD4 covariate model (4), the estimates of the coefficients based on the three
models show slight differences. The estimated linear coefficient α2 is significantly different from zero with a
positive value, suggesting that there is a positive linear relation between CD4 cell count and measurement time.
This result may be explained by the fact that CD4 cell count may increase during treatment, and in turn, indicates
an overall improvement of AIDS progression in this AIDS trial study.

The estimates of parameters in the AFT model (13) do not directly show that the time to CD4/CD8 decrease
is highly associated with either the two viral decay rates (due to insignificant estimates of γ4 and γ5) or the CD4
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changes (due to insignificant estimates of γ2 and γ3) over time, which is different from what was anticipated. This
finding is consistent with the study by Wu et al.[16] in which further explanations are provided.

For comparison, we employed the NM to estimate the model parameters presented in Tables 1 and 2 using the
observed CD4 and ignoring the CD4 measurement error in the mixture of NLME response model with the three
components (9)–(11). It is seen from estimates of (β5, β6), which depend on whether or not to ignore potential
CD4 measurement error, that the differences between the naive estimates (-3.157, 0.098) of (β5, β6) and the joint
modeling estimates (-5.693, 0.245), indicate that CD4 measurement error can not be ignored in the analysis.

We further investigated a commonly used NLME joint model (Model III, where data feature of heterogeneous
population is ignored). We compared Model III with Model I to explore how heterogeneous feature influences
modeling results. We found the important differences in the estimates of parameters (β5, β6), which are associated
with the second-phase viral decay rate. It is noted that one advantage of Model I over Model III is its flexibility
to provide not only estimates of all model parameters, but also evaluate class membership probabilities at both
population and individual levels, which is helpful for clinicians to develop individualized treatment.

We now focus on the lower end of the distribution of the viral load due to LOD where the Tobit model is
offered to mediate the observations below LOD as missing values. As it was mentioned in the Section 1, the
current assay techniques for quantifying HIV-RNA viral load may not give accurate readings below LOD. In our
analysis, we treated those inaccurate observed viral loads as missing values and predict them using the proposed
(mixture) joint models in connection with the Tobit model. Note that the main advantage of our proposed
Tobit model is its ability to predict the true viral load values (log10 scale) below LOD based on a latent variable
approach. The fitted results of these models for values below LOD indicate that most observed values are piled
up at the range (0.6, 1.4), whereas for Models I, II and III the predicted values of the unobserved viral load
below LOD are spread out as expected (data not shown here). However, Models II and III produce the predicted
values exceeded the LOD much more than Model I does. In addition, when we compare the three models in terms
of their distributions in predicting viral loads below LOD, we can see that Model I gives more plausible values
ranged within (-0.2, 1.5) than Models II and III do in the sense that the distribution is closely fits the lower part
of the whole distribution of the predicted viral load values based on Model I as expected, implying that Model
I is the better model. This finding is also confirmed by the results (see Table 2 for details) from other criteria
such as deviance information criterion (DIC) [31] and expected predictive deviance (EPD) [32]. In summary,
our results may suggest that it is important to consider heterogeneous and/or covariate measurement error data
features-based the mixture of joint models in order to achieve reliable results. Based on these findings, we will
further report our results in detail only for the best Model I below.

As mentioned in Section 1, one of the primary objectives in this analysis was to cluster all individuals’
membership into 3 classes based on viral load trajectories. Based on the mixture joint modeling, we are able to
obtain a summary of class membership at both the population and individual levels. At population level, the
MCMC procedure yields samples from the posterior distribution of (π1, π2, π3) in (20), the population proportion
of individuals in each class. The estimates of population proportion and associated 95% CI of (π1, π2, π3) for three
classes are 5.29% (3.15%, 7.47%), 57.13% (54.34%, 59.79%) and 37.58% (34.83%, 40.43%), respectively. It can be
seen that class 2 (decrease and maintain stable) has the largest proportion 57.13%, followed by class 3 (decrease
and rebound later) with proportion 37.58%, and then class 1 (decrease all the time) with the lowest proportion
5.29%. Thus, out of 427 patients, the patterns of changing viral load of 23, 244 and 160 patients followed classes 1,
2 and 3, respectively. This indicates that a confirmed shorter-term (class 1 due to early dropout) and longer-term
(class 2) virologic responses were observed in a total of 62.42% of the patients in classes 1 and 2.

At individual level, the posterior probability of individual i belonging to the kth (k = 1, 2, 3) class, pik =

E[I(ci = k)], can be approximated by 1
M

∑M
m=1 I(c

(m)
i = k), where c

(m)
i is class membership of individual i

drawn from the posterior distribution (19) in the mth MCMC iteration (m = 1, ...,M) and M is a total number
of posterior sample iterations (M = 3000 in this study). Barplot shown in Figure 3 displays the probabilities
for the selected 20 individuals (from the 1st to the 20th subjects). The probability corresponding to individual
patient who is classified as either viral load rebound or not may help physicians to refine treatment strategy
and to identify the reason of viral load rebound for such individual patient. As examples, for the three patients
shown in Figures 1 and 2, the patient 112 belongs to class 1 because the viral load decreases constantly in a early
short-term period with probability 87.5%; the viral load of the patient 17 decreases and then maintain stable,
and thus, this patient belongs to class 2 with probability 91.1%; and finally, the patient 7 is in class 3 (indicating
viral load rebound) with probability 83.7%.
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Fig. 3. Posterior probabilities of belonging to 3 trajectory classes for the first 20 individuals based on Model I.

5 Concluding discussion

We present a Bayesian joint modeling for three (response, covariate and time-to-event) processes linked through
the random-effects that characterize the underlying individual-specific longitudinal processes. We consider the
MNLMEJ models for survival-longitudinal data with multiple features. The approach is applied to jointly model
HIV dynamics and time to decrease in CD4/CD8 ratio in the presence of the CD4 covariate process with measure-
ment error to provide a tool to assess ART and to monitor disease progression. Among the models considered in
the application, Model I for longitudinal data with features of heterogeneity, missing due to LOD in response and
measurement error in covariate was found to be favorable. One advantage of mixture joint modeling approach-
based models proposed in this article is its flexibility to study simultaneous impact of various data characteristics
(heterogeneity, nonlinearity, missingness due to LOD and incompleteness). Another advantage of our mixture
joint modeling approach is to provide not only all model parameter estimates, but also model-based probabilistic
clustering to obtain class membership probabilities at both population and individual levels. In addition, the
proposed mixture joint modeling approach can be easily implemented using the publicly available WinBUGS
interacted with R. This makes our models and methods quite powerful and accessible to practicing statisticians
in the field.

The estimated results of fixed-effects presented in Table 1 based on Model I indicate that the first-phase decay
rate, and the second-phase decay rate without and with time-varying CD4 covariate may be approximated by
λ̂1 = 103.8 + 1.854z0, λ̂2 = −3.157 and λ̂2(t) = −3.157 + 0.098(−13.53 + 8.712ψ1(t) + 68.27ψ1(t)), respectively,
where z0 is the baseline

√
CD4 value, ψ1(t) and ψ2(t) are two basis functions given in Section 2.1. Thus,

the population viral load processes of 3 classes may be approximated by V̂1(t) = exp
{
11.36− λ̂1t

}
, V̂2(t) =

exp
{
11.36− λ̂1t

}
+ exp

{
2.604− λ̂2t

}
and V̂3(t) = exp

{
11.36− λ̂1t

}
+ exp

{
2.604− λ̂2(t)t

}
. Since the first-

phase viral decay rate, λ1, is significantly associated with the baseline CD4 (due to significant estimate of β3) and
the second-phase viral decay rate λ∗2(t) in the component three is significantly associated with the time-varying
CD4 values (due to significant estimate of β6), this suggests that the viral load change V (t) may be significantly
associated with both the baseline CD4 and time-varying CD4 values. This simple approximation considered here
may provide a rough guidance and point to further research even though the true association described above may
be more complicated. The analysis results suggest that for patients with viral load rebound, the CD4 process at
time t has a significantly positive effect on the second-phase viral decay rate; this finding confirms the fact that
the CD4 covariate is a more significant predictor on viral decay rate during late stage and more rapid increase in
CD4 cell count may be associated with faster viral decay in late stage, which, in turn, may result in a viral load
suppression. In addition, the estimated results of the parameters in the time-to-event model (13) based on (best)
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Model I suggest that the time to first decline of CD4/CD8 ratio is not highly associated with either the two viral
decay rates or the CD4 changes over time. This finding is consistent with that in the study by Wu et al. [16] in
which further explanations are provided.

In order to examine the sensitivity of parameter estimates to the prior distributions, we conducted a limited
sensitivity analysis using the uniform prior distribution U(0, 100) for standard deviation scales σ1 and σ2 [33]
instead of inverse gamma prior distribution (used in this paper) for variance parameters σ2

1 and σ2
2 ; we refitted

data based on Model I. We found from the results (not shown here) of sensitivity analysis that the conclusions
with different prior distributions are in agreement. Thus, the findings from our analysis remain unchanged.

For inference of mixture modeling, parameter (or model) identifiability can be an important but difficult
problem when a large number of model parameters must be estimated simultaneously. We must ensure each
component model to be identifiable to make whole mixture model to be identifiable. To make (10) and (11) to
be identifiable, we assume λ1i > λ2i in (10) and λ1i > λ∗2ij in (11). In practice, if the models are not identifiable,
the MCMC algorithm would diverge quickly. In the application considered in this article, the MCMC algorithm
was converged without problems and we did not observe potential identifiability problems. It is noted that the
mixture components, gk(·) in the finite mixture model may have the same family of densities but differ only in
specific values of parameters such as in their means, or have completely different functional forms with parameters
of different dimensions and meanings across the sub-models [14], which is the case adopted in this article. Because
of complexity of longitudinal studies, an advantage of choosing components correspond to different densities with
distinguished mean functions gk(·), which are known and pre-specified, rather than with the same general family
in the finite mixture models is that identifiability problem can be avoided [14].

It is noted that the models in our previous publications [6,12,19] can be treated as special cases of MNLMEJ
model proposed in this article when the MNLMEJ model is tailored as follows. In comparison with the proposed
MNLMEJ model which can be offered to not only estimate all parameters simultaneously, but also evaluate
probabilities of class membership, Huang and Dagne [6] considered only commonly used NLME model with mean
function specified by (11) for viral load response (not a mixture) in the presence of CD4 measurement error
specified by a standard linear mixed-effects model without time-to-event model involved; Huang et al.[19] inves-
tigated longitudinal-survival data analysis based on commonly used NLME model with mean function specified
by (11) for viral load response, but mixture of model structure is ignored in this sense that classification of viral
load trajectories was not evaluated; although Lu and Huang [12] studied a finite mixture of NLME models, both
measurement error model for CD4 covariate and AFT model for time to decline of CD4/CD8 ratio were not
considered in the sense that model in Lu and Huang [12] is not conducted under framework of joint models.

The final three issues related to this application are noted as follows. (i) The original motivation of this
mixture joint modeling was to cluster all patients into two classes with or without viral load rebound, which is of
main interest from a clinical prospective. But another class was needed (class 1) to capture some patients who
withdrew too early to be clustered into either class 2 with viral load suppression or class 3 with viral load failure.
Thus, the number of components in this analysis was determined empirically based on the viral load trajectory
patterns and clinical interpretability. Note that class 1 is referred as a confirmed ‘short-term virologic response’
due to early dropout which may be informative dropout and may not indicate virologic suppression in long-term
treatment. Toward this end, we may consider that dropouts are likely to be informative or non-ignorable missing
in the sense that the probability of dropouts (missing data) may depend on the missing values. Thus, we can
modify the mixture joint models conducted in this article to cluster all patients into two classes with virologic
suppression and failure, respectively. (ii) Although the normal distribution assumption in both response and
covariate models may be appropriate (Histograms of viral load (in log scale) and CD4 (in square-root) not shown
here) for this specific data analysis, the mixture joint models in this article can be extended to assume model
errors with skew distributions as considered in the literature [5,6,19,34] if data exhibit non-normality; however,
the computational burden and other issues may be involved. (iii) The purpose of this article is to demonstrate the
proposed MNLMEJ models using a real data analysis, although a limited simulation study may be conducted to
evaluate the performance of the proposed models and method. However, since this article investigated different
scenarios based on relatively complex model specifications focusing on real data analysis, the complex natures
considered in this article, especially the three model components involved, will pose some challenges for such
simulation studies with intensive computational burden which requires additional significant efforts. We are
actively investigating these important research problems and hope that the relative results could be reported in
the near future. Although this article is motivated by AIDS clinical study, the basic concepts of the developed
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MNLMEJ models and methods have generally broader applications whenever the relevant technical specifications
are met and longitudinal measurements are assumed to arise from two or more identifiable subclasses within a
population.

Appendix A. HIV dynamic models

Viral dynamic models can be formulated through a system of ordinary differential equations (ODE) [3,18,23,35].
Under some reasonable assumptions and simplifications, two useful approximations of ODE solution, which can
be used to capture viral load responses, have been proposed as follows.

V (t) = log10(e
p1−λ1t) (A.1)

V (t) = log10(e
p1−λ1t + ep2−λ2t) (A.2)

where V (t) is the log10 scaled plasma HIV-1 RNA levels at time t. λ1 and λ2 are called the first- and second-
phase viral decay rates, which may represent the minimum turnover rate of productively infected cells and that
of latently or long-lived infected cells, respectively [3]. The parameters p1 and p2 are macro-parameters; ep1 and
ep1+ep2 are the baseline viral load at time t = 0 in one- and two-compartment models, respectively. It is generally
assumed that λ1 > λ2, which assures that the model is identifiable and is appropriate for empirical studies [23].
Models (A.1) and (A.2) offer almost equal performance to capture the early fast-decaying segment of viral load
trajectory [23], but model (A.2) performs better for long term of viral load trajectory [6]. It was noted that
both models can be only applied to the early segment or longer term of the viral load response with decreasing
trajectory patterns as discussed in Section 1 and shown in Figure 1(a)(two solid and two dashed lines), but the
viral load trajectory may have a different shape or rebound in later stages (two dotted lines in Figure 1(a)). It
was also noted that for some patients the second viral decay rate λ2, may vary over time because they depend
on some phenomenological parameters that hide with considerable microscopic complexity and change over time.
Negative values of the decay rates may correspond to viral increase and lead to viral rebound [23], suggesting that
variation in the dynamic parameters, particularly λ2, may be partially associated with time-varying covariates
such as repeated CD4 cell counts to capture the viral load change including viral rebound. Thus, we the following
extended function are introduced [26].

V (t) = log10(e
p1−λ1t + ep2−λ2(t)t) (A.3)

where the second-phase decay rate λ2(t) is either a function of time-varying CD4 cell count (covariate) and/or
an unknown smooth function. Intuitively, this model is more flexible because it assumes that the second-phase
viral decay rate can vary with time as a result of drug resistance, medication adherence and other relevant clinical
factors likely to affect changes in the viral load during the treatment. Therefore, all data obtained during whole
study period can be used by fitting this model. The following are a couple of issues related to the proposed
mixture of joint models which should be addressed.
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1 Introduction 

Risk is the potential of losing something of value – be it economic, financial or physical - and arises from 

the uncertainty associated with a particular course of action [1]. IRM (2015) defines risk as "the 

combination of the probability of an event and its consequence” [2] – consequences potentially being 

considered positively as well as negatively.  

 

Risk management is concerned with helping organisations perform more effectively in a world of 

uncertainty [3] and is fundamental to the need for making better decisions, protecting business continuity, 

learning from the past, predicting the future and managing out interruptions. Dealt with constructively, 

risks can often be turned into opportunities. 

 

Managing risk is not necessarily the same as removing it. According to the Joint Information Systems 

Committee [4] it is helpful to see risk management - the systematic process of identifying, analysing and 

responding to various business risks – in terms of five stages (see Fig. 1):  

 

1. Risk identification; 

2. Qualitative risk analysis; 

3. Quantitative risk assessment; 

4. Risk response planning; 

5. Risk monitoring and control. 

 
 

 
 

Fig 1. The Process of Risk Management 
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2 Qualitative Data Analysis 

Focussing on the second stage here, most risk analysis is qualitative in nature - qualitative data being 

widely considered  ‘richer’ and ‘more valid’ than quantitative data [5] - as well as more concrete, vivid 

and meaningful, especially when presented as an event or a story [6].   

 

A variety of different approaches to qualitative analysis have evolved in recent years [7], [8] including 

Grounded Theory, Content Analysis, Thematic Analysis, Framework Analysis, Discourse Analysis, 

Conversation Analysis, Case Study, Narrative Inquiry, Phenomenology, Ethnography and Laddering 

Theory.  

 

And where once qualitative data analysis used to be an arduous, exhausting and time-consuming process, 

the development of computer assisted qualitative data analysis software (CAQDAS) - has greatly 

enhanced both the speed and quality of analytical provisions in the area [9].  

 

Table 1 lists some of the better-known CAQDAS packages in recent use [10]. Of these, Atlas.ti and 

NVivo are particularly well rated [11]. However, Barry [12] and Bazeley [13] most favour NVivo, the 

software adopted for the study. 

 

 

CAQDAS Package Developer 
Current Version 

(Year of Release) 

NVivo QSR International NVivo 10 (2012) 

Atlas.ti 
ATLAS.ti Scientific Software 

Development GmbH 
Atlas.ti 7.0 (2012) 

MAXQDA VERBI GmbH MAXQDA 11 (2012) 

Aquad Günter Huber Aquad 7 (2012) 

QDA Miner Provalis Research QDA Miner 4 (2011) 

Table 1. CAQDAS Packages 

For the latter, data was supplied by IIRSM in the form of interview transcripts. These were generated as 

part of a project by the International Institute of Risk and Safety Management (IIRSM) and Manchester 

Business School (MBS), The University of Manchester aimed at improving the reliability of management 

information for risk practitioners [14]. Relevant background on the three survey respondents concerned 

are provided in Table 2 below. 

 

Using NVivo, the data were first exposed to a thematic analysis. This formed the basis of a subsequent 

laddering formulation based on means end theory.     

 

Participating Organisation Participant About the Organisation 

Organisation 1: A Leading 

Logistics Organisation 
Head of Safety 

Organisation 1 is a leading logistics and postal 

service of the UK responsible for universal mail 

collection and delivery. 

Organisation 2: A Leading 
Chain of British 

Supermarkets 

Strategic Safety Manager 
Organisation 2 is an upmarket chain of British 

supermarkets, forming the food retail division of 

Britain's largest employee-owned retailer. 

Organisation 3: A Publicly-
Funded Research 

Organisation 

Head of Safety, Security 
and Resilience 

Organisation 3 supports research across the entire 

spectrum of medical sciences, in universities and 
hospitals, in its own units, centres and institutes in 

the UK, and in its units in Africa. 

Table 2. Participating Organisations by Type of Business 

 

Thematic analysis is the qualitative data analysis approach most widely used for pinpointing, analysing 

and reporting patterns (or “themes”) within data. There are six distinct phases to the analysis: (1) 

becoming familiar with the data (2) generating initial codes (3) searching for themes (4) reviewing themes 

(5) defining and naming themes, and (6) producing the report [15]. The analysis typically progresses 

350



 

iteratively with constant moving back and forth through the phases as necessary, rather than simply 

moving linearly, from one phase to the next.  

 

Using NVivo four main themes were uncovered from the IIRSM transcript data: 

 

 Concepts of Risk  

 Risk Management  

 Roles in Risk Management  

 Data Encryption  

 

and these formed the basis of the subsequent laddering analysis. 
 

Laddering Theory 

Laddering methodology provides a simple, systematic method for establishing the core constructs by 

which an individual perceives the world [16]. Relying on Means-End Theory from marketing [17], it 

provides a model for assessing how consumers choose products or services with specific attributes (A), 

the consequences (C) of which link to desired goals and individual values (V). 
 

For example, Fig. 2 shows a respondent’s ladder from a luxury car study. 

 

(A) sleek look 

↓ 

(A) quality  

↓ 

(C) willing to pay more 

↓ 

(C) prestige 

↓ 

(V) self-esteem 

 
Fig. 2. An Example of a Ladder 

 

Once ladders for a given application have been aggregated across multiple interviewees, they can be 

summarised using standard content analysis procedures. The resultant table (‘implication matrix’) can 

then be used to form a so-called Hierarchical Value Map (HVM) to graphically highlight the A-C-V 

connections that principally determine individuals’ core values [18]. For the data in hand, the steps were 

as follows: 
 

1. Ladder Construction. To maintain data quality and the practicality of subsequent findings, the 

interviews – all conducted by IIRSM - closely followed the guidelines recommended by [19]. Resultant 

ladders of Organisations 1, 2 and 3 are shown respectively in Fig. 3, 4, and 5. 

 

 
Fig. 3. Ladders for Organisation 1 
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Fig. 4. Ladders for Organisation 2 

 

 

Fig. 5. Ladders for Organisation 3 

 

2. Content Analysis starts with recording the entire set of ladders across interviewees on a separate 

coding form, and then develops a set of summary codes for the (A-C-Vs) elements elicited. The focus of 

interest in content analysis is the relationships between the elements instead of the elements themselves. 

Therefore, the elements are classified in groups according to the closest in meaning. For example, “a 

whole systematic suite of things” is similar in meaning with “a systematic approach”, so they are 

classified in the same group. Moreover, “manage risk effectively” is a summary of several more specific 

attributes such as “identify different risks”, “mitigate any negative risks” and “exploit any positive risks”. 

The summary content codes of attributes, consequences and values are shown respectively in Tables 3, 4 

and 5: 

 

No. Attributes Count 

1 A systematic approach 10 

2 A Risk Management strategy 8 

3 Database 7 

4 Awareness of risks 5 

5 Predict the future  4 

6 Learn from the past 2 

7 Manage out interruptions 1 

Table 3. Summary Content Codes of Attributes 
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No. Consequences Count 

8 Manage risk effectively 20 

9 Run business effectively 9 

10 Manage cost 5 

11 Drive decision making 5 

12 Make individuals behave differently 1 

Table 4. Summary Content Codes of Consequences 

 

No. Values Count 

13 Have a competitive advantage 4 

14 Maintain the current reputation 2 

15 Have a smoother operation 2 

16 Find better ways of doing things 1 

Table 5. Summary Content Codes of Values 

Numbers are assigned to the codes and used to label each element in each ladder, producing a matrix in 

Table 6. Where the original ladders have more than one attribute or value they have been separated into 

multiple sub-ladders – no direct relations existing between attributes and values. Thus 16 sub-ladders 

have been derived from the initial eight ladders.  Ladders in the table have been expressed in fractional 

form showing for example, that sub-ladder 13 is derived from Ladder 2 of Organisation 3. “Content 

Codes” on the other hand represent the elements comprising each sub-ladder. 

 

Sub-Ladder Ladder Content Codes 

1 1.1 3 10 13   

2 1.1 1 10 13   

3 1.2 3 8 15   

4 1.3 4 11 12 14  

5 1.4 1 8 9 14  

6 2.1 1 8 10 11 16 

7 2.1 2 8 10 11 16 

8 2.1 4 8 10 11 16 

9 3.1 5 9 15   

10 3.1 6 9 15   

11 3.1 7 9 15   

12 3.2 1 8 9 13  

13 3.2 1 8 9 14  

14 3.2 2 8 9 13  

15 3.2 2 8 9 14  

16 3.3 3 8 13   

Table 6: Content Codes of Ladders 

 

3. Implication Matrix. This displays the number of times one element leads to another. Operationally, it 

is defined as those elements in a given row precede other elements in the same row. Two kinds of 
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relations are included in the matrix, direct and indirect. Direct relations refer to those in which one 

element leads to another without any intervening element. Take Ladder 3 of Organisation 3 as an 

example: 

 

A: database of software used 

↓ 

C: accurately describe the hazard and threat 

↓ 

C: mitigate the risk 

↓ 

V: give the organisation a competitive edge 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

In this example the relation a→b (database of software used → accurately describe the hazard and threat) 

is a direct relation, as is b→c and c→d. In addition, there are also indirect relations, a→c, a→d and b→d, 

which are helpful for exploring deeper understandings. It is critical to identify both kinds of relations in 

order to determine which paths are dominant in the hierarchy value map.  
 

Elements 
C V 

8 9 10 11 12 13 14 15 16 

A 

1 (4,0) (0,3) (1,1) (0,1)  (0,2) (0,2)  (0,1) 

2 (3,0) (0,2) (0,1) (0,1)  (0,1) (0,1)  (0,1) 

3 (2,0)  (1,0)   (0,2)  (0,1)  

4 (1,0)  (0,1) (1,1) (0,1)  (0,1)  (0,1) 

5  (1,0)      (0,1)  

6  (1,0)      (0,1)  

7  (1,0)      (0,1)  

C 

8  (5,0) (3,0) (0,3)  (1,2) (0,3) (0,1) (0,3) 

9      (2,0) (3,0) (3,0)  

10    (3,0)  (2,0)   (0,3) 

11     (1,0)  (0,1)  (3,0) 

12       (1,0)   

Table 7: Implication Matrix 

The implication matrix indicates the number of times directly or indirectly a row element leads to a 

column element. The numbers are expressed in the form , in which  represents direct relations 

whilst  represents indirect relations. For example, the first attribute “a systematic approach” (row 1) 

leads to “manage cost” (row 10) one time directly and one time indirectly. In the same way “a Risk 

Management strategy” (row 2) leads to “manage risk effectively” (row 8) two times directly and zero 

indirectly. 
 

4. Hierarchy Value Map (HVM) follows from the implication matrix. The HVM reconstructs “chains” 

from the aggregate implication matrix to represent the linkages across different levels of abstractions, 

starting with attributes and ending with values. The term “chains” refers to sequences of elements that 

emerge from the implication matrix. 

 

The most common approach of constructing an HVM is to set a “cut-off” - a minimum number of 

relations that must be present before that element is considered. According to Henneberg et al [20], the 

HVM should include all the connections which are composed of at least 4 or more direct relations. In this 

paper, however, the “cut-off” is only set to 2 because of the relatively small sample size (only 3 

interviews and 16 sub-ladders) involved. 
 

The most effective way to build the HVM is to start with the first row of the implication matrix for which 

there is a number equal to or larger than the chosen cut-off level. Beginning with the cut-off of 2, the first 

noteworthy value is the relationship of “a systematic approach → manage risk effectively” (Row 1, 

Column 8), with 4 direct relations and zero indirect relations between these two elements. Since “a 
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systematic approach” is related to “manage risk effectively”, the next row to look at is row 8. “Run 

business effectively” in column 9 has the first significant value above the cut-off. Moving to row 9 it is 

easy to find that the final value in the growing chain is “have a competitive advantage” in column 13. 

Therefore, the chain of 1-8-9-13 is constructed. 

 

Having reached the end of a chain, it is necessary to go back to the beginning to check whether there are 

other significant links in the same row of the matrix that were not inspected in the completed chain. For 

example, “a systematic approach” (1) is also linked to “manage cost” (10), with one direct relation and 

one indirect relation. Moving to row 10, the next value is “drive decision making” (11), and following 

that, the final relationship of “drive decision making → find better ways of doing things” (16) is found, 

producing another chain of 1-10-11-16. Repeating these steps, the emergent HVM is shown in Fig. 6.  

 

 
 

Fig. 6. Hierarchy Value Map of Risk Management 

 

The objective of constructing the HVM is to interconnect all the meaningful chains in a map where 

relations are plotted without crossing lines. The HVM must include all relevant relations and be easy to 

read and understand. Clearly attributes 5, 6 and 7 (i.e. “predict the future”, “learn from the past” and 

“manage out interruptions”) do not appear in Fig. 6. From the implication matrix these attributes have 

only one direct relation to “run business effectively” (15) and one indirect relation to “have a smoother 

operation”, so therefore do not merit inclusion. This does not necessarily mean that learning from the 

past, predicting the future and managing out interruptions are not important for an organisation’s risk 

management. It merely signifies that the particular sample of interviews used for this analysis is not 

sufficiently supportive of these relations.  

 

Once the HVM is constructed, it is important to consider the number of direct and indirect relations an 

element has with other elements. Table 8 presents the sums of direct and indirect relations for each 

element. “A systematic approach” (1) appears to be the most important attribute leading to other 

elements, whilst “manage risk effectively” (8), at the consequence level, leads to the most values. At the 

value level, “have a competitive advantage” (13), “maintain the current reputation” (14) and “find better 

ways of doing things” (16) have the largest sums of direct and indirect relations, which indicates that they 

would be judged to be the core values for the three interviewing organisations.  
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Code To From 

1 (5,10) (0,0) 

2 (3,7) (0,0) 

3 (3,3) (0,0) 

4 (2,4) (0,0) 

5 (1,1) (0,0) 

6 (1,1) (0,0) 

7 (1,1) (0,0) 

8 (9,12) (10,0) 

9 (8,0) (8,5) 

10 (5,3) (5,3) 

11 (4,1) (4,6) 

12 (1,0) (1,1) 

13 (0,0) (5,7) 

14 (0,0) (4,8) 

15 (0,0) (3,5) 

16 (0,0) (3,9) 

Table 8: Summary of Direct and Indirect Relations for Each Element 

 

The element with the highest frequency of elements leading from it is “run business effectively” (9). In 

fact, the chain of “a systematic approach → manage risk effectively → run business effectively → 

maintain the current reputation” appears to have the highest number of relations among its respective 

elements. Therefore, it is considered the dominant perceptive pathway. While this dominant pathway 

provides a genuine insight into why and how the organisations implement risk management, all the 

pathways in the HVM deserve our attention because the weaker pathways may highlight where these ties 

need to be strengthened. 
 

3  Conclusions 

A sample of interview transcripts obtained during a risk management survey of UK business was 

subjected to a thematic analysis using the NVivo software. The interview transcripts - each comprising 

approximately 2900 words – yielded a total of 40 nodes, from which four main themes were eventually 

identified viz. Concepts of Risk, Risk Management, Roles in Risk Management and Data Encryption.  

 

Building on this encouraging start, a laddering analysis was undertaken next to investigate the impact of 

organisational values on risk management. The resulting hierarchical value map (HVM) enabled 

managers’ core values elicited via the laddering technique e.g. “have a competitive advantage”, “maintain 

the current reputation” and “find better ways of doing things”, to be systematically traced back to specific 

Risk Management attributes. One ‘perceptive pathway’ was found to be especially dominant:  
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Fig. 7 Dominant Perceptive Pathway 

 

The analysis has provided no less valuable insights for the individual respondents: for Organisation 1, for 

example, a clear priority is to develop a database-driven risk management strategy or face the prospect of 

losing its competitive advantage and current reputation. 

 

Organisation 2 on the other hand, already demonstrates good risk management practice: risk assessments 

are carried out internally in every department, and staff encouraged to take risks with support as necessary 

from their senior managers. To improve things further the organisation could consider institutionalising a 

web-based, tailor-made centralised system. 

 

Organisation 3 is similarly performing well: they have a risk register and a risk management committee to 

manage risk effectively. As the leading organisation in the medical science market, Organisation 3 should 

perhaps look at further embedding risk management within its culture. 
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Abstract 

In capture-recapture experiments, if individuals lost their tags, the observed recaptures will be 

smaller than expected. This phenomenon results in overestimation of the population under 

consideration. Drugs addicts are usually referred for treatment or for rehabilitation, on the 

process of these, they are likely to change their identity hence losing their tags. Tags loss method 

was therefore incorporated in the estimation of the size of elusive population. The simulation 

studies revealed that the proposed coverage probability tag loss model (CPTLM) is consistent 

with small and large population sizes.  The proposed model was applied to addicts’ data 

collected from North east, Nigeria.  
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Introduction 

Capture-recapture (C-R) methods were originally applied to animal populations in which 

sequence of samples were taken from a well-defined population; any animal found without a tag 

in a particular sample were given a unique tag before returning that sample to the population. In 

that way, estimate of the population size and other relevant parameters are obtained. These 

methods have now been applied extensively to epidemiological and public health events with the 

aim of estimating the incidence and prevalence of such events (Seber et al., 2000). The technique 

has also been adopted for other areas such as; the evaluation of census undercount (Ericksen and 

Kandame 1985 and Darroch et al., 1993), software testing and reliability (Wohlin et al., 1995; 

Ebrahimi 1997; Briand et al., 2000, Yip et al., 2003), to mention a few. When there are only two 

samples, the method is called the Petersen method (or the Lincoln index). 

In this work, we are concerned with estimating the number of drugs addicts within a 

given location; a case study of North eastern states of Nigeria, consisting of six states namely; 

Adamawa, Bauchi, Borno, Gombe, Taraba and Yobe States. The primary sources of data on 

drugs addicts in these States are from the National Drug Law Enforcement Agency (NDLEA) 

State command headquarters and the Psychiatric centres of the Specialists Hospital in these 

States. Patients are taking to the Centres for treatment and are also to the NDLEA for 

rehabilitation. NDLEA also makes direct arrest of barons and drugs users.   

In practice, C-R methods can be applied to any situation in which records of individuals 

from the same population are kept in at least two different but incomplete lists. Thus “being on 

list i” can be equated to “being on sample i”. The problem is to estimate those missing from both 

lists. These lists can come from different units or departments of the same agency (e.g. Doctors’ 

and Pharmacists’ record), or different agencies (e.g. The Police Force and the Prison Services’ 

records). When applied to list, the Petersen method is known by the nomenclature; Dual System 

Methods (DSM); Dual System Estimation (DSE) or Dual Record Systems (DRS), IWGDMF 

(1995); El-khorazaty, et al., (1976) and Ericksen and Kadane (1985). 

The assumptions required for this estimate to be valid can be spelt out in a number of 

ways. However the key ingredients are: (1) the population is closed, that is, the population has a 
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constant size for the entire period of the study, (2) the lists are independent, (3) each member of 

the population has the same chance of being on a given list, and (4) individuals are matched 

correctly, that is, individuals will not change their identity, in the terminology of   C-R, no tags 

loss. Assumption (1) holds if the experiment is conducted within a reasonably short period of 

time. For (2) the listing systems may not be independent, since addicts can be referred across 

systems for rehabilitation or treatment; the NDLEA usually refer addicts to Psychiatric centres 

for treatment, likewise, Psychiatric centres can also refer psychoactive patients to the NDLEA 

for rehabilitation.We assumed that addicts have similar behaviours, hence assumption (3) holds, 

that is, addicts have the same probability of being on a given list. 

Assumption (4) will completely be false; matching will depend on the quality of records, 

the truthfulness of the information and the uniqueness of the tags used. Addicted individuals are 

likely to give false information about their identity deliberately to avoid stigmatization or arrest, 

or even unconsciously under the effect of intoxicant. This leads to tag loss.   According to 

Pollock (1991), the loss or overlooked of marks (tags) can be serious, he suggests that one way 

to estimate tag loss is to use double marks. Pollock et al., (1990) stated that, if tag loss is likely to 

occur, an attempt should be made to estimate rate of loss and that if individuals lose their tags, N 

will be overestimated; this situation is referred to as positive biased  (IWGFDMF,1995).  

The paper is organized as follows: the tag loss method of Seber, (1982) is presented in 

section 2, followed by the coverage probability model (CPM) for estimating elusive events of 

Jibasen (2011) incorporating tag loss. In section (3), the incorporated tag loss method called, 

coverage probability tag loss model (CPTLM) was applied to a set of simulated data and 

compared to the Petersen method and the CPM. Finally, in section 4, the proposed CPTLM was 

applied to data set obtained from the NDLEA and Psychiatric centres in the north eastern states 

of Nigeria. 

2. Methodology 

The Petersen estimator is well-known, if we assume the proportion on list 1,  for the whole 

population is roughly the same as it is on list 2, , then, 
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and, solving for N yields the Petersen estimator: 

                                             (1) 

where, ,  and  are the numbers of individuals on both lists, on list 1 and on list 2, 

respectively. 

According to IWGDMF (1995), if we exploit the mathematical statistics result, (1) can be 

written as; 

                   

              =           (2) 

              = NR 

Where, R > 1, if being on list 1 tends to decrease the chance of being on list 2, N will be 

overestimated, this is negative dependence (or positive biased) which can be credited to the fact 

that, individuals ‘elusified’ by losing their tags. It is therefore evident that, with elusive events, 

tags loss is therefore apparent which leads to negative dependence between lists. In 

epidemiological studies, tag loss has received little attention (Seber et al., 2000). 

This paper assumed that addicts are referred across agencies and that on reference, they 

are likely to change their information identification making it difficult for matching. This will 

thus imply that being on the first list will decrease the chance of being on the second, thus    

will lead to over estimation of N.  

Addicts on a list are considered as having an identifying string of information, these are; 

first name, surname, age, religion, address and type of substance abused. These information were 

group into two, forming two tags. Tag A consists of name, age, and religion; tag B consists of 

individuals’ address and type of substance abuse. 

2.1 Tag Loss Method of Seber (1982) 

Each individual on a list has a string of identifying information subdivided into tag A and 

tag B. Tag A consists of name, age, and religion; these are items we assume individuals are 
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likely to be truthful about. Tag B consist of address and type of substance abused; these are items 

addicts are likely to lie about. If either substring is correct the individual is identified uniquely. 

We assume further that these tags are independent. This assumptions and assertion are in line 

with Seber et al., (2000).  

Let,  

 = the probability that a tag x is lost on the second list (x = A, B) 

 = the probability that both tags are lost 

 number of tagged individuals on the second list, with tag x only (x = A, B) 

 number of tagged individuals on the second list with both tags  

 those on both lists. 

As earlier stated that, the tags are assumed to be independent, that is, , 

according to Seber (1982), the joint probability function of , ,  and  is given by  

 =  

   (3) 

where 

 

, 

and  

 =  

While, maximum-likelihood estimates of N,  and  are given by 
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With the solutions, 

 

 

                                                                                        (4) 

 

Provided  for at least one . If at least one , the model collapsed to the classical 

model. 

2.2 Mc: Coverage probability model (CPM) 

Huggins (1991) used a form of a Hurwitz- Thompson (H-T) method to model 

heterogeneity of individual animals, where animals were assigned probabilities, following this 

idea, Jibasen (2011) introduced a model for estimating elusive events for two lists (called, 

coverage probability model (CPM)) based on the H-T method; this model was discovered to give 

better results than the Petersen method, in the presence of low recaptures.  The model is 

presented below incorporating the method of estimating tag loss (4).  

The joint probability density function for the coverage probability model is given as; 

                             (5) 

(see Jibasen, 2011 and Jibasen., et al., 2012) 

The ML estimator of  is   
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The two sample estimator for estimating elusive events is give in (6) as;   

                                         (6) 

where,                                               

where, has been replaced by, . 

3. Simulation Studies 

The simulated data was thus based on the hypergeometric settings, the marginal totals 

(  and  ) were fixed as well as the assumed population size , while the recaptures  

were randomly generated. The variates: ,  and  were simulated from , from 

where  was estimated to replace . Series of simulation was carried out for ,  

 and the assumed population size , as showed in Tables 1 to 5. Simulation for 

other values of ,  and   are summarized in Tables 6 to7. The Petersen estimator , the 

coverage probability model (CPM) estimator , and the coverage probability tag loss model 

(CPTLM) estimator , were compared using the Akaike information criterion (AIC), while 

mean absolute deviation (MAD) was used to checked for the overall model performance for each 

set of simulated data. All simulated data were from Jibasen (2011). 

Table 1 shows, no tag loss;  the analyses thus showed that the 

CPTLM performs well compared with the CPM, but both performs better compared to the 

Petersen method. This reveals that the CPTLM performs well even when there is no tag loss. 

Table1: Simulated data for = 50,  =10 and  90 

S/No.       

AIC 

( )  

AIC 

( )  

AIC 

( ) 

1 7 1 3 3 8 63 4.366 94 4.272 90 4.010 

2 7 2 1 4 8 67 4.366 94 4.272 92 4.140 

3 6 2 1 3 7 75 3.490 97 4.543 95 4.361 

4 8 2 1 5 8 60 5.112 90 4.010 89 4.092 

5 8 2 3 3 10 50 5.112 90 4.010 83 4.490 

6 8 1 2 5 8 60 5.112 90 4.010 89 4.092 

7 10 3 3 4 12 41 - 83 4.490 76 5.025 

8 7 1 4 2 9 56 4.366 94 4.272 87 4.244 
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9 8 2 2 4 9 56 5.112 90 4.010 87 4.244 

10 5 0 1 4 5 100 3.759 101 4.824 101 4.824 

MAD           29   4   5   

 

Tables 2 shows a situation where one individual losses one tag. The result from Table 2 

shows that if an individual loss both tags the CPTLM performs better than both the Petersen and 

the CPM. But if up to two individuals lost both tags the CPM performs better. 

Table 2: Simulated data for = 50,  =10 and  90 with one tag loss 

S/No.       

AIC 

( )  

AIC 

( )  

AIC 

( ) 

1 7 1 2 3 7 63 4.366 94 4.272 95 4.361 

2 7 1 1 4 6 67 4.366 94 4.272 96 4.474 

3 6 2 1 3 7 75 3.490 97 4.543 95 4.361 

4 8 2 1 4 8 60 5.112 90 4.010 92 4.140 

5 8 1 2 4 8 50 5.112 90 4.010 92 4.140 

6 8 1 1 5 7 60 5.112 90 4.010 93 4.219 

7 10 1 2 6 9 41 - 83 4.490 86 4.327 

8 7 1 2 3 7 56 4.366 94 4.272 95 4.361 

9 8 2 1 4 8 56 5.112 90 4.010 92 4.140 

10 5 1 1 2 5 100 3.759 101 4.824 103 4.968 

MAD           29   4   5   

 

When individuals loss 2 tags, one from each string, Table 3 shows that the CPM is better model. 

 

Table 3: Simulated data for = 50,  =10 and  90 with two tag loss 

S/No.       

AIC 

( )  

AIC 

( )  

AIC 

( ) 

1 7 1 2 2 6 63 4.366 94 4.272 97 4.543 

2 7 1 1 3 5 67 4.366 94 4.272 100 4.729 

3 6 2 0 3 5 75 3.490 97 4.543 101 4.824 

4 8 2 1 3 7 60 5.112 90 4.010 95 4.361 

5 8 1 2 3 7 50 5.112 90 4.010 95 4.361 

6 8 0 1 5 6 60 5.112 90 4.010 97 4.543 

7 10 1 2 5 8 41 - 83 4.490 89 4.092 

8 7 0 2 3 5 56 4.366 94 4.272 101 4.824 

9 8 2 1 3 7 56 5.112 90 4.010 95 4.361 
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10 5 1 1 1 4 100 3.759 101 4.824 105 5.115 

MAD           29   4   8   

 

Table 4 shows tag loss by substring A, while Table 5 shows tag loss by substring B. Each shows 

that the CPTLM performs well but the CPM is better.  

 

 

 

Table 4: Simulated data for = 50,  =10 and  90 with one tag loss from substring A. 

S/No.       

AIC 

( )  

AIC 

( )  

AIC 

( ) 

1 7 0 3 3 6 63 4.366 94 4.272 95 4.361 

2 7 1 1 4 6 67 4.366 94 4.272 97 4.543 

3 6 1 1 3 5 75 3.490 97 4.543 101 4.824 

4 8 1 1 5 7 60 5.112 90 4.010 94 4.272 

5 8 1 3 3 8 50 5.112 90 4.010 89 4.076 

6 8 0 2 5 7 60 5.112 90 4.010 93 4.219 

7 10 2 3 4 11 41 - 83 4.490 82 4.611 

8 7 0 4 2 6 56 4.366 94 4.272 92 4.140 

9 8 1 2 4 8 56 5.112 90 4.010 92 4.140 

10 5 0 1 4 5 100 3.759 101 4.824 105 5.115 

MAD           29   4   6   

 

Table 5: Simulated data for = 50,  =10 and  90 with one tag loss from substring B. 

S/No.       

AIC 

( )  

AIC 

( )  

AIC 

( ) 

1 7 1 2 3 7 63 4.366 94 4.272 95 4.361 

2 7 2 0 4 6 67 4.366 94 4.272 97 4.543 

3 6 2 0 3 5 75 3.490 97 4.543 101 4.824 

4 8 2 0 5 7 60 5.112 90 4.010 94 4.272 

5 8 2 2 3 8 50 5.112 90 4.010 89 4.076 

6 8 1 1 5 7 60 5.112 90 4.010 93 4.219 

7 10 3 2 4 11 41 _ 83 4.490 82 4.611 

8 7 1 3 2 8 56 4.366 94 4.272 92 4.140 

9 8 2 1 4 8 56 5.112 90 4.010 92 4.140 
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10 5 0 0 4 4 100 3.759 101 4.824 105 5.115 

MAD           29   4   6   

 

For lack of space, simulation for various values of ,  and   are summarized in Tables 6 

and 7. The simulated results in Table 6 revealed that the CPTLM performs well when the 

elusiveness is high, that is, when more individuals ‘elusifies’. The results further show that, even 

when all the recaptures are lost CPTLM performs better than the Petersen but not the CPM.  

 

 

Table 6: Simulated Results for Various values of ,  and    

N     

 
with 3 

loss 

  
with 10 

loss 

  
with10 

loss    

200 100 10 10 193 220 200 182 100 

 100 10 8 200 220 208 189 125 

 100 10 6 208 220 216 197 167 

 MAD   5 20 8 11 69 

    

 
with 10 

loss 

  
with 20 

loss 

  
With 25 

loss   

200 100 40 24 227 264 284 192 167 

 100 40 25 223 260 280 189 160 

 100 40 27 216 253 272 182 148 

 MAD   22 59 79 12 42 

    

 
with 25 

loss 

  
with 30 

loss 

  
With 40 

loss   

200 90 70 46 242 259 177 162 137 

 90 70 43 252 270 186 171 147 

 90 70 42 256 274 189 174 150 

  MAD     50 68 16 31 56 

 

When the population size is large, Table 7 shows that CPTLM performs better with smaller 

number of the tag loss compare to the CPM and far better than the classical method, the Petersen.  
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Table 7:  Simulated Results for Various values of ,  with large values of    

N     

 
with 1 

loss 

  
with 2 

loss 

  
With 5 

loss    

300 150 10 7 296 300 312 293 214 

 150 10 6 300 304 316 296 250 

 150 10 8 293 296 308 289 188 

MAD    4 3 12 7 83 

1000 500 80 57 947 950 961 943 702 

 500 80 51 969 972 983 965 784 

 500 80 49 976 980 991 972 816 

MAD    36 33 22 40 233 

2000 900 80 49 1773 1777 1788 1769 1469 

 900 80 48 1777 1780 1792 1773 1500 

 900 80 57 1742 1746 1758 1739 1263 

MAD    236 232 221 240 589 

N     

 
with 

100 

loss 

  
with  

150 

loss 

  
With 5 

loss    

3000 1500 300 195 3230 3422 2880 2862 2308 

 1500 300 207 3185 3376 2837 2820 2174 

 1500 300 194 3234 3426 2884 2866 2320 

MAD       216 408 133 151 733 

 

4. Estimation of the Number of Addicts from North east Nigeria Using CPTLM 
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The CPTLM was used to estimate the population of addicts in the north east alongside the CPM. 

A 95% Confidence intervals based on the suggestion of Chao(1989) was constructed for  

with 5 tag loss, as shown in Table 9, the interval estimates shows that all the estimates of   

with 1 tag loss, 2 tag loss and for    falls within the acceptance region.  

 

 

 

 

 

 

 

Table 9 Estimated populations of addicts by States Using CPTLM 

State Year 

 
with 1 

loss 

  
with 2 

loss 

  
with 5 

loss 

LCL  

    
with 5 loss 

UCL 

   
with 5 loss  

Adamawa 2006 239 243 244 150.0758 694.0903 235 

 2007 172 176 178 99.56733 679.4685 168 

 2006 170 174 176 101.8159 622.2887 166 

 2007 206 210 212 134.5086 566.4152 203 

 2008 283 287 289 188.6322 649.4115 280 

Taraba 2006 197 200 202 122.1806 617.8411 193 

 2007 179 183 185 111.1938 590.6701 175 

 2006 224 228 230 146.0445 603.8456 221 

 2007 218 222 224 132.0206 700.2673 214 

 2008 233 237 239 149.9038 633.1515 229 

Gombe 2006 386 390 392 250.1097 921.735 382 

 2007 413 417 419 272.5436 928.3745 409 

 2006 357 360 362 230.3457 870.088 353 

 2007 320 324 326 216.1508 715.0046 317 

 2008 313 317 319 213.2949 685.7079 309 

Bauchi 2006 364 367 369 265.3076 688.6959 360 

 2006 224 227 229 159.4315 486.0392 220 

 2007 207 210 212 152.8454 409.0217 204 

 2006 208 211 213 172.1324 323.4389 206 

 2007 251 253 255 205.3606 388.0259 248 

 2008 231 233 234 203.7887 303.1091 228 

Borno 2006 553 557 558 386.1228 1056.389 549 

 2007 593 597 599 432.5211 1032.522 590 
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 2006 678 682 684 477.3404 1240.633 674 

 2007 506 510 512 366.2576 901.735 503 

 2008 536 540 542 375.8013 1003.603 532 

 Total   8260 8354 8401 5715.297 18311.57 8167 

Source: This data was originally presented by Jibasen (2011) 

Discussion and Conclusion. 

Tag loss is inevitable when dealing with elusive events. The simulation studies revealed that the 

CPTLM performs competitively alongside the CPM, and that the CPTLM performs better when 

the population size is large, whereas CPM performs better with smaller population sizes. It was 

also discovered that CPTLM performs well when there is no tag loss and as the number of loss 

tags reduces CPTLM performs better. The proposed tag loss model was applied to addicts’ data, 

where a 95% confidence interval shows that all the estimates fall within the acceptance region.   

Remark.  

The robustness of CPM was established by Jibasen (2011), this is really, the first attempt at 

improving (or even disapproving) on the performance of CPM. With this work, it has been 

established that CPM is a robust method of estimating elusive events from two sources, even 

when tag loss is inevitable.  
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Abstract. On-condition maintenance, by which a system is inspected periodically, is widely
used. The deterioration state of the system can be determined only by a costly inspection. On
the basis of the inspection results, one of two actions, keep operating or replace, is selected.
If keep operating is selected, the timing of the next inspection is determined, and the system
continues to be operated until the next inspection. In most previous research, inspections are
carried out at regular intervals irrespective of the system state. This research provides a flexible
inspection policy in which the interval between the current and next inspection is determined
on the basis of the current information about the system. The focus is on an age-dependent
deteriorating system in which the deterioration process can be formulated as a non-stationary
Markov process. The optimal decision-making problem is investigated, and the structural prop-
erties of the resulting optimal expected cost function are obtained. These properties establish
the existence of an optimal decision policy in which the action changes from keep operating to
replace at most once. The properties of the inspection interval when keep operating is selected
were investigated, and the optimal inspection interval was found to decrease with respect to both
the system’s deterioration and age under certain assumptions. Since the action keep operating
in this research is accompanied by a flexible inspection interval, the keep-operating action is
called inspection.
Keywords: Monotone policy, Non-stationary Markov decision process, On-condition mainte-
nance, Optimal decision-making, Totally positive of order 2.

1 Introduction

1.1 Background

Systems that deteriorate over time are generally subject to stochastic breakdowns,
and breakdowns can impose societal costs. On-condition maintenance is an effective
way to avoid such breakdowns. In on-condition maintenance, systems are inspected
periodically, and the results of the inspection are compared with pre-specified criteria
to determine whether potential failures or problems exist. If necessary, an appropriate
countermeasure such as replacement is taken before problems occur.

On-condition maintenance is used widely in various industries. For example, the
wireless devices now being installed in airplanes and ships are subject to an on-
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condition maintenance policy. The Japanese Ministry of Internal Affairs and Com-
munications requires that such devices be inspected annually [10]. However, a report
by a wireless device inspection committee released by the Ministry [11] contained
three interesting findings related to Japanese aviation operators: 1) very few prob-
lems have been found by periodic inspection, 2) other countries do not require such
frequent periodic inspection, and 3) the burden of such periodic inspections is quite
heavy. Similar problems related to on-condition maintenance can be found in other
industries. Therefore, there is a pressing need to develop more flexible and effective
inspection policies and to improve existing ones.

1.2 Previous Research

The optimal maintenance decision-making problem for stochastically deteriorating
systems has been investigated, and it is typically formulated as a Markov decision
process (MDP). Derman [3] investigated a decision-making problem for a deteriorat-
ing system for which the true state can be known by regular inspections, and one of
two actions, keep operating for one more period or replace, is selected on the basis
of the true state. He proposed a monotone structure for maintenance policies and
provided a sufficient condition for the optimality of a monotone policy. Lam and
Yeh [7] presented algorithms for deriving optimal maintenance policies that minimize
the expected long-run cost for continuous-time Markov deteriorating systems. Unlike
those in Dermanfs model, the time durations for inspection and replacement are non-
negligible in their model. Moreover, the state of a system in their model can transit to
and only to a) the next stage due to deterioration or b) the failure state due to a shock.
Structural optimal policies have also been obtained under certain conditions. Elwany,
Gebraeel, and Maillart [4] presented an exponentially increasing deteriorating model
in which the true state can be fully captured only by inspection every period. The
replacement problem is formulated as an MDP, and the optimal maintenance policy
is shown to be a monotone policy. Tamura [14] proposed an optimal policy with a
dynamic inspection interval that minimizes the expected total discounted cost for a
deteriorating system.

In most previous research, the system was assumed to deteriorate in accordance
with a stationary MDP. However, the deterioration of a system is sometimes affected
by its age. For example, analysis using actual data has shown that the deterioration
rate of wireless devices in airplanes increases with the devicefs age. We call such
systems aging systems in this research. Few researchers have considered the effect of
age in their models and simply investigated the decision-making policy on the basis
of simulation results. Chen [2] used an aging factor to describe an aging system and
presented an algorithm for determining the actions over a finite time period. Abey-
gunawardane, Jirutitijaroen, and Xu [1] formulated the decision-making problem for
aging systems by using an Markov decision process and proposed a solution for adap-
tive decision-making.

Using a proposed non-stationary MDP model, we formulated a decision-making
problem for an aging system and analytically investigated the optimal policies for
on-condition maintenance. We obtained several structural properties to establish the
existence of an optimal policy in which there is at most one transition from keep
operating to replace with respect to both the system’s deterioration state and age under
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certain conditions. A monotone property of the inspection interval can be identified
under the derived conditions. A comparison of the models used in previous research
and in this research is shown by Table 1. In this research, the action keep operating
is accompanied by a flexible inspection interval. In the following, we call the action
keep operating and inspect the system after l periods inspection l.

Table 1. Comparison of previous and current research models

Regular inspection interval Flexible inspection interval
Stationary Derman [3], Lam and Yeh [7] Tamura [14]

deterioration Elwany, Gebraeel, and Maillart [4]
Non-stationary Chen [2] Current research
deterioration Abeygunawardane, Jirutitijaroen, and Xu [1]

The rest of this manuscript is organized as follows. In section 2, we formulate
a non-stationary MDP model for the optimal maintenance decision-making problem.
Section 3 first provides preliminary assumptions and then investigates the optimal
decision-making problem for an aging system. A monotone property of the optimal
inspection interval is derived under certain conditions. Finally, in section 4, we briefly
summarize the key points and mention future work.

2 Model Description

The deterioration state of the system i can be classified into one of a finite number
of states, i ∈ S = {1, 2, . . . , n}. State numbers are ordered by increasing degree of
deterioration. This means that state 1 is the initial, new state and state n is the final,
failed state. The true deterioration state can only be measured by using an inspection
device (taking a negligible amount of time).

Let t ∈ N = {0, 1, 2 · · · } indicate the system age. It can be calendar time, total sys-
tem operating time, or total system operating amount. The start time is 0. The system
becomes one age unit older each period. A two-dimensional information vector (i, t)
is defined as the status of the deterioration process in space S ×N. Once the system is
inspected, the true deterioration state is known, and the maintenance manager decides
whether the system should be replaced.

In previous research, the system was assumed to be inspected every period irre-
spective of the system’s deterioration state, and the maintenance manager selects one
of two actions: keep one more period or replace the system with a new one. However,
in an actual situation, the inspection interval may be extended if the system is appar-
ently in a good state, and an inspection may be carried out immediately after one more
period of operation if the system is apparently in a deteriorated state.

In the model proposed in this research, if keep operating is selected, the inspection
interval is determined simultaneously on the basis of the current deterioration state and
age. To distinguish it from the keep with a regular inspection interval that was used
in previous research, we call the action keep operating accompanied with a flexible
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inspection interval l as inspection l. Once inspection l is selected, the system is in-
spected after l periods of operation. We assume that the maximum inspection interval
is L. This means the system can be continuously operated for at most L periods.

If inspection l is selected for status (i, t), a certain sequence of events is initiated.
A real-valued operation cost, K(i, t), is incurred for the current period for status (i, t).
We assume that a system failure cannot be detected immediately and that the loss due
to a failure is included in K(n, t). After l periods of operation, the system is inspected
at the beginning of the (l + 1)-th period, and an inspection cost of I is incurred. The
time for inspection is neglected since the state of the system does not change during
the inspection. The system state transits in accordance with a non-stationary transition
law over l periods:

P(l|t) =
(
pi j(l|t)

)
i, j∈S

, l ≤ L , t ∈ N.

Here, p(l|t)
i j is the probability that the system transits from state i to j after l periods of

operation given that it starts operating at age t. Let

Cl(i, t) =


K(i, t) (l = 1)

K(i, t) +
l−1∑
k=1

βk
n∑

j=1

p(k|t)i jK( j, t + k) (2 ≤ l ≤ L) (1)

be the total operation cost for a system starting at status (i, t) over l periods, and β
(0 < β < 1) be the discount factor for one period.

If the maintenance manager decides to replace the system when the system status is
(i, t), replacement cost R(i, t) is incurred for the current period. The system is replaced
with a new one, and the system’s state and age are both reset to their initial values
from the next period.

Let a(i, t) be the optimal action, i.e., the action that minimizes the expected long-
run cost of the process starting when the system status is (i, t). An optimal policy is
a sequence of optimal actions for every possible status (i, t) ∈ S × N. Let M be the
number of periods and let

VM(i, t) = min

 min
1≤l≤L

V (l)
M (i, t) ≡ V (I)

M (i, t)

R + βVM−1(1, 0) ≡ V (R)
M (i, t)

(2)

be the optimal expected cost of the process starting when the system status is (i, t) over
M periods. Here,

V (l)
M (i, t) = Cl(i, t) + βlI + βl

n∑
j=1

pi j(l|t)VM−l( j, t + l) (3)

is the total expected cost if inspection l is selected when the system status is (i, t)
and the optimal decision-making policy is followed from the l + 1-th period. For the
current status (i, t), we determine the optimal interval l by minimizing V (l)

M (i, t). We
call an inspection with such an interval an optimal inspection when the system status
is (i, t). Let V (I)

M (i, t) denote the total expected cost for an optimal inspection over M
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periods. V (R)
M (i, t) is the total expected cost if the system is replaced at the beginning

of the current period and the optimal decision-making policy is followed from the
next period. For every possible status (i, t), the maintenance manager compares the
expected costs of optimal inspection (V (I)

M (i, t)) and replacement (V (R)
M (i, t)) and takes

the action with the lower total expected cost as the optimal action for status (i, t). Let
V0(i, t) = 0.

From the standard argument of contraction mapping theory [13], VM(i, t) con-
verges to V(i, t) as M tends to infinity. V (l)

M (i, t) and V (R)
M (i, t) converge to V (l)(i, t) and

V (R)(i, t), respectively. Therefore, we have a recursive function for the optimal total
expected cost function:

V(i, t) = min
{

V (I)(i, t)
V (R)(i, t) , (4)

where

V (I)(i, t) = min
1≤l≤L

V (l)(i, t). (5)

Optimal action a(i, t) can be found by calculating the recursive functions given by (4)
and (5).

3 Optimal Inspection Policy

In this section, we investigate the properties of the optimal inspection policy for aging
systems.

3.1 Assumptions

We first define a totally positive of order 2 (Karlin [6]) property, abbreviated as TP2,
for the matrix used in this research. For an (n × m) matrix Q, if

qi jqi′ j′ ≥ qi j′qi′ j (6)

holds for any 1 ≤ i < i′ ≤ n and 1 ≤ j < j′ ≤ m, it is said that Q has a property of TP2.
Here, qi j is the element of Q in the i-th row and j-th column. If we focus on vectors
{Q}i and {Q}i′ , which are the i-th line and i′-th line of matrix Q, the TP2 property given

by (6) between two line vectors can be denoted by {Q}i
TP2
≺ {Q}i′ .

We made the following assumptions about the deterioration process. Note that we
considered functions as either increasing or decreasing in the weak sense throughout
this research.

(A-1) P(l|t) has a property of TP2 for any age t and l ≤ L.

(A-2) {P(l|t1)}i
TP2
≺ {P(l|t2)}i for any t1 < t2 and l ≤ L.

(A-3) K(i, t) is increasing in both deterioration state i ∈ S and age t ∈ N.

Assumption (A-1) means that, as the state of the system deteriorates, the system at
any age is more likely to move to an even more deteriorated state after several periods
of operation. This assumption is widely used to analyze the structure of the optimal
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cost function in terms of reliability and maintenance optimization [12] [8] [9] [5].
Assumption (A-2) means that, as the system ages, it is more likely to move to a more
deteriorated state after several periods of operation. In other words, given two systems
with the same level of deterioration, the older system is more likely to be in a worse
condition after several periods of operation. In most previous studies [3] [12] [8] [9]
[5], a one-step deterioration state transition probability was considered that did not
depend on the system age. Assumption (A-3) means that the costs for keep operating
for one period do not decrease as the system becomes more deteriorated and older.

3.2 Structural Properties

In this section, we investigate the optimal decision-making problem for aging sys-
tems under the assumption of on-condition maintenance. The structural properties of
the optimal expected cost function are examined, and these properties establish that
the optimal action changes from an optimal inspection to replacement at most once
under certain conditions. In addition, the optimal inspection interval is found to be
decreasing in both the system’s deterioration state and age.

To prove our main theorem, we use four lemmas. Lemma 1 was originally proved
by Derman [3], and Lemma 2 was originally proved by Karlin [6]. The latter is known
as the variation diminishing property.

Lemma 1 (Derman [3]). If assumption (A-1) holds and f ( j, t) is an increasing func-
tion in j for any l (≤ L) and t,

n∑
j=1

pi j(l|t) f ( j, t) ≤
n∑

j=1

pi′ j(l|t) f ( j, t)

for any 1 ≤ i < i′ ≤ n.

Lemma 2 (Karlin [6]). Under assumption (A-1), if the sign of f (i) changes from

negative to positive at most once in i, the sign of
n∑

j=1

pi j(l|t) f ( j) changes in the same

way in i for any l (≤ L) and t ∈ T.

Lemmas 3 and 4 investigate the properties of the total expect cost function if in-
spection is selected. Lemma 3 provides sufficient conditions under which V (l)(i, t) is
increasing in deterioration state i. This means that, for two systems at the same age,
the total expected cost of inspection increases as the system deteriorates if the inspec-
tion intervals stay the same. Lemma 4 provides sufficient conditions under which
V (l)(i, t) is increasing in age t. This means that, for two systems in the same state of
deterioration, the total expected cost of inspection for the newer system is less than
that of the older one if their next inspections are done at the same time.

Lemma 3. Under assumptions (A-1) through (A-3), V (l)(i, t) is increasing in i for any
l (≤ L) and t.

Lemma 4. Under assumptions (A-1) through (A-3), V (l)(i, t) is increasing in t for any
l (≤ L) and i ∈ S.
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Theorems 1 and 2 investigate the properties of the difference between the total
expected cost if inspection is selected for (i, t) and the optimal policy is followed
for the remaining periods and that if replacement is selected. They provide a set of
sufficient conditions for the monotonicity of V (I)(i, t) − V (R)(i, t) in both deterioration
state and age. Corollary 1 shows that the optimal action changes from an optimal
inspection to replacement at most once. This result comes from Theorems 1 and 2.

Theorem 1. Under assumptions (A-1) through (A-3), the sign of V (I)(i, t) − V (R)(i, t)
changes at most once in deterioration state i for any age t.

Theorem 2. Under assumptions (A-1) through (A-3), the sign of V (I)(i, t) − V (R)(i, t)
changes at most once in age t for any deterioration state i.

Corollary 1. Under assumptions (A-1) through (A-3), the optimal action changes
from optimal inspection to replacement at most once as the system deteriorates and
ages.

Theorems 3 and 4 investigate the total expected cost functions of inspections with
two different intervals by checking the property of function V (l)(i, t) − V (l+1)(i, t). If
V (l)(i, t) − V (l+1)(i, t) is increasing in deterioration state i and age t, inspection with
operation interval l leads to a greater increase in cost than inspection with operation
interval l + 1 as the system either deteriorates or ages. This means that the optimal
inspection interval transits from l to l + 1 at most once if the decision is made on the
basis of current status (i, t). From Theorems 3 and 4, we can derive Corollary 2, which
shows that the assumptions presented in Section 3.1 are sufficient for the inspection
interval to be monotone decreasing in both state i and age t.

Theorem 3. Under assumptions (A-1) through (A-3), the sign of V (l)(i, t) − V (l+1)(i, t)
changes at most once in deterioration state i for any age t.

Theorem 4. Under assumptions (A-1) through (A-3), the sign of V (l)(i, t) − V (l+1)(i, t)
changes at most once in age t for any deterioration state i.

Corollary 2. Under assumptions (A-1) through (A-3), the optimal inspection interval
decreases in both state i and age t.

Figure 1 shows an example of policies having monotone properties given by Corol-
laries 1 and 2.

4 Summary

In previous research, the system was assumed to be inspected at a regular interval irre-
spective of the system’s deterioration state and age. However, the inspection interval
should differ in accordance with the systemfs status. In the proposed inspection pol-
icy, the interval is flexible and is determined on the basis of the current deterioration
state and age. We investigated the optimal inspection policy and obtained a monotone
policy for which the optimal action changes from optimal inspection to replacement
at most once with respect to the deterioration state and age under certain conditions.
Furthermore, we showed that the optimal inspection interval decreases as deterioration
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and age increase. The proposed inspection policy enables the maintenance manager
to carry out an effective on-condition maintenance plan. The next inspection can be
scheduled on the basis of the current system status dynamically. Therefore, the in-
spection cost and number of maintenance personnel can be reduced.

The inspection of a deteriorating system was assumed to be perfect, meaning that
the true state of the system was known exactly. However, in many cases, inspection
provides only incomplete information related to the true state. In future work, we
will take these limitations into account and investigate optimal decision-making for a
system with imperfect inspection.

(i < i′ < i′′, t < t′ < t′′, l < l′)

Fig. 1. Example of policies having monotone properties given by Corollaries 1 and 2.
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Abstract. Estimations of Value at Risk (VaR) and Expected Shortfall (ES) are im-
portant for banks and other participants in financial markets. These financial risk
measures capture the amount of financial risk caused by a rare event. While precise es-
timations of these risk measures are desirable, standard Monte Carlo simulation-based
VaR and ES estimates require significant computing time. We propose an estima-
tor procedure for computing ES in a Bayesian framework using GARCH predictive
distributions and importance sampling methods. Approximations for the GARCH
predictive distributions are also proposed. The proposed methods are compared to
the standard cases, and show less computing time for the same degree of numerical
accuracy. Finally, the proposed procedures are used to estimate the ES of Japanese
stock market data.
Keywords: Bayesian estimation, GARCH model, Laplace approximation, impor-
tance sampling, predictive distribution.

1 Introduction

Market disruptions caused by the worldwide financial crisis required that finan-
cial institutions plan, monitor, evaluate, and assess financial risks. The finan-
cial crisis in the United States, triggered by the collapse of Lehman Brothers
in 2008, resulted in global downturn. Further examples of financial crises in-
clude the Great East Japan Earthquake in 2011, and the escalating debt crisis
in Europe between 2010 and 2012. Utilizing these data to study and/or fore-
cast the rare events associated with a financial crisis is becoming increasingly
important.

The Expected Shortfall (ES) and the Value at Risk (VaR) are popular mea-
sures of financial risks for an asset or a portfolio of assets. The VaR measures
the maximum loss of a financial asset price due to market movements over a
given holding period with a certain level of confidence. Let X be the negative
log return of the market values of an asset or a portfolio of assets, and F be
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the distribution of X. Then, for a positive value p close to zero, the 100p%
VaR is defined as

V aR(p) = min[x : F (x) ≥ (1− p)],

which is the (1−p)th quantile of the loss distribution F . The ES is the expected
loss given that the VaR is exceeded and measures the financial risk of very rare
events. The ES is defined as follows:

ES(p) = E[X|X ≥ V aR(p)].

The VaR is a financial risk measure of a rare event and is widely used as
a standard tool in financial markets. Since the work of Artzner et al. [1,2],
it is well known that the VaR is not a coherent measure of risk. If the risk
measure satisfies the four requirements of homogeneity, monotonicity, transla-
tion invariance, and subadditivity, then it is a “coherent” measure of risk. The
VaR satisfies the first three requirements, but lacks the subadditivity property.
Let X1 and X2 denote the random returns of two financial assets, then the
subadditivity of a risk measure ρ(·) means

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

This property is desirable because it is consistent with the diversification prin-
ciple of modern portfolio theory.

The Basel Committee identified the ES, a theoretically coherent risk mea-
sure, as an alternative to the VaR. On May 3, 2012, the Basel Committee
explicitly raised the prospect of phasing out the VaR and replacing it with the
ES in the Third Basel Accord (Basel Committee [3]).

Various studies have attempted to obtain accurate ES values, including
sample averages based on the order statistics of Yamai and Yoshiba [24] and
estimators using the extreme-value theories of Cotter and Dowd [7]. For the
conditional distribution approach, we need to incorporate changes in market
volatility to reflect the most recent risk level. So and Wong [20] proposed sta-
tistical methods to estimate the multi-period ES under GARCH models using
the conditional kurtosis. Hoogerherde and van Dijk [12] proposed a Bayesian
framework for forecasting the VaR and ES using mixture of t distributions.

The classic Monte Carlo methods to calculate the VaR and ES are possible.
One major limitation of any Monte Carlo method is that the computational
effort can be too heavy to make the method widely applicable. Thus, one ob-
jective of this study is to develop a new ES estimator based on the importance
sampling distribution of the conditional predictive distribution of GARCH re-
turns. For further details about GARCH models, Francq and Zakoian [9] pro-
vides extensive reviews on the variants of GARCH models and their empirical
applications.

We propose an estimation procedure for computing the ES in a Bayesian
framework using GARCH predictive distributions and the importance sampling
methods. To this end, we present new analytical methods to approximate the
cumulant generating function of the predictive distribution from the GARCH
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models. Several approximations are proposed, including the usual fully expo-
nential Laplace approximation, Lindley approximation, and Miyata approxi-
mation. We also discuss and compare the precisions of these estimations.

This paper is organized as follows. Section 2 defines the GARCH models
and describes the ES estimation procedures. Bayesian approximation is also
explained. Section 3 presents the estimation procedures based on the impor-
tance sampling methods. To illustrate how our estimation procedures work,
we conduct a data analysis using Japanese stock market data in Section 4.
Conclusions are presented in Section 5.

2 Models and Methodology

The first step in a Bayesian analysis is to choose a probability model for the
data. In this research, we have chosen models widely used in financial anal-
yses to formulate the movement of financial asset prices. The ARCH model
of Engle [8] and the GARCH model of Bollerslev [4] aim to more accurately
describe the phenomenon of volatility clustering. Volatility clustering refers to
the empirical idea that large changes tend to be followed by large changes.

Let pt be the financial asset price at time t. The daily percent log return
is defined as yt = 100 log(pt/pt−1). Let the volatility be defined as ht. Then,
the Autoregressive Conditional Heteroskedasticity(ARCH) model is described
as follows:

yt = εtht, h2t = α0 + α1y
2
t−1, εt ∼ i.i.d.(0, 1), (1)

where α0 > 0, and 0 ≤ α1 ≤ 1 for positive volatility.

The generalized ARCH (GARCH) model is often preferred by financial pro-
fessionals as it provides a more real-world context than other forms when trying
to predict prices. The GARCH(1,1) model can be expressed as follows:

yt = εtht, h2t = α0 + α1y
2
t−1 + βh2t−1, εt ∼ i.i.d.(0, 1), (2)

where α0 > 0, 0 ≤ α1 ≤ 1, 0 ≤ β ≤ 1, and α1 + β < 1. These restrictions
ensure that non-negative volatility and model stationarity. There is a special
case of the GARCH model called RiskMetrics (Longerstaey [16]) model whose
volatility equation is given by

h2t = (1− λ)y2t−1 + λh2t−1, (3)

where λ ∈ (0, 1) is a smoothing parameter, for which, according to the Risk-
Metrics model, a reasonable choice is λ = 0.94 for daily series. This model can
be viewed as the IGARCH(1,1) model without intercept.

Computing the ES in a Bayesian framework is one of the main purposes
of this research. Suppose we have observed data yT = (y1, . . . , yT ) from the
(G)ARCH models defined by equations (1) or (2). Denote pT (yT |θ) by the
probability density function yT , given θ = (α0, α1, β)

′. Conditional on θ and
yi−1, yi are independent and identically distributed random variables with den-
sity p(yi|yi−1,θ). Assume that εt follows a standard normal distribution. Then,
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pT (yT |θ) =
∏T
i=1 p(yi|yi−1,θ) is a quasi-maximum likelihood (QML) even if

the true distribution of εt is non-normal. It is well known that, provided the
error distribution has a finite fourth moment, QML estimators are asymptot-
ically normally distributed in the case of the ARCH by Weiss [23] and the
GARCH(1,1) model by Lee and Hansen [14].

If we specify a prior density π(θ), then by the usual Bayesian calculus, the
posterior distribution of θ from a sample yT is

pT (θ|yT ) =
pT (yT |θ)π(θ)dθ∫
Θ
pT (yT |θ)π(θ)dθ

.

Once the posterior distribution for the unknown parameters is obtained, we can
predict future data conditional on the data yT . Then, the predictive density
for yT+1 becomes

p(yT+1|yT ) =
∫
Θ
p(yT+1|yT ,θ)pT (yT |θ)π(θ)dθ∫

Θ
pT (yT |θ)π(θ)dθ

. (4)

This is called the Bayesian predictive distribution. In large deviation theory,
the tail probability of the predictive distribution is bounded by in terms of the
cumulant generating function of p(yT+1|yT ). To do this, we need to define the
moment generating function of the predictive distribution, which is given by

MyT+1(s) = E
[
esYT+1

]
=

∫ ∞

−∞
esyT+1p(yT+1|yT ,θ)dyT+1.

Then the cumulant generating function is the log of the moment generating
function, which is given by

ψ(s) = logE[esYT+1 ] = log

∫
esyT+1p(yT+1|yT ,θ)dyT+1

= log

∫∞
−∞ esyT+1

∫
Θ
p(yT+1|yT ,θ)pT (θ|yT )dθ · dyT+1∫
Θ
pT (yT |θ)π(θ)dθ

= log

∫
Θ

∫∞
−∞ esyT+1p(yT+1|y,θ)dyT+1pT (θ|yT )dθ∫

Θ
pT (yT |θ)π(θ)dθ

= log

∫
Θ
E[esyT+1 |yT ,θ]pT (θ|yT )dθ∫

Θ
pT (yT |θ)π(θ)dθ

. (5)

Let g be a smooth, positive function of the parameter space, and set

g(MGF )(θ) = E[esyT+1 |yT ,θ] =
∫
esyT+1p(yT+1|yT ,θ)dyT+1,

and g(p)(θ) = p(yT+1|yT ,θ) as the moment generating and the distribution
functions of a vector θ conditional on yT , respectively. The posterior mean of
g(m)(θ) can be written as

E(g(m)(θ)|yT ) =
∫
Θ
g(m)(θ)pT (θ|yT )dθ∫
Θ
pT (yT |θ)π(θ)dθ

, m ∈ {MGF, p}. (6)
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In general, we cannot calculate the exact posterior mean of function (6). Thus,
we provide approximations to (6) using Laplace methods.

The Laplace approximation is widely used in the asymptotic expansion of
integrals, which involves expanding the parameters in a Taylor series about
the mean values and then using the second-order terms to approximate the
integrals. It is well known that a posterior distribution is going to have a similar
form to the normal distribution as the number of observations go to infinity.
The posterior distribution is approximated using normal distribution in the
Laplace approximation. Implementation details of the Laplace method may be
found in Tierney and Kadane [21], Tierney et al. [22], and Miyata [17,18], who
introduce applied Laplace approximation methods.

We consider the fully exponential form of Laplace method by defining
hT (θ) = −T−1 log{pT (yT |θ)π(θ)}. Suppose {log pT (yT |θ) + log π(θ)} has

strict local maximum θ̂ and a positive definite matrixD2hT (θ) = (∂2/∂θ∂θ′)hT (θ).
Then, the approximation for an integral of the form I =

∫
Θ
b(θ) exp{−ThT (θ)}dθ

is given by a Taylor series expansion of hT (θ), as follows:

I ≈ b(θ̂) exp(−Th(θ̂))(2π/T )D/2|D2hT (θ̂)|−1/2, (7)

where θ̂ is a point in RD. Here, b(θ) is continuous, differentiable, and nonzero

at θ̂ and θ ∈ RD. The approximation of I has the error term O(T−1).

2.1 Tierney and Kadane Approximation

Tierney and Kadane [21] argued in favor of a specific implementation of the
Laplace approximation, called the fully exponential form, that produces results
more accurate than those of other approaches. Instead of errors typically being
O(T−1) for the conventional Laplace approximation, they found that the errors
are O(T−2) owing to the cancellation of O(T−1) error terms using their method.
Their proposed approximation is

ĝ
(m)
TK =

(
|D2hT (θ̂)|
|D2h∗T (θ̂

∗)|

)1/2
exp{−Th∗T (θ̂∗)}
exp{−ThT (θ̂)}

, m ∈ {MGF, p}, (8)

where h∗T = −T−1 log{g(θ)pT (yT |θ)π(θ)} and θ̂∗ = arg supθ∈Θ{−h∗T (θ)}.

2.2 Miyata Approximation

Miyata [18] proposed a simple approximation to (6) based on the posterior
means of θ. Denote tr(·) by the trace of a matrix and let θB be the posterior
mean. Then, the approximation to the posterior mean of g(m)(θ) in (6) is given
by

ĝ
(m)
M = g(m)(θ̂B;yT )+

1

2T
tr{D2g(m)(θ̂B)[D2hT (θ̂

B)]−1}, m ∈ {MGF, p}, (9)

where θ̂B is a second-order approximation to the posterior mean θB. Miy-
ata [18] shows that the approximation is valid under regularity conditions,

387



such that g(m)(θ) = ĝ
(m)
M + O(T−2). We only have to calculate this approxi-

mation using the second derivative. When T is comparably small, the result

ĝ
(m)
M < 0 cannot be avoided.

2.3 Lindley Approximation

Lindley [15] developed an asymptotic expansion to evaluate the ratio of the
integral of the form as

ĝ
(m)
L = g(m)(θ̂;yT )−

1

2T

∑
ijrs

{
∂

∂θi
g(m)(θ̂)

}
hijhrshijk

+
1

2T

∑
ij

hij
{

∂2

∂θi∂θj
g(m)(θ̂)

}
, m ∈ {MGF, p}, (10)

where hij are the (i, j)-components of the inverse of the Hessian of hT (θ̂) and
hijk = (∂3/∂θi∂θj∂θk)hT (θ).

3 Importance Sampling Estimation Procedures

There is a large body of work on the use of asymptotic deviations to identify an
effective change of measure for estimating rate event probabilities by simula-
tion. For example, see Glasserman and Wang [10], Glynn [11], Muller [19], and
Heidelberger [13]. For numerous references and discussions on these studies,
see Chen et al. [6]. In order to use importance sampling for loss probabilities
estimations, an importance sampling density has to be chosen. For this, we
first define the exponential change of measure as below.

Let Y be a random variable on R and have distribution function F and cu-
mulant generating function ψ under the original probability measure P . Then,

ψ(s) = log

∫
exp(sy)dF (y).

Set ψ’s domain to S = {s : ψ(s) < ∞} and for each s ∈ S, let Fs denote the
distribution function obtained by the exponential change of measure. In other
words,

dFs(y) = exp(sy − ψ(s))dF (y).

Then the cumulant generating function ψ contains important information about
the distributions Fs. Let ψ

′ denote the derivative of ψ. It is a standard conse-
quence of exponential twisting that ψ′(s) is the mean and ψ′′(s) is the variance
of a random variable with distribution function Fs. Each Fs is a probability
density function, and {Fs; s ∈ S} form an exponential family of distributions.
A transformation from F to Fs is called an exponential change of measure.
The density function of Fs is given by

fs(y) = esy−ψ(s)f(y), (11)
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where f is supposed to be the density of F .
The exponential changes of measure stem from the large deviation theory

(see Bucklew [5]). According to the large deviation theory, the tail of the
distribution of F (Y ) can be approximated as

P (Y > y) ≈ exp(−ysy + ψ(sy)),

for y ≫ E(Y ), where sy is the root of the equation ψ(sy) = y. The cumulant
generating function ψ(s) can be approximated by equations (8), (9), and (10).
In particular, let s̃p be the root of the equation

−s̃pψ′(s̃p) + ψ(s̃p) = log(1− p).

Then, for p closer to 1, we observe

P (Y ≥ ψ′(s̃p)) ≈ 1− p,

which suggests that ψ′(s̃p) is an approximation to the quantile F−1(p).
Let Y have the initial distribution function F0. If we apply an exponential

change of measure such that Y has the new distribution Fs, the corresponding
likelihood ratio is given by

dF0(Y )

dFs(Y )
= exp(−sY + ψ(s)).

Now, we propose the following algorithm to compute the VaR and ES based
on the importance sampling methods, for method ∈ {TK,M,L}.

Step 1. Choose the model and set the prior for each parameter, then construct
a likelihood from the model. These are required to calculate the approximate
predictive distribution:

ĝ
(p)
method = p̂(yT+1|yt,θ).

Step 2. Let ψ̂method(s) = log ĝ
(MGF )
method . Obtain an approximation to the cumu-

lant generating function using (8), (9), and (10).

Step 3. Obtain the value of sx, which is the root of the nonlinear equation

ψ̂′
method(sx) = x,

for fixed x. Note that the cumulant generating function of Y is approximated
by ψ̂method(s). Under the importance sampling distribution, the expected value
of Y is equal to x.

Step 4. Simulate a set of draws Y
(IS)
1 , . . . , Y

(IS)
N from the approximated im-

portance sampling density (11) using the acceptance-rejection method:

p̂s,method(y) = exp(sy − ψ̂method(s))p̂0,method(y).
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Step 5. Take samples from the distribution in step 3. Then the importance
weight for collecting the bias can be determined as follows:

dF0

dFs
= exp(−sY (IS) + ψ̂method(s)). (12)

Step 6. Estimate the VaR and ES, as follows:

V̂ aR(α) = Y
(IS)
k,N , where k = min

{
j :

j∑
i=1

wi,N ≤ α
}
, (13)

and

ÊS(α) =
1

N

N∑
i=1

I{Yi > x} exp(−sYi + ψ̂method(s)), (14)

respectively, where Y
(IS)
1,N ≥ Y

(IS)
2,N ≥ · · · ≥ Y

(IS)
N,N are the ordered samples and

wi,N = 1
N exp(−sY (IS)

i,N + ψ̂method(s)).
Standard Monte Carlo would generate N identically distributed samples

Y
(SMC)
1 , . . . , Y

(SMC)
N from the approximated posterior predictive distribution

ĝ
(p)
method. Denote Y

(SMC)
1,N ≥ Y

(SMC)
2,N ≥ · · · ≥ Y

(SMC)
N,N be the ordered samples

of the random draws of Y
(SMC)
i , i = 1, . . . , N . Then, the unbiased estimates

of the VaR and ES have the form

V̂ aR(α) = F̂−1
Y (1− α) = Y

(SMC)
[Nα]+1,N ,

and

ÊS(α) =
1

α

∫ 1

1−α
F̂−1
Y (p)dp

=
1

α

[Nα]∑
i=1

Y
(SMC)
i,N

N
+

(
α− [Nα]

N

)
Y

(SMC)
[Nα]+1,N

 ,

respectively. Here F̂−1
Y (p) = min{x ∈ R : F̂Y (x) ≥ p} is the empirical quantile

function for p ∈ (0, 1).

4 Data Analysis

The daily price of the Nikkei 225 index pt for March 1, 2010 - March 15, 2015
was corrected. The daily percent log returns are constructed from the price
series {pt}, such that yt = 100 log(pt/pt−1). The total number of returns in the
sample is 1,236.

How volatility is evaluated depends on the specification of the volatility
dynamics models. Here, we consider the ARCH(1) and RiskMetrics models for
the process yt. The ARCH(1) parameter α0 is assumed such that the sample
variance is equal to the model variance as α0 = S2(1 − α1), where S

2 is the
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sample variance. In Figure 1, we plot the return series {yt} together with the
estimated volatilities for the ARCH(1) and RiskMetrics model. As can be seen
in this figure, the RiskMetrics model is sensitive to volatility changes.

We compute the VaR and ES for the risk levels α ∈ {0.01, 0.05}. We choose
a flat prior for both α1 on the interval [0, 1) in the ARCH model and λ on the
interval [0, 1) in the RiskMetrics model. The number of random samples for
each simulation is N = 1, 000. Figure 2 displays the kernel density plot for
the ARCH(1) predictive density for T = 1, 236 using Tierney and Kadane and
Miyata approximation, together with its importance sampling distributions
for α = 0.01, 0.05. These figures show that the approximations give similar
densities.

Table 1 shows the estimation results for the VaR and ES for Tierney and
Kadane, Lindley, and Miyata approximation. From this table, we can see that
the estimated tail risks are quite close, such that the difference of procedure
does not affect the risk evaluation. Note that the estimated values acquired
using the RiskMetrics model are smaller to those obtained using the ARCH
model. This is because the volatility estimate for σ̂T+1 is quite different between
these two models, as can be verified by Figure 1. Table 2 shows the relative
computing time for the estimation by each model and method. The Miyata
approximation requires less computing time than the other methods. However,
Lindley approximation needs more computing time because it requires a third
derivative of the kernel functions.

To compare the convergence performance of our proposed method with
Standard Monte Carlo, we estimate the VaR and ES for each simulation sample
from 100 to 1,000. The results are plotted in Figure 3 , where we use the Miyata
approximation. We can see that the importance sampling estimation has small
spread even though the smaller sample size, whereas the Standard Monte Carlo
have a larger variability.

Table 1. Estimated VaR and ES

Method V̂ aR(0.05) V̂ aR(0.01) ÊS(0.05) ÊS(0.01)
ARCH (1)
TK 2.294 3.189 2.790 3.565
Miyata 2.285 3.180 2.796 3.563
Lindley 2.253 3.181 2.763 3.556
RiskMetrics
TK 1.378 1.936 1.703 2.188
Miyata 1.339 1.938 1.717 2.172
Lindley 1.395 1.931 1.711 2.161
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Table 2. Relative computing time for calculating VaR and ES for each model and
method.

Method TK Miyata Lindley
ARCH(1) 2.08 1.00 8.40
RiskMetrics 2.13 1.00 7.61

Time

0 200 400 600 800 1000 1200

−5
0

5
10

ARCH
RiskMetrics

Fig. 1. Time series plot of negative log returns of Nikkei 225 stock market index
together with estimated volatilities using the ARCH and RiskMetrics models.
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Fig. 2. Approximation of the predictive distribution together with importance sam-
pling densities obtained by Tierney and Kadane approximation (left) and Miyata
approximation (right). The dotted and dashed curves represent risk levels α = 0.01
and α = 0.05, respectively.
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Fig. 3. Performance of convergence of importance sampling method with Miyata
approximation together with Standard Monte Carlo method, for risk levels α = 0.05
(left) and α = 0.01 (right).

5 Conclusion

We performed a tail risk estimation using a Bayesian importance sampling
predictive distribution on the Nikkei 225 log returns. Although we did not
find much difference between the estimated values, the Miyata approximation
needed less computing time than the other two methods. Other GARCH mod-
els are also worth considering using the proposed method. In future research,
we must evaluate the difference between the estimated values and the true
values. Thus, several open questions remain to be investigated.
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Abstract. We consider multivariate analog of Birnbaum-Saunders distribution and
investigate some its properties. In bivariate case our definition coinside with defini-
tion by Kundu et.al (2010). We use this approach for estimation of ruin probability
in multivariate collective risk model.
Keywords: Multivariate Birnbaum-Saunders distribution, multivariate collective
risk model, ruin probability.

1 Univariate Birnbaum-Saunders distribution

The two-parameter Birnbaum-Saunders (BS) distribution was originally pro-
posed by Birnbaum and Saunders [1] as a failure time distribution for fatigue
failure caused under cyclic loading. Later Desmond provided a more gen-
eral derivation. So in what follows we we use the technique from the paper
Desmond[2].

The specimen in the form of a metal bar secured to the ends is subjected to
a cyclic strain, which leads to the emergence of a crack. Let Xk be the length
of the crack at time k = 0, 1, . . .. Suppose the dynamics of this process can be
described by the following relation:

Xk+1 = Xk + ξk+1 · g(Xk) , k = 0, 1, . . . , (1)

where X0 = 0, g(x), x ≥ 0 is a continuous positive function, g(0) 6= 0, {ξk} are
independent identically distributed nonnegative random variables with finite
second moments.

Due to relation (1) we have:

r−1∑
k=0

ξk+1 =

r−1∑
k=0

Xk+1 −Xk

g(Xk)
. (2)

? supported by Russian Foundation for Basic Research, project 15-07-02360
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Next we take large t > 0 and fixed s > 0. Let r = t · s, E(ξk) = µ/t,
D(ξk) = σ2/t. Then we have the following relation:

r−1∑
k=0

Xk+1 −Xk

g(Xk)
≈
∫ Xr

0

dx

g(x)
. (3)

Now consider some fixed h > 0 and denote by τ the moment of first passage
time of the level h by the sequence Xk.

Due to Central Limit Theorem we have

P (τ > r = t · s) = P (Xr < h) =

P

(∫ Xr

0

dx

g(x)
<

∫ h

0

dx

g(x)
=: a(h)

)
≈

P

(
r−1∑
k=0

ξk+1 < a(h)

)
≈ Φ

(
a(h)− (µ/t) · r

(σ/
√
t) ·
√
r

)
=

Φ

(
a(h)− µ · s
σ ·
√
s

)
.

Denote
√
θ/λ = a(h)/σ, 1/λ

√
θ = µ/σ. Then for t → ∞ and fixed s > 0

we get

P (τ ≤ r = t · s)→ 1− Φ

(
1

λ

(√
θ

s
−
√
s

θ

))
. (4)

The right hand of (4) is the comulative function of Birnbaum-Saunders distri-
bution (BS).

Standard normal distribution is symmetric with respect zero. Then the
right hand of (4) can be rewritten in the form:

Φ

(
1

λ

(√
s

θ
−
√
θ

s

))
. (5)

θ > 0 λ > 0 are the paprameters of the distribution.
If θ = 1 we have standard BS-distribution (with parameter λ!).
Let τ be a random variable, which has BS-distribution with parameters θ

and λ, X be a random variable with standard normal distribution.
In many cases it is useful the following relation:

X
d
=

1

λ

[(τ
θ

)1/2
−
(τ
θ

)−1/2]
, (6)

or

τ
d
= θ

(
1 +

λ2

2
X2 + λX

(
1 +

λ2

4
X2

)1/2
)
. (7)

In particular we can calculate the moments of random variable τ :

E(τ) = θ

(
1 +

λ2

2

)
, (8)
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D(τ) = (θλ)2
(

1 +
5λ2

4

)
. (9)

2 Multivariate Birnbaum-Saunders distribution

Now we want to define the multivariate analog of Birbaum-Sanders distribution
using the analogous approach.

Let {ξn} be a sequence of independent identically distributed random vec-
tors in Rm with finite second moments and all components of these vectors are
nonnegative. Next consider vector-valued function

g(x) = (g1(x1), . . . , gm(xm))T , x ∈ Rm ,

whose components are continuous positive functions.
Similarly to univariate case (see Desmond[2]) we consider the multivariate

process of crack extension in Rm:

Xk+1 = Xk + ξk+1 ◦ g(Xk) , X0 = 0, (10)

where ”◦” is the operation of termwise multiplication of vectors.
Due to relation (10) we have:

r−1∑
k=0

ξk+1 =

r−1∑
k=0

Xk+1 −Xk

g(Xk)
. (11)

Again we consider all operations with vectors as termwise. Next we take some
real t > 0 large enough and fixed vector s ∈ Rm with positive components. Let
r = t · s and random vectors ξk have vector of means µ/t = (µ1, . . . , µm)T /t
and covariance matrix A/t = (aij/t).

Again we have
r−1∑
k=0

Xk+1 −Xk

g(Xk)
≈
∫ Xr

0

dx

g(x)
. (12)

Fix some vector
h = (h1, . . . , hm)T

with positive components and consider random vector

τ = (τ1, . . . , τm)T ,

where τj is the moment of first passage time of the level hj by the sequence
Xk,j .

Let r = t · s and define vector a(h) = (a1(h1), . . . , am(hm))T with compo-
nents

aj(hj) =

∫ hj

0

dxj
gj(xj)

.

Below we consider all operation for vector as termwise. Then due to multi-
variate Central Limit Theorem we get:
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P (τ > r) = P (Xr < h) =

P

(∫ Xr

0

dx

g(x)
<

∫ h

0

dx

g(x)
=: a(h)

)
≈

P

(
r−1∑
k=0

ξk < a(h)

)
≈ ΦR

(
a(h)− µ/t ◦ r
σ/
√
t · r

)
=

ΦR

(
a(h)− µ · s
σ ·
√
s

)
,

where ΦR(x), x ∈ Rm is a cumulative distribution function of multivariate
normal distribution in Rm with matrix of correlation coefficients R.

As in univariate case we consider the following parametrization:√
θj/λj = aj(hj)/σj , 1/λj

√
θj = µj/σj j = 1,m . (13)

Then for large real t and fixed s ∈ Rm we have

P (τ > r = t · s) ≈ ΦR

(
1

λ

(√
θ

s
−
√
s

θ

))

= ΦR

(
1

λ1

(√
θ1
s1
−
√
s1
θ1

)
, . . . ,

1

λm

(√
θm
sm
−
√
sm
θm

))
(14)

By the definition the right hand of relation (14) is the tail of multivariate
Birnbaum-Saunders distribution.

It is easy to see that random variable τk has univariate BS-distribution with
parameters λk, θk.

Let X = (X1, . . . , Xm) be random vectors with multivariate normal dis-
tribution zero means, unit variances and matrix of correlation coefficients R.
Now consider new random vector T = (T1, . . . , Tm) such that

τk = θk

(
1 +

λ2k
2
X2 + λkX

(
1 +

λ2k
4
X2

)1/2
)
, (15)

or

Xk = fk(τk) :=
1

λk

[(
θk
τk

)1/2

−
(
τk
θk

)−1/2]
, (16)

It is easy to see that the functions xk = fk(tk) are strictly decreasing. Using
this remark, relation (14) and the properties of multivariate normal distribu-
tion we get that this random vector τ has multivariate BS-distribution with
parameters λ = (λ1, . . . , λm), θ = (θ1, . . . , θm) and R.

Some years ago in paper Kundu et al.[3] it has been proposed the following
variant of bivariate BS-distribution. Random vector τ = (τ1, τ2) has bivariate
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BS-distribution with parameters λ, θ if its cumulative distribution function has
the form

P (τ1 ≤ t1, τ2 ≤ t2) = Φρ

[
1

λ1

(√
t1
θ1
−
√
θ1
t1

)
,

(√
t2
θ2
−
√
θ2
t2

)]
. (17)

Let some random vector τ = (τ1, τ2) has the distribution (14). Then

P (τ1 ≤ t1, τ2 ≤ t2) = P (Z1 ≤ −f1(t1), Z2 ≤ −f2(t2)) =

= Φρ

[
1

λ1

(√
t1
θ1
−
√
θ1
t1

)
,

(√
t2
θ2
−
√
θ2
t2

)]
.

So our definition in bivariate case coinside with definition in the paper
Kundu et al.[3]. In this interesting paper it has been obtained some impor-
tant properties this distribution. We remind some of them. We will write
(τ1, τ2) ∼ BV BS(λ1, θ1, λ2, θ2, ρ) if (τ1, τ2) has bivariate BS-distribution with
corresponding parameters. In the paper Kundu et al.[3] it has been proved the
following

Theorem 1. . If (τ1, τ2) ∼ BV BS(λ1, θ1, λ2, θ2, ρ), then
1) (τ−11 , τ−12 ) ∼ BV BS(λ1, θ

−1
1 , λ2, θ

−1
2 , ρ),

2) (τ−11 , τ2) ∼ BV BS(λ1, θ
−1
1 , λ2, θ2,−ρ),

3) (τ1, τ
−1
2 ) ∼ BV BS(λ1, θ1, λ2, θ

−1
2 ,−ρ).

Moreover in our case it can be proved that any subvector has multivariate
BS-distribution.

3 Multivariate collective risk model

In this section we use the analogous approach for estimation of ruin probability
in multivariate risk model.

In actuarial mathematics great importance has always been given to esti-
mation of ruin probability of insurer. The multivariate collective risk model
allows to consider the dependence between claims of different kinds of insur-
ance, operated by insurance company. Claims happened in different kinds of
insurance are mutually dependent very often, that affects the process of chang-
ing the value of the insurance reserve. The dynamics of reserve process can be
written in the following form:

U(t) = u+ c · t− S(t) ,

where U(t) = (U1(t), . . . Um(t)) – the process of insurer reserve; u = (u1, . . . , um)
– the initial insurer capital distributed between m kinds of insurance; c =
(c1, . . . , cm) – vector of intensity of premiums incoming for each kind of insur-
ance; S(t) = (S1(t), . . . , Sm(t)) – multivariate process of total payments for
each kind of insurance up to the moment t.

Let us consider the multivariate index i = (i1, . . . , im), where ik equals
to 0 or 1. ik = 1 when claims of the k-th kind were paid and 0 in other
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case. Denote by I the set of all possible values of i and Ik = {i : ik = 1}. Let
N (i)(t), t ≥ 0 be the number of claims happened up to the moment t and having
the structure corresponding to the index i. We assume that N (i) are Poisson
processes with parameters λ(i) and they are independent for different i. Define
N(t) =

∑
i∈I

N (i)(t) – total number of claims happened up to the moment t. N

is Poisson process with parameter λ =
∑
i∈I

λ(i). Let (εj , j ≥ 1) be a sequence

of i.i.d. random vectors with values in I such that P (εj = i) = λ(i)/λ which is
independent of {N (i), i ∈ I}. In our model

Sk(t) =

N(t)∑
j=1

∑
i∈Ik

I(εj = i) ·X(i)
j,k ,

where X
(i)
j,k is the part of the claim of structure i corresponding to k-th kind of

insurance. We assume that processes N (i) and the sequences of claims (X
(i)
j )

are independent. More details about such model see in the paper Ivanova[4].
Let τk be the moment of ruin in k-th kind of insurance. It is very important

for the insurer that each kind of insurance is not lossmaking. So we define the
ruin moment of the insurance company as following τ = min{τk, k = 1,m}.

It is very difficult to find exact distribution of these random variables (espe-
cially in multivariate case). So as usual we try to find asymptotic distribution
for large times. More exactly we want to find

P (τ1 > t1, . . . , τm > tm)

for the case min(t1, . . . , tm) → ∞. In what follows we assume that 0 < t1 <
t2 < . . . < tm.

First we find the asymptotic distribution payments process S(t), t = (t1, . . . , tm),
which can be decomposed in the following form:

S(t) := (S1(t1), S2(t2), . . . , Sm(tm)) =

(S1(t1), S2(t1), . . . , Sm(t1)) + (0, S2(t2)− S2(t1), . . . , Sm(t2)− Sm(t1)) +

. . .+ (0, 0, . . . , 0, Sm(tm)− Sm(tm−1)) .

Denote

St1 = (S1(t1), S2(t1), . . . , Sm(t1)) ,

St1,t2 = (0, S2(t2)− S2(t1), . . . , Sm(t2)− Sm(t1)) ,

...

Stm−1,tm = (0, 0, . . . , 0, Sm(tm)− Sm(tm−1)) ,

X∗j,k =
∑
i∈Ik

I(εj = i) ·X(i)
j,k .
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It follows that random vectors

Sk(t1) =

N(t1)∑
j=1

X∗j,k, 0 < t1, k = 1,m

Sk(t2)− Sk(t1) =

N(t2)∑
j=N(t1)+1

X∗j,k, 0 < t1 < t2, k = 2,m

...

Sm(tm)− Sm(tm−1) =

N(tm)∑
j=N(tm−1)+1

X∗j,m, 0 < tm−1 < tm,

St1 ,St1,t2 , . . . ,Stm−1,tm are independent.
It is well known the following variant of Central Limit Theorem for random

sums.

Theorem 2. . Let X = (Xj , j ≥ 1) be a sequence of i.i.d. random vectors
in Rm with vector of means a = (a1, . . . , am)T and matrix of second moments
M = (mpq = E(XjpXjq)) and N be a random variable which has Poisson

distribution with parameter λ and independent of sequence X. If S =
N∑
j=1

Xj

and λ→∞ then random vector

Sλ :=
S − λ · a√

λ

has asymptotically multivariate normal distribution with zero means and co-
variance matrix M .

Now calculate the moments of random vector X∗j = (X∗j,k).

a = (a1, . . . , am)T = E(X∗j ) =
∑
i∈I

E
(
I(εj = i) ·X(i)

j

)
=
∑
i∈I

λ(i)

λ
· E(X

(i)
j ) ,

σp,q = E
(
X∗j,p ·X∗j,q

)
=
∑
i∈I

∑
l∈I

E
(
I(εj = i) · I(εj = l) ·X(i)

j,p ·X
(l)
j,q

)
=

∑
i∈I

E
(
I(εj = i) ·X(i)

j,p ·X
(i)
j,q

)
=
∑
i∈I

λ(i)

λ
· E
(
X

(i)
j,p ·X

(i)
j,q

)
.

Denote Σ = (σpq).
Let tj = s · rj , so t = (t1, t2, . . . , tm)T = (s · r1, s · r2, . . . , s · rm)T , where

r1 < r2 < . . . < rm.
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Consider multivariate random process St1 . Due to multivariate Central
Limit Theorem for fixed r1 and s→∞ random vector

S∗t1 =
St1 − E(X∗j ) · λ · s · r1√

λ · s

has asymptotically multivariate normal distribution with zero means and co-
variance matrix r1 ·Σ.

Analogously it can be shown that for any k = 2,m random vector Stk−1,tk

(under some normalization) has asymptotically multivariate normal distribu-
tion with zero means covariance matrix (rk − rk−1) · Σ(k−1), where Σ(k−1) is
constructed from Σ by taking zero instead of first (k − 1) rows and columns.
Using the above representation and independence of summands we get the
following

Theorem 3. . Under above notations for min(t1, . . . , tm)→∞ random vector

S∗(t) =
S(t)− E(X∗j ) ◦ r · λ · s

√
λ · s

,

where a ◦ b = (a1 · b1, . . . , am · bm)T , has asymptotically multivariate normal
distribution with zero means and covariance matrix Σ0, whose elements have
the form σp,q ·min(rp, rq).

Now we come back to our initial problem. It is easy to see that

P (τ1 > t1, . . . , τm > tm) =

P (U1(v1) > 0, . . . , Um(vm) > 0 , 0 ≤ v1 < t1, . . . , 0 ≤ vm < tm) =

P (S1(v1) < u1+c1·v1, . . . , Sm(vm) < um+cm·vm , 0 ≤ v1 < t1, . . . , 0 ≤ vm < tm) ≤
P (S1(t1) < u1 + c1 · t1, . . . , Sm(tm) < um + cm · tm) .

For large tk and uk we come again (under some reparametrization!) to multi-
variate BS-distribution and get some lower bound for ruin probability.

This investigation was supported by Russian Foundation for Basic Research,
project 15-07-02360.
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Abstract. Owing to the vast number of digitally stored text documents, the com-
putational analysis of natural language text data has become increasingly important.
Methods using statistical pattern recognition, such as latent semantic analysis (LSA)
or independent component analysis (ICA), are completely unsupervised, and make
use of second and higher order statistical data in their analyses. In this paper, we
propose an algorithm using a trust-region method for a topographic independent
component analysis (TICA). By applying our proposed method, we classify financial
news using TICA. Furthermore, we make predictions about the stock market through
this application of our method to the classification of financial news.
Keywords: text classification, topographic independent component analysis, finan-
cial news, stock price prediction.

1 Introduction

It is widely accepted that financial news provides a key source of investment
information. Owing to the vast number of financial news volumes and sources,
computational analysis of the relevant news is required by market investors
and traders in order to make good and timely decisions. Although news-based
trading has long been a part of investment decision making, it has become
possible only in the recent years to quantify the impact of news events on
financial markets by using natural language processing (NLP) technology. With
this technology being available, it is easier to analyze financial news to gain a
good insight into the current economic and financial situations.

Stock market predictions based on news content present an attractive re-
search topic. One application of text mining is the discovery and exploitation
of relationships between documented text and external sources of information
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such as time stamped streams of data; specifically, stock market quotes. Pre-
dicting the movements of stock prices based on the contents of news articles is
one of the many possible applications of text mining techniques. Literature on
the application of computational methods to textual data for making financial
market prediction includes Bollen et al. [4], Schumaker and Chan [14], Kumar
et al. [10], and Nikolaos and Markellos [12]. A good review of recent results
on the analysis of financial news can be found in the monograph of Mitra and
Mitra [11].

Text classification is also an important part of text mining. Supervised
learning for text classification begins with a training set of documents that are
already labeled with a class. For example, the sentiments of news categories are
“positive”, “negative”, or “neutral”. In this paper, we consider a framework
for traditional topic-based categorization of financial news using a topographic
independent component analysis (TICA) model with unsupervised learning.
This clustering process could help to illuminate the structure of the financial
news, thus aiding the study of the relationships between the words featuring
in news items and financial markets.

Methods using statistical pattern recognition, such as latent semantic anal-
ysis (LSA) or independent component analysis (ICA), are completely unsuper-
vised, and make use of second and higher order statistical data in their analysis,
such as, tree based learning (Bach and Jordan [2,3]) and independent subspace
analysis (Theis [15]). The LSA approach is based on the summarization of a
term by document matrix, i.e., a count of how often a given set of terms occur
in the set of documents under analysis. As in ICA, the term by document
matrix is considered to be a linear mixture of a set of independent sources,
each activating its characteristic semantic network.

TICA is another method for multidimensional ICA, which can be seen as a
generalization of the ICA model. Instead of using clusters to model dependen-
cies between components, TICA applies a topographic representation to the
independent components. The topographic order is also based on the mutual
dependencies of the components, such that components that can be close to
each other in the topographic model are assumed to be statistically dependent,
and vice versa.

Various topologies can be used as structural models for TICA. As a measure
for modeling the dependencies between components, Hyvärinen and Köster [9]
and Hoyer et al. [8] proposed the notion of the correlation of energies, which
measures higher-order correlations instead of independence.

The algorithms for (T)ICA can be roughly divided into two categories. The
algorithms in the first category rely on batch computations for minimizing or
maximizing some relevant criterion functions. The second category contains
adaptive algorithms, often based on stochastic gradient methods, which may
have implementations in neural networks. In this paper, we present a method
for solving the TICA problem using Riemannian optimization, as introduced by
Absil et al. [1] and Edelman et al. [6]. Sato and Iwai [13] recently proposed an
optimization algorithm that solves the singular value decomposition problem
on two Stiefel manifolds of different sizes.
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Our contribution highlights the 30 basis vectors that result from applying
TICA to the extraction of features from financial news texts. Furthermore,
this TICA is obtained using the Riemannian optimization method.

The rest of this paper is organized as follows. In Section 2, topographic ICA
is briefly explained. In Section 3, we propose a new optimization algorithm
for TICA, and show that our new algorithm can improve existing methods.
In Section 4, the results of financial news classifications based on TICA are
presented. In Section 5, we conclude the paper.

2 Methodology

ICA is a statistical model in which the observed data is expressed as a linear
combination of underlying latent variables, which are usually called signals, and
are denoted by s. The signals are assumed to be non-Gaussian and mutually
independent. Let the observed mixture signals be denoted by x. The ICA
model assumes that s and x have zero-mean and finite covariance, and that
the mixture signal x can be decomposed into a mixing matrix A with a set of
source signals s, such that for the sample index t = 1, 2, . . . , T , it holds that

x(t) = As(t),

where x(t) = (x
(t)
1 , . . . , x

(t)
m )⊤ is the vector of observed random variables, s(t) =

(s
(t)
1 , . . . , s

(t)
n )⊤ is the vector of source signals, and the m×n mixing matrix A

is an unknown full rank constant matrix. The columns of A = (a1, . . . ,an) are
often called basis functions or basis vectors. Three forms of ICA exist, based
on the relationship between the number of the data m and the hidden number
of sources n. These three forms are called square (n = m), over-complete
(n > m), and under-complete (n < m). The standard ICA model is the square
(n = m) case, while in this paper we consider a model in the under-complete
(n < m) case.

A limitation of ordinary ICA is its strong independence assumption, which
is difficult to satisfy with real-world data. In order to capture the dependence
between the components, Hyvärinen and Köster [9] proposed the topographic
independent component analysis (TICA) model, to find higher-order correla-
tions for the components using the correlation of energies method. We consider
the situation where the sources s are generated according to

si = ziσ for i = 1, . . . , n,

where zi is an independent component with zero-mean and unit variance such
that E{zizj} = 0 for i ̸= j and σ is a common variance. The correlation of
energies becomes

cov
(
s2i , s

2
j

)
= E(s2i s

2
j )− E(s2i )E(s2j ) ̸= 0,

if si and sj are close in the topography. The TICA model relaxes the indepen-
dence assumption of the classical ICA approach, thus seeking components that

405



are as independent as possible. To define the joint density s(t), the variances
σ2
i of the si are not constant and modeled by a nonlinearity:

σi = ϕ

 n∑
j=1

Vijuj

 ,

where the uj are the higher order independent components used to generate the
variances, and ϕ describes some nonlinearity. Then the dependency between
two signals originates from the correlation between their variances. In order to
define our topography, the following neighborhood function for each component
is necessary:

Vij =

{
1 if |i− j| ≤ L,

0 if |i− j| > L.
(1)

The standard probabilistic model for ICA takes the form

p(x|A) =

∫
s

p(x|s,A)
n∏

j=1

pj(sj)ds,

where p(x|s,A) is the likelihood term. In the square noiseless case (m = n),
the sources are estimated using a linear model of the data, such that s = Wx =
A−1x. Using this assumption, the model above simplifies to

p(x|W ) =

∫
s

δ(x−As)

n∏
j=1

pj(sj)ds = |W |
n∏

j=1

pj(w
⊤
j x),

where | · | is the absolute value of the determinant, and |W | normalizes the
change in volume by the transformation. For under-complete models, an ap-
proximate maximum likelihood learning rule can be derived by replacing the
stochastic relation between the source variables and input variables using the
pseudo-inverse of the mixing matrix. That is,

ŝ = Wx = A#x, with A# = A⊤(AA⊤)−1.

If the separating matrix W = (w1,w2, . . . ,wn)
⊤ is square (m = n), this

expression reduces to A# = A−1. Using this approximation, we obtain the
likelihood for (T)ICA in the under-complete case as

logL(W ) ≈
T∑

t=1

n∑
i=1

G

 n∑
j=1

Vij(w
⊤
j x

(t))2

+ T log
∣∣A#

∣∣ , (2)

where the scalar function G is obtained from the probability density function of
p(u). One possible example of the function G(y) is given by G(y) = −α

√
y+β

for α > 0. The last term log
∣∣A#

∣∣ gives the scaling of the probability mass
when the linear transformation given by W is performed. Here, we discard the
last term in (2), because the term log

∣∣A#
∣∣ is basically included to make the
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wi more or less orthonormal, with the assumption that the ai are orthonormal.
As in the case of basic ICA, prewhitening of the data allows us to consider the
wi to be orthonormal.

The data, which are assumed to have zero-mean, are first whitened as z =
Hx = HAs. The original mixing matrix of the unwhitened data can be com-
puted as A ≈ H−1B# = H−1(B⊤B)−1B⊤, where B = (HA)# = A#H−1.
The rows of A# provide the filters in the original, not whitened space.

More precisely, given an input pattern x, the activation of each second

layer unit is pi(x
(t);W ,V ) =

√∑n
j=1 Vij(

∑m
k=1 Wjkx

(t)
k )2. TICA learns the

parameter W through sparse feature representations in the second layer, by
solving

minimizeW

T∑
t=1

n∑
i=1

pi(x
(t);W ,V ), subject to WW⊤ = In,

where the input patterns {x(t)}Tt=1 are whitened.
Classic ICA is obtained as a special case of the topographic model, by

taking a neighborhood function Vij that is equal to the Kronecker delta function
Vij = δij .

3 Riemannian Optimization for TICA

3.1 Trust-region method for TICA

In this section, we define Y = W⊤ so that Y is vertically long. We also regard
the objective function in the previous problem as a function on Y , which we
denote by f(Y ). This leads to the following optimization problem.

Problem 1.

minimize f(Y ) =
T∑

t=1

n∑
i=1

√√√√ n∑
j=1

Vij

(
m∑

k=1

Ykjx
(t)
k

)2

,

subject to Y ⊤Y = In.

This problem is a constrained optimization problem on the Euclidean space
Rm×n. Here, we note that the search space {Y ∈ Rm×n|Y ⊤Y = In} admits
a manifold structure, called the Stiefel manifold, which we denote by St(n,m).
For further details see, for example, Edelman et al. [6]. The problem can then
be reformulated as an unconstrained problem on the Stiefel manifold St(n,m).
The objective function can be also rewritten as

f(Y ) =
T∑

t=1

n∑
i=1

√√√√ n∑
j=1

Vij(Y ⊤x(t))2j

=

T∑
t=1

n∑
i=1

√
(Y ⊤x(t))⊤Vi

′(Y ⊤x(t)) =:

T∑
t=1

n∑
i=1

f
(t)
i (Y ),
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where the matrix V ′
i is defined as V ′

i = diag(Vi1, Vi2, . . . , Vin) ∈ Rn×n. Note

that we have defined f
(t)
i (Y ) :=

√
(x(t))⊤Y V ′

i Y
⊤x(t). Thus, we are led to

the following Riemannian optimization problem.

Problem 2.

minimize f(Y ) =
T∑

t=1

n∑
i=1

√
(x(t))⊤Y V ′

i Y
⊤x(t),

subject to Y ∈ St(n,m).

We shall develop the Riemannian trust-region method for this problem. See
Absil et al. [1] for general theory of the Riemannian trust-region method.

In Euclidean optimization, we use the updating formula

xk+1 = xk + dk, (3)

where xk and dk are the current point and the search direction vector, at the
k-th iteration. However, we cannot use Eq. (3) on Riemannian manifolds, since
addition cannot be defined in general. An alternative way of reframing (3) is to
retract the search direction vector onto the manifold in question. In particular,
we can use the following updating formula on the Stiefel manifold St(n,m):

Yk+1 = qf(Yk + ξk),

where Yk ∈ St(n,m) and ξk ∈ TYk
St(n,m) are the current point and the search

direction tangent vector, respectively, and qf(·) denotes the Q-factor of the QR
decomposition of the matrix in the parentheses. In other words, if a matrix
M ∈ Rm×n is decomposed into M = QR with Q ∈ St(n,m) and R ∈ S+

upp(n),
then qf(M) = Q, where S+

upp(n) is the set of all upper triangular matrices with
strictly positive diagonal elements. For more details about QR decomposition,
we refer the reader to Golub and Van Loan [7]. Because the Q-factor of the
QR decomposition of an m × n matrix is an orthonormal matrix, qf can be
regarded as a map Rm×n → St(n,m).

In order to develop the Riemannian trust-region method for Problem 2, we
must investigate several geometric quantities on the Stiefel manifold St(n,m).
Let TY St(n,m) denote the tangent space of St(n,m) at Y ∈ St(n,m). Because
St(n,m) ⊂ Rm×n, the tangent space TY St(n,m) can be regarded as a subspace
of Rm×n. Therefore, we can endow St(n,m) with a Riemannian metric ⟨·, ·⟩,
as

⟨ξ,η⟩Y := tr(ξ⊤η), ξ,η ∈ TY St(n,m), Y ∈ St(n,m), (4)

which is induced from the natural inner product (·, ·) on Rm×n. That is,

(X1,X2) := tr(X⊤
1 X2) =

m∑
i=1

n∑
j=1

(X1)ij(X2)ij , X1,X2 ∈ Rm×n.

Under the Riemannian metric (4), the orthogonal projection PY : Rm×n →
TY St(n,m) is written as

PY (X) = X − Y sym(Y ⊤X), X ∈ Rm×n, (5)
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where sym(·) denotes the symmetric part of the matrix in the parentheses.
That is, sym(Z) = (Z +Z⊤)/2.

Next, we discuss the Euclidean gradient and Hessian of the objective func-
tion. Strictly speaking, we have to define the extension f̄ of f defined on the
whole of Rm×n. Specifically, we define

f̄(Y ) :=

T∑
t=1

n∑
i=1

f̄
(t)
i (Y ), f̄

(t)
i (Y ) :=

√
(x(t))⊤Y V ′

i Y
⊤x(t), Y ∈ Rm×n.

The directional derivative of f̄
(t)
i at Y in the direction of ξ ∈ Rm×n can be

easily computed as

Df̄
(t)
i (Y )[ξ] =

(x(t))⊤ξV ′
i Y

⊤x(t)

f̄
(t)
i (Y )

.

Hence, we have

Df̄(Y )[ξ] =
T∑

t=1

n∑
i=1

tr(ξV ′
i Y

⊤x(t)(x(t))⊤)

f̄
(t)
i (Y )

= tr

(
ξ⊤

T∑
t=1

n∑
i=1

x(t)(x(t))⊤Y V ′
i

f̄
(t)
i (Y )

)
.

It follows that the Euclidean gradient ∇f̄(Y ) of f at Y is

∇f̄(Y ) =
T∑

t=1

n∑
i=1

x(t)(x(t))⊤Y V ′
i

f̄
(t)
i (Y )

.

Furthermore, the Hessian ∇2f̄(Y ) acts on ξ ∈ Rm×n as

∇2f̄(Y )[ξ] =

T∑
t=1

n∑
i=1

x(t)(x(t))⊤ξV ′
i f̄

(t)
i (Y )− x(t)(x(t))⊤Y V ′

i Df̄
(t)
i (Y )[ξ]

f̄
(t)
i (Y )2

=
T∑

t=1

x(t)(x(t))⊤
n∑

i=1

(
f̄
(t)
i (Y )2ξ −

(
(x(t))⊤ξV ′

i Y
Tx(t)

)
Y
)

f̄
(t)
i (Y )3

V ′
i .

Because we regard the Stiefel manifold St(n,m) as a Riemannian sub-
manifold of Rm×n with the natural induced metric, the Riemannian gradient
grad f(Y ) and the Riemannian Hessian Hess f(Y ) of the objective function f
with respect to this metric can be computed as in Absil et al. [1]:

grad f(Y ) = PY (∇f̄(Y )), Hess f(Y )[ξ] = PY (D(grad f)(Y )[ξ]), (6)

where ξ is an arbitrary tangent vector at Y ∈ St(n,m). Combining (6) with
(5) yields that

Hess f(Y )[ξ] = PY (D(P∇f̄)(Y )[ξ])

=PY

(
−ξ sym(Y ⊤∇f̄(Y ))− Y sym(ξ⊤∇f̄(Y )) + PY (∇2f̄(Y )[ξ])

)
=PY

(
∇2f̄(Y )[ξ]− ξ sym(Y ⊤∇f̄(Y ))− Y sym(ξT∇f̄(Y ))

)
,
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where we have used the fact that P 2
Y = PY .

In the Riemannian trust-region method, we make full use of geometric infor-
mation relating to the objective function, such as the gradient and the Hessian.
At each iterate Yk, we construct a quadratic model m̂Yk

: TYk
St(n,m) → R of

the objective function f , as

m̂Yk
(ξ) = f(Yk) + ⟨grad f(Yk), ξ⟩Yk

+
1

2
⟨Hess f(Yk)[ξ], ξ⟩Yk

.

We minimize the quadratic model m̂Yk
in a trust-region with a radius ∆ > 0,

which is defined by {ξ ∈ TYk
St(n,m) | ∥ξ∥Yk

≤ ∆}. To this end, we use
the truncated conjugate gradient method introduced by Absil et al. [1]. The
obtained solution ξk to the subproblem is then accepted or rejected, depending
on whether ξk satisfactorily decreases the original function f . The algorithm
of the trust-region method for Problem 2 is described by Algorithm 1.

Algorithm 1 Riemannian trust-region method for Problem 2

1: Choose parameters ∆̄ > 0, ∆0 ∈ (0, ∆̄), ρ′ ∈ [0, 1
4
), and an initial point Y0 ∈

St(n,m).
2: for k = 0, 1, 2, . . . do
3: Solve the following trust-region subproblem to obtain ξk:

minimize m̂Yk(ξ),

subject to ∥ξ∥Yk ≤ ∆k, ξ ∈ TYk St(n,m).

4: Evaluate ρk :=
f(RYk(0))− f(RYk(ξk))

m̂Yk(0)− m̂Yk (ξk)
.

5: if ρk < 1
4
then

6: ∆k+1 = 1
4
∆k.

7: else if ρk > 3
4
and ∥ξk∥Yk = ∆k then

8: ∆k+1 = min(2∆k, ∆̄).
9: else
10: ∆k+1 = ∆k.
11: end if
12: if ρk > ρ′ then
13: Yk+1 = qf(Yk + ξk).
14: else
15: Yk+1 = Yk.
16: end if
17: end for

Recall that we have defined Y = W⊤. Once we have obtained an optimal
solution Y to Problem 2 using Algorithm 1, the corresponding solution W to
the original TICA problem in Section 2 can also be determined as W = Y ⊤.

3.2 Numerical experiments

In our experiments, we first prepared a 30× 6502 term by document matrix x,
which we will describe and analyze in more detail in the next section. This x
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corresponds to the case with m = 30 and T = 6502. We set n = 5, and let x(t)

denote the t-th column of the matrix x. Using the matrix Im,n :=

(
In
0

)
∈

Rm×n as the initial guess Y0, we applied our algorithm to Problem 2 by means
of Manopt, which is a MATLAB toolbox for optimization on manifolds by
Boumal et al. [5]. Let Y∗ and YMAT denote the estimated solutions to Problem
2 that are obtained by the proposed algorithm and the interior point method
provided by MATLAB Optimization Toolbox, respectively. The values of f at
Y0, Y∗, and YMAT are found to be

f(Y0) = 1.265× 103, f(Y∗) = 5.128× 102, f(YMAT) = 5.711× 102,

implying that our proposed algorithm is more efficient.

4 Data Analysis

We obtained textual news data from Bloomberg between September 1 2014
and November 30 2014. The total number of textual news items is 6502, taken
over 91 days. On average, there were 71.5 news items delivered per day. All
of the textual news are in Japanese, and extracting meaningful terms yields a
total number of 28,697 terms. In order to reduce the number of terms, we use
singular value decomposition, and obtain an input matrix x of size 30× 6502.
The most common weighting function is the term frequency-inverse document
frequency (tf-idf) weights, which multiplies term frequency and inverse docu-
ment frequency weights. In this study, the term by document matrix is based
on the tf-idf weights.

The latent features can be extracted by TICA by setting n = 30 and the
neighborhood threshold L ∈ {0, 2, 4}, as in (1). Notice that L = 0 corresponds
to the usual ICA model. For these values of L, we optimize W using the
optimization algorithms described in the previous section.

In order to visualize the higher order correlations among latent signals,
we plot the correlation matrices of squared estimated signals, as presented in
Figure 1. According to this figure, we can see that the extracted feature signals
have a strong correlation within the axis labels (11,12), (18,19,20), and (25,26)
for TICA with L = 4, whereas the usual ICA model with L = 0 does not
exhibit these higher order correlations.

Table 1 shows the words that have high values in the feature vector for some
selected feature axes. As in Table 1 and Figure 1, we pick up five latent topic
categories, which indicates that the representations of the feature vectors are
similar when si and sj are close.

The clustering of financial news stories refers to the task of the unsupervised
grouping of data objects into predetermined categories or topics, based on some
similarity measure. The lists of news topics were created by selecting the major
news categories, such as foreign exchange rates, international current affairs,
domestic stock market, on central bank monetary policy. The (T)ICA model
uses the clustering on its independent components, in order to maximize inter-
cluster independence and intra-cluster dependence. Therefore, the similarity
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Fig. 1. Plots of the correlation matrices of squared latent signals with L = 0 (left)
and L = 4 (right).

function used in this approach is based on statistical independence. The cosine
similarity measure is applied, which is given by

C(w1,w2) =
|w⊤

1 w2|
|w1||w2|

,

where w1 and w2 are the documents’ feature vectors.
The k-means cluster algorithm is applied, which divides the T observations

{x(1), . . . ,x(T )} into a set of k-clusters {C1, C2, . . . , Ck}. For each given news
document x(t), we categorize this document with most closest feature topic
axis.

Financial news can be split into regular synchronous announcements or
expected news, and event-driven asynchronous announcements or unexpected
news. Table 2 shows the clustering results for the feature vectors of 6502
financial news items, with k = 10 for the TICA with L = 4. A principal
component analysis (PCA) is applied to detect the main directions of data
variance. Figure 2 shows the biplot of the first and second principle components
and their k-means clustering results. As seen from this figure, the largest
category, whose topic is news relating to the world economy, lies close to the
origin with small variability, indicating that the majority of the financial news
items could not be classified into accurate topics. The regular and expected
news items reporting on financial markets are classified effectively in this study.

Finally, we investigate the relationship between Japanese major market
indices, including the Nikkei 225 stock market index, USD/JPY rates, and 10
year Japanese government bond yields, and the obtained feature axes. For this
purpose, we perform simple linear regressions, such that

y
(Index)
i = α+ βx

(feature axis)
i + εi,

for the period from September 2014 to November 2014. The total sample size
is 60 market opening days. The feature axis score for a given day is computed
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as follows. For j = 1, 2, . . . , 30 and day i, the set of the indices of whose news
items is Ti, we have

x
(feature axis j)
i =

∑
t∈Ti

C(x(t),wj).

The scores are standardized to have zero-mean and unit variance. The param-
eter estimates with R2 are presented in Table 3. According to this table, the
world financial market axes with labels 12 and 25 have a significant impact on
both the Japanese stock market and USD/JPY rates, whereas these axes do
not show any effect on the Japanese bond market. The feature axes labeled
with 11 and 26, whose financial news topics are crude oil and energy markets
and European political issues, have a significant impact on the Japanese bond
market.

Table 1. Five extracted financial news topics are shown whose topographic ordering
between the categories are close, along with the words that occur in them with high
absolute value scores.

Feature axis Related topic and words with high values

Topic 1 Crude oil and energy and resource markets
11 Crude old, OPEC, ironstone, production, barrel

Topic 2 World stock market
12 China, RMB, India, SENSEX, LME, COMEX, stock market

Topic 3 International financial markets
18 FOMC, MOF, central bank, forward price, ruble, ECB
19 JPT, RMB, fund, LME, PIMCO, interest rate
20 USD, EURO, currency, bond price

Topic 4 European political issues
25 Ukraine, Russia, EU, independent, Scotland

Topic 5 Japanese and Asian economy
26 JPY, bond, FOMC, bp, interest rate, inflation, China, Hong Kong

Table 2. Results of k-means clustering with k = 20, and the relevant corresponding
topics.

Clusters Number of news stories

World’s monetary policy of the central bank 413
EU and US bond markets 269
Japanese stock markets and currency market 256
World’s stock markets 253
Asian stock markets 190
Performance of the world’s major companies 170
Crude oil and OPEC 147
China and Hong Kong current news 120
World’s residential real estate markets 65
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Fig. 2. Biplots of the 1st and 2nd principal components of TICA with L = 0 (left)
and L = 4 (right).

Table 3. Performance of market predictability with extracted financial news infor-
mation.

Feature axis 11 12 18 19 20 25 26

y: Changes in 10 years JGB

β̂ −0.0123∗ 0.0017 0.0033 −0.0048 0.0068 0.0010 −0.0105∗

t value −2.6241 0.3514 0.6656 −0.9654 1.3920 0.2023 −2.1889
R2 0.1061 0.0021 0.0076 0.0158 0.0323 0.0007 0.0763

y: Log returns for Nikkei 225 index

β̂ 0.0074 −0.4028∗ −0.0174 −0.1078 −0.0492 0.5313∗ 0.0055
t-value 0.0397 −2.2672 −0.0939 −0.5883 −0.2653 3.0937 0.0295
R2 0.0000 0.0814 0.0002 0.0059 0.0012 0.1416 0.0000

y: Log returns for USD/JPY rate

β̂ 0.0817 −0.1827∗ 0.0845 −0.0494 0.0205 0.2132∗ 0.0247
t-value 1.0381 −2.4131 1.0745 −0.6238 0.2587 2.8676 0.3108
R2 0.0182 0.0912 0.0195 0.0067 0.0012 0.1242 0.0017

∗ Statistically significant at 5% level.

5 Summary and Conclusions

In this study, we proposed an algorithm to solve (T)ICA optimization problems
on the Stiefel manifold. TICA feature extraction was applied to textual data
relating to financial news, and the results indicated that our proposed method
is useful. By using TICA based feature extraction, we were able to classify
financial news stories into some categories that are useful to predict market
indices.

In order to apply news data effectively in trading decisions, we need to be
able to identify news that is both relevant and current. As a means of doing
so, latent sentiment analysis based on (T)ICA should be considered.
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9. A. Hyvärinen and U. Köster. FastICA: A fast fixed-point algorithm for independent
subspace analysis. In: Proc. of ESANN, 371–376, 2006.

10. R. B. Kumar, B. S. Kumar, and C. S. S. Prasad. Financial news classification using
SVM, International Journal of Scientific and Research Publications, 2, 2012.

11. G. Mitra and L. Mitra (eds). The Handbook of News Analytics in Finance, Wiley,
New York, 2011.

12. J. Nikolaos and R. N. Markellos. Information demand and stock market volatility,
Journal of Banking & Finance, 36, 1808–1821, 2012.

13. H. Sato and T. Iwai. A Riemannian optimization approach to the matrix singular
value decomposition, SIAM Journal on Optimization, 23, 188–212, 2013.

14. R. Schumaker and H. Chen. A discrete stock prediction engine based on financial
news, IEEE Computer, 43, 51–56, 2010.

15. F. J. Theis. Towards a general independent subspace analysis, In: Proc. of NIPS,
2006.

415



416
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Abstract. Our main purpose is to establish necessary and sufficient conditions such
that the sum of the components of hazard gradient vector of bivariate continuous non-
negative distributions is a linear function of both arguments. The class of distribu-
tions obtained has as particular cases many classical ones. Joint survival distribution
expression, restrictions for the marginals, geometric interpretations, generalizations
and multivariate extension are presented.
Keywords: Bivariate lack of memory property, characterization, conditional failure
rate, hazard gradient vector..

1 Introduction

The lack of memory property (LMP) of a univariate exponential distribution
namely

P (X > x+ t | X > t) = P (X > x) for all x ≥ 0, t ≥ 0, (1)

plays a central role in survival analysis, reliability, insurance, finance and many
other fields. Marshall and Olkin [11] extend LMP in a multivariate framework.
In the bivariate case the authors look for continuous distributions such that

P (X1 > x1 + t,X2 > x2 + t | X1 > t,X2 > t) is independent of t (2)

for all x1, x2 ≥ 0. Marshall and Olkin [11] characterize the bivariate exponen-
tial distribution (having singularity along the line x1 = x2) with exponential
marginals. Denote by SX1,X2(x1, x2) = P (X1 > x1, X2 > x2) the joint sur-
vival function of (X1, X2). The Marshall-Olkin (MO) bivariate exponential
distribution is given by

SX1,X2
(x1, x2) = exp{−λ1x1 − λ2x2 − λ3 max(x1, x2)} for all x1, x2 ≥ 0,

(3)
where λi > 0, i = 1, 2, 3.

Apart from Marshall and Olkin’s bivariate exponential distribution (3),
other known solutions of (2) are the bivariate distributions obtained by Freund
[4], Block and Basu [3], Proschan and Sullo [13], Friday and Patil [5] and all
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distributions shown in Kulkarni [8], see Chapter 10 in Balakrishnan and Lai [1]
for related discussion as well.

Relation (2) can be equivalently rewritten as a functional equation

SX1,X2
(x1 + t, x2 + t) = SX1,X2

(x1, x2)SX1,X2
(t, t) (4)

for all x1, x2 ≥ 0 and t > 0 and it is known as a bivariate lack-of-memory
property, to be abbreviated BLMP1.

Following Johnson and Kotz [7], let us define the bivariate failure (haz-
ard) rates as ri(x1, x2) = − ∂

∂xi
lnSX1,X2(x1, x2), i = 1, 2. The hazard gradient

vector

R(x1, x2) = (r1(x1, x2), r2(x1, x2))

uniquely determines the joint distribution of (X1, X2), see Marshall [10].
Distributions possessingBLMP1 satisfy the equation r1(x1, x2)+r2(x1, x2) =

a0, for all (x1, x2) such that r1(x1, x2) and r2(x1, x2) exist, where a0 is a non-
negative constant, see Theorem 2 in Kulkarni [8] for details.

Johnson and Kotz [7] introduce another version of the bivariate LMP under
the name local lack of memory property. Imposing the condition of “local
constancy” of the failure rates ri(x1, x2), i = 1, 2, the authors enforce the
conditional distributions {X1 | X2 > x2} and {X2 | X1 > x1} to keep the
univariate LMP defined by (1). Equivalently,

P (Xi > xi + yi | Xj > xj) = P (Xi > xi | Xj > xj)P (Xi > yi | Xj > xj) (5)

for i = 1, 2 and j = 3 − i. Roy [14] rediscovered the local LMP and named it
BLMP2.

The only absolutely continuous distribution satisfying (5) is the Gumbel’s
[6] type I bivariate exponential distribution

SX1,X2
(x1, x2) = exp{−λ1x1 − λ2x2 − θλ1λ2x1x2}, x1, x2 ≥ 0, (6)

where λi > 0, i = 1, 2 and θ ∈ [0, 1]. For Gumbel’s distribution (6) one can
verify that ri(x1, x2) = λi + θλ1λ2x3−i, i = 1, 2. Substituting a0 = λ1 + λ2
and a1 = θλ1λ2, the sum of bivariate hazard rates is r1(x1, x2) + r2(x1, x2) =
a0 + a1x1 + a1x2.

Our main goal is to link BLMP1 and BLMP2 in a new class L(x;a) of
bivariate continuous distributions specified by

r(x1, x2) = r1(x1, x2) + r2(x1, x2) = a0 + a1x1 + a2x2 (7)

for all x1, x2 ≥ 0, where x = (x1, x2) and a = (a0, a1, a2) is the parameter
vector with nonnegative elements.

In Section 2 we characterize the class L(x;a) by a general expression for
the joint survival function of its members. Only certain marginal distributions
are allowed in this class and the corresponding restrictions in terms of marginal
densities are presented. Geometric interpretation of the class L(x;a), a possible
generalization, multivariate extension and conclusions finalize the article.
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2 Model specification, geometrical interpretation and
extensions

Note that the class L(x;a) defined by (7) is composed by nonnegative bi-
variate continuous distributions such that the sum of the components of hazard
gradient is a linear function of both arguments x1 and x2. In Theorem 1 we
obtain the expression of the joint survival function SX1,X2

(x1, x2) for the ele-
ments of the class L(x;a) and the restrictions for the constants a0, a1 and a2
will be given in Theorem 2. The following Lemma equivalently characterizes
the class L(x;a) via a Cauchy functional equation.

Lemma 1. The class L(x;a) of nonnegative bivariate continuous distribu-
tions specified by relation (7) can be equivalently defined by linear (additive)
functionals

A1(x1) = r(x1, 0)− a0 and A2(x2) = r(0, x2)− a0,

being the only continuous solutions of the functional equation f(x+y) = f(x)+
f(y).

Several known bivariate distributions follow property (7). Besides Marshall-
Olkin’s [11] bivariate exponential, Gumbel’s [6] type I bivariate exponential
distributions and the distributions presented in Kulkarni [8], other examples
are:

(i) One obvious extension of the univariate LMP to the bivariate case is
given by SX1,X2

(x1 + y1, x2 + y2) = SX1,X2
(x1, x2)SX1,X2

(y1, y2) for all
x1, x2, y1, y2 ≥ 0. The only solution of this functional equation is given
by SX1,X2(x1, x2) = exp{−b1x1− b2x2}, for b1, b2 > 0, i.e. X1 and X2 are
independent and exponentially distributed with parameters b1 and b2, see
Marshall and Olkin [11]. One can get this (absolutely continuous) case
from (7) by setting a0 = b1 + b2 and a1 = a2 = 0;

(ii) The bivariate Schur-constant law SX1,X2
(x1, x2) = exp{−x1−x2} can be

obtained letting a0 = 2 and a1 = a2 = 0 in (7). Barlow and Mendel [2]
have characterized it in terms of bivariate no-aging property by relation
P (X1 > x1 + t | X1 > x1, X2 > x2) = P (X2 > x2 + t | X1 > x1, X2 > x2),
which has applications in Bayesian reliability analysis;

(iii) Setting a0 = λ3 > 0, a1 = 2λ1 > 0 and a2 = 2λ2 > 0 in (7) corre-
sponds to the joint survival function SX1,X2

(x1, x2) = exp{−λ1x21−λ2x22−
λ3 max(x1, x2)}, x1, x2 ≥ 0, which has a singular component along the line
x1 = x2. This distribution is a member of the generalized Marshall-Olkin
(GMO) distributions introduced by Li and Pellerey [9].

When SX1,X2
(x1, x2) is continuous, its vector hazard gradient R(x1, x2) is

useful even when it does not exist everywhere in the interior of the set{
(x1, x2) ∈ R2

+ | SX1,X2(x1, x2) > 0
}
, where R2

+ is the first quadrant, see Mar-
shall [10].

Theorem 1 holds for bivariate distributions belonging to the class L(x;a),
whose survival functions possess all first partial derivatives and hence hazard
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gradient vector R(x1, x2). A possible anomaly (singularity) that may happen
when x1 = x2 is discussed in Remark 1.

Theorem 1. If the first partial derivatives of SX1,X2(x1, x2) exist, relation
(7) is fulfilled if and only if the corresponding joint survival function can be
represented by

SX1,X2
(x1, x2) =

{
SX1

(x1 − x2) exp
{
−a0x2 − a1x1x2 − a2−a1

2 x22
}
, if x1 ≥ x2,

SX2(x2 − x1) exp
{
−a0x1 − a2x1x2 − a1−a2

2 x21
}
, if x2 ≥ x1.

(8)
Proof. The necessary part is obtained from property of path invariance of

line integrals, valid for conservative vector fields. The sufficiency part is ob-
tained from direct calculus of the hazard components ri(x1, x2) = − ∂

∂xi
lnSX1,X2

(x1, x2).
�

Remark 1 (hazard vector elements in singularity case). The bivari-
ate survival functions considered in Theorem 1 are not necessarily absolutely
continuous (and therefore not differentiable almost everywhere). We do not
exclude the possibility of existence of a singular component along the line x1 =
x2 = x ≥ 0 in our model, i.e. it may happen that P (X1 = X2) > 0. Therefore,
in the presence of such a singular component, the function SX1,X2

(x1, x2) is not
differentiable in the set

{
(x1, x2) ∈ R2

+ |x1 = x2 = x
}

. In this case the hazard
gradient vector R(x1, x2) does not exist along the line x1 = x2 and one should
consider the derivative of − lnSX1,X2

(x, x) with respect to x. �

Theorem 1 characterizes bivariate distributions belonging to the class L(x;a),
i.e. having joint survival function specified by relation (8), which imply some
more restrictions on the margins of these distributions. In other words,
SX1,X2(x1, x2) in (8) is a valid survival function only for certain marginal dis-
tributions of X1 and X2. Theorem 2 shows the corresponding constraints in
terms of marginal densities when a1 +a2 > 0. The case a1 = a2 = 0 is detailed
studied by Kulkarni [8].

Theorem 2. Let Xi be a random variable with absolutely continuous density
fXi(xi), i = 1, 2. Then SX1,X2(x1, x2) in (8) is a proper bivariate survival
function if and only if there exist non-negative constants a0, a1 and a2 with
a1 + a2 > 0, such that

A(xi, xj)−aixj+
d

dxi
log fXi(xi−xj)+ai[xjA(xi, xj)−1]

SXi
(xi − xj)

fXi(xi − xj)
≥ 0 (9)

where A(xi, xj) = a0 + aixi + (aj − ai)xj for all xi ≥ xj ≥ 0, i 6= j, i, j = 1, 2.
Moreover,

[fX1
(0) + fX2

(0)− a0]

√
π

2(a1 + a2)
exp

{
a20

2(a1 + a2)

}[
1− Erf

(
a0√

2(a1 + a2)

)]
∈ [0, 1],

(10)
where Erf(x) = 2√

π

∫ x
0

exp{−t2}dt. In addition, the survival function (8) is

absolutely continuous if and only if fX1
(0) + fX2

(0) = a0.
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Proof. Necessary and sufficient conditions come from the fact that a bivari-
ate distribution, with a (possible) singular component along the line x1 = x2,

has to satisfy ∂2

∂x1∂x2
SX1,X2(x1, x2) ≥ 0 for all x1, x2 ≥ 0, where the mixed

derivative exists. Also,

SX1,X2(x1, x2) = (1− α)SacX1,X2
(x1, x2) + αSsiX1,X2

(max{x1, x2})

for α ∈ [0, 1], where α = P (X1 = X2) and SacX1,X2
(x1, x2) and SsiX1,X2

(max{x1, x2})
denote the absolutely continuous and singular components of SX1,X2(x1, x2),
respectively. �

Direct calculus show that relation (10) represents α = P (X1 = X2), so
that the obtained bivariate distribution is absolutely continuous if and only if
α = fX1

(0) + fX2
(0) = aU and will possess a singular component whenever

α < fX1(0) + fX2(0). The lower bound for a0 is obtained from (9) and (10)
simultaneously, and is denoted by aL.

The sum r(x1, x2) specified by relation by (7) has a geometrical interpre-
tation and is illustrated in Figure 1 below. The vertical axis 0z represents
the values of the sum r(x1, x2) of the hazard vector elements, i.e. r1(x1, x2) +
r2(x1, x2). One can localize the lower and upper bounds aL and aU of the
constant a0, obtained from (9) and (10). In general, all members of the

x1

x2

z

0

r(x1, x2)

aU

a0

aL

P1

L1 : a0 + a1x1

L2 : a0 + a2x2

P

L3 : aU + a1x1

L4 : aU + a1x2

P2

P3

Fig. 1. Geometric representation of the class L(x;a)

class L(x;a) lie in the first octant over the plane {P} given analytically by
P : r(x1, x2) = a0 + a1x1 + a2x2. The plane {P} crosses the axis 0z at
the point (0, 0, a0) and crosses the planes {x2 = 0} and {x1 = 0} in lines
L1 : a0 + a1x1 and L2 : a0 + a2x2, respectively. The lines {L1} and {L2} have
always nonnegative inclination, since a1, a2 ≥ 0.

One can recognize the following basic cases displayed on Figure 1.
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(i) The plane P1 : r(x1, x2) = a0 crosses 0z in the point (0, 0, a0) and is
parallel to the plane {z = 0}. The plane {P1} represents distributions
possessing BLMP1 and exhibiting singularity along the line x1 = x2;

(ii) The plane P2 : r(x1, x2) = aU + a1x1 + a1x2 is the image of BLMP2

(characterizing the Gumbel’s bivariate exponential distribution from (6)).
The plane {P2} crosses the planes {x2 = 0} and {x1 = 0} in the lines
L3 : aU + a1x1 and L4 : aU + a1x2, with equal inclination.
Observe that the image of all exchangeable absolutely continuous distri-
butions belonging to the class L(x;a) have similar characteristics;

(iii) The planes representing the absolutely continuous bivariate distributions
or those with independent marginals cross the axis 0z at the point (0, 0, aU ).
The corresponding common lines with planes {x2 = 0} and {x1 = 0} have
nonnegative inclination which may be symmetric (if a1 = a2), asymmetric
(when a1 6= a2), or parallel to the plane {z = 0}, whenever a1 = a2 = 0.
The plane P3 : r(x1, x2) = aU + a1x1 + a2x2 is a typical example.

In the bivariate case, the class L(x;a) can be generalized considering some
expansion of summands in relation (7). One possibility is

r1(x1, x2) + r2(x1, x2) = a0 +B1(x1) +B2(x2), x1, x2 > 0,

where Bi(xi) = ai(xi)
qi with nonnegative constants ai and qi, i = 1, 2.

The multivariate extension of (7) is readily obtained. Considering the
n−variate nonnegative continuous random vector X = (X1, ..., Xn), n ≥ 2, the
components of the hazard vector are given by ri(x1, ...xn) = − ∂

∂xi
ln [SX1,...,Xn(x1, ...xn)],

i = 1, 2, ...n. Thus, the class L(n)(x;a) in n-dimensional case can be defined by
relation

n∑
i=1

ri(x1, ...xn) = a0 + a1x1 + . . .+ anxn, aj ≥ 0, j = 0, 1, ..., n.

3 Conclusion

We define the class L(x;a) and characterize it by the following equivalent
relations

Lemma 1⇔ L(x;a)⇔ (7)⇔ (8).

It was shown that many bivariate distributions, in addition to those pos-
sessing BLMP1 and BLMP2, belong to L(x;a). We do believe that a parallel
methodology will be elaborated in bivariate and multivariate discrete setting
as well.

Thus, the class L(x;a) helps to deep the BLMP-notion giving possibility
to model the aging phenomena in the complement to the “non-aging” one,
which fixes the world on equations (4) or (5), via BLMP1 and BLMP2 cor-
respondingly. So, our “world” and base is now equation (7), with graphical
interpretation given on Figure 1. We are convinced that the class introduced is
promising in modeling dynamic aging dependence, being much more realistic
than the virtual“nonaging world”.
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The class L(x;a) is very flexible, including symmetric and asymmetric con-
tinuous distributions, with possible singularity, and those which are positive or
negative quadrant dependent. In Pinto [12] one can find many new bivariate
distributions belonging to the class L(x;a), see his Chapter 5. Such a huge
variety of bivariate distributions would help to choose the “right” model con-
sistent with the physical nature of the observations. The selection of bivariate
distribution to be used should depend on considerations involving both the
physical scenario at hand, and the properties of chosen distribution.
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Abstract

For a normal population likelihood ratio test, Rao’s score test and Wald’s
score test for testing covariance structures are compared in the situation when
the number of variables and the sample size are growing. Expressions of all
three test statistics are derived under the general null-hypothesis Σ = Σ0,
using matrix derivative techniques. The special cases Σ = γIp and Σ = Ip are
also under consideration. The tests are compared in a simulation experiment
with sample sizes varying from 100 to 5000 and dimensionalities from 2 to
50. When the number of variables is growing Rao’s score test behaves most
adequately.

Keywords: Covariance structure, hypotheses testing, likelihood ratio test,
Rao’s score test, Wald’s score test.

MSC Classification: 62H10, 62H15, 62F03, 62F05

1. Introduction
In data analysis and modelling one is often interested in hypotheses testing:
hypotheses about mean or testing presence of a specific covariance structure.
In a simple case the hypothized covariance matrix is an identity matrix,
whereas in more complex situations e.g. when analysing spacial-temporal
data the Kronecker product structure is often present. Probably the most
commonly used test is the likelihood ratio test (LRT). However, it is known
that when the number of parameters is greater than the sample size the
likelihood ratio test will almost always reject the null hypothesis. In order to
overcome this problem, corrections to the test have been made so that it could
be used in a high-dimensional setup as well, see Bai, Jiang, Yao and Zheng
(2009), for example. In practice one still carries on using the uncorrected test.
In this paper a simulation experiment shows that instead of the likelihood
ratio test or Wald’s score test (WST) more consistent Rao’s score test (RST)
should be used to test a particular covariance structure.

In Section 2 notation is described. In Section 3 we will introduce the likelihood
ratio test, Rao’s score test and Wald’s score test and derive formulas for
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hypotheses testing under an assumption of multivariate normality. Both the
general formula for testing Σ = Σ0 and specific formulae for the sphericity
test and for testing if the covariance matrix is an identity matrix are derived.
In Section 4 using simulations we compare the behaviour of all three tests in a
growing dimensional situation, both under H0 and the alternative. The effect
of the sample size on the behaviour of the test statistics is also investigated.
Finally, in Section 5 we summarize the results and draw some conclusions.

2. Notation
Later on we shall use matrix derivatives repeatedly, and use the definition of
Kollo and von Rosen (2005), p. 127.

Definition 1. Let the elements of Y ∈ Rr×s be functions of X ∈ Rp×q. The
matrix dY

dX ∈ Rpq×rs is called matrix derivative of Y by X in a set A, if the

partial derivatives dykl

dxij
exist, are continuous in A, and

dY

dX
=

∂

∂vec (X)
vec ′Y

where

∂

∂vec X
= (

∂

∂x11
, ...,

∂

∂xp1
,
∂

∂x12
, ...,

∂

∂xp2
, ...,

∂

∂x1q
, ...,

∂

∂xpq
)′

and vec (·) is the usual vectorization operator.

Further, the following properties of the matrix derivative are used (Kollo,
von Rosen, 2005, p. 149):

1. dX
dX = Ipq;

2. dY+Z
dX = dY

dX + dZ
dX ;

3. dAXB
dX = B⊗A′;

4. When Z = Z(Y), Y = Y(X) then dZ
dX = dY

dX
dZ
dY ;

5. When W = YZ, Z ∈ Rs×t then dW
dX = dY

dX (Z⊗ Ir) + dZ
dX (It ⊗Y′);

6. When X ∈ Rp×p then dX−1

dX = −X−1 ⊗ (X′)−1;

7. When X ∈ Rp×p then d|X|
dX = |X|vec (X−1)′, where | · | denotes the deter-

minant;

8. dtr(A′X)
dX = vec (A), where tr(·) denotes the trace function.

Let X be a continuous random variable with distribution PX(θ) and density
function fX(x,θ), where θ is a vector of unknown parameters.

Definition 2. The score vector of random variable X is given by the matrix
derivative

U(X,θ) =
d

dθ
ln f(X,θ).
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Definition 3. The information matrix of random variable X is the covari-
ance matrix of the score vector U(X,θ):

I(X,θ) = D(U(X,θ)) = E(U(X,θ)U ′(X,θ)).

Definition 4. The Hessian matrix of random variable X is given by the
second order matrix derivative

H(X,θ) =
d2

dθ2 ln f(X,θ) =
dU(X,θ)

dθ
.

Note that when the distribution of the random variable X is regular, then
the information matrix of X can be calculated as an expectation:

I(X,θ) = −E(H(X,θ)).

Let X = (X1, ..., Xn) denote a theoretical sample from the distribution

PX(θ). Then the log-likelihood of the sample is given by l(X ,θ) =
n∑

i=1

ln f(Xi,θ)

and the score function of the sample, U(X ,θ), is given by U(X ,θ) =
n∑

i=1

U(Xi,θ).

The information matrix of the sample is given by I(X ,θ) = n · I(X,θ).

3. Test statistics
3.1 Likelihood Ratio Test
For testing the hypothesis {

H0 : θ = θ0,

H1 : θ 6= θ0

(1)

we use the likelihood ratio test (LRT) in logarithmic form:

LRT (X ,θ0) = −2 ln

(
L(X ,θ0)

maxθ L(X ,θ)

)
= −2[lnL(X ,θ0)− lnL(X , Tθ(X ))]

where L(·) is the likelihood function of X, X = (X1, ..., Xn) is a random sam-
ple from PX(θ), θ = (θ1, ..., θr)′ and Tθ is the maximum likelihood estimator
of θ. When sample size n→∞ and H0 holds then LRT (X ,θ) ∼ χ2

r.

When under the null hypothesis there are k parameters θ1 not fixed then the
LRT in logarithmic form has the representation

LRT (X ,θ0) = −2 ln

(
maxθ1

L(X ,θ0)

maxθ L(X ,θ)

)
= −2[lnL(X , Tθ1

(X )))− lnL(X , Tθ(X ))]
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and LRT (X ,θ) ∼ χ2
r−k when sample size n → ∞ and H0 holds (see Rao

(1973, §6e), for instance).

Let us present the likelihood ratio test statistic for testing hypothesis (1) in
the multivariate normal case. Let X ∼ Np(µ,Σ), with µ = (µ1, ..., µp)′ and
Σ > 0 : p× p and let θ = (µ′, vec ′(Σ))′. Then

f(x,µ,Σ) =
1

(2π)
p
2 |Σ|

1
2

· exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
.

The likelihood ratio test statistic for the theoretical sample X = (X1, ..., Xn)
when testing hypothesis (1) has the following form

LRT (X ,θ0) = −2 ln

 |Σ̂|
n
2

|Σ0|
n
2
·

exp(
n∑

i=1

(Xi − µ0)′Σ−10 (Xi − µ0))

exp(
n∑

i=1

(Xi − µ̂)′Σ̂
−1

(Xi − µ̂))

 (2)

where µ̂ = 1
n

n∑
i=1

Xi is the maximum likelihood estimator of µ and Σ̂ =

1
n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)′ is the maximum likelihood estimator of Σ.

Proposition 1. The likelihood ratio test statistic for testing H0 : Σ = Σ0

when no constraints are imposed on µ has the following form:

LRT (X ,Σ0) = n(tr(Σ−10 Σ̂)− p)− n ln |Σ−10 Σ̂|, (3)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then LRT (X ,Σ0) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

The proof can be found in Anderson (2003, §10.8).

Corollary 1. The likelihood ratio test statistic for testing H0 : Σ = Ip when
no constraints are imposed on µ has the following form:

LRT (X , Ip) = n(tr(Σ̂)− p)− n ln |Σ̂|, (4)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then the LRT (X , Ip) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

Proof. It follows directly from (3) by replacing Σ0 with Ip.

Next, the LRT statistic for testing sphericity is given in Proposition 2. The
derivation of this statistic can be found from Anderson (2003, ch. 10) or
Bilodeau, Brenner (1999, §8.6), for example.
Proposition 2. The likelihood ratio test statistic for testing H0 : Σ = γIp
when no constraints are imposed on µ has the following form:

LRT (X , γIp) = np ln

(
1

p
tr(Σ̂)

)
− n ln |Σ̂|, (5)
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where X = (X1, ..., Xn) is a sample from Np(µ,Σ) and γ > 0 is unknown
parameter. When n→∞ and H0 holds then LRT (X , γIp) ∼ χ2 with degrees

of freedom df = p(p+1)
2 − 1.

3.2 Rao’s Score Test
Definition 5. Rao’s score test statistic (RST) for testing hypothesis (1) is
given by

RST (X ,θ0) = U ′(X ,θ0) · I(X ,θ0)
−1 · U(X ,θ0)

where X = (X1, ..., Xn) is a random sample from PX(θ) and θ = (θ1, ..., θr)′.
When the sample size n → ∞ and H0 holds then RST (X ,θ) ∼ χ2

r (Rao,
1948).

Let us derive Rao’s score statistic for testing (1) in the multivariate normal
case. The logarithm of the density of X is given by

l(x,θ) = c− 1

2
ln |Σ| − 1

2
tr(Σ−1(x− µ)(x− µ)′),

where tr(·) denotes the trace of a matrix and c is a constant that does not
depend on the parameters θ.
According to Definition 2 the score vector can be derived as

U(X,θ) =
d

dθ
l(X,θ)

where d

dθ
=

(
d

dµ
d

dvec (Σ)

)
: (p+ p2)× 1 .

Using the differentiation rules given in Section 2 the derivative dl
dµ equals:

d

dµ
l(X,θ) = −1

2

d

dµ
(X−µ)′Σ−1(X−µ) = −1

2

d(X − µ)

dµ

d(X − µ)′Σ−1(X − µ)

d(X − µ)

= −1

2
(−Ip)2Σ−1(X − µ) = Σ−1(X − µ).

The derivative of l(·) by Σ gives the following expression:

d

dvec (Σ)
l(x,θ) = −1

2

d|Σ|
dΣ

d ln |Σ|
d|Σ|

− 1

2

dΣ−1

dΣ

dtr(Σ−1(X − µ)(X − µ)′)

dΣ−1

= −1

2
|Σ|vec

(
Σ−1

)
· 1

|Σ|
− 1

2
(−Σ−1 ⊗Σ−1) · vec ((X − µ)(X − µ)′)

= −1

2
vec

(
Σ−1

)
+

1

2

(
Σ−1 ⊗Σ−1

)
vec (S1) =

1

2
vec (Σ−1(S1Σ

−1 − Ip))

where S1 = (X − µ)(X − µ)′.

Hence the score vector can be written as a partitioned matrix:

429



U(X,θ) =

(
U1

U2

)
=

(
Σ−1(X− µ)

1
2vec (Σ−1(S1Σ

−1 − Ip))

)
.

The score vector for the sample equals

U(X ,θ) =

(
nΣ−1(µ̂− µ)

n
2 vec (Σ−1(SnΣ

−1 − Ip))

)
where Sn = 1

n

n∑
i=1

(Xi − µ)(Xi − µ)′ .

Next, the Hessian matrix H(X,θ) is derived. According to Definition 4 H(X,θ) =
d

dθ
U(X,θ):

d

dθ
U(X,θ) =

(
d

dµΣ−1(X − µ) d
dµ

1
2vec (Σ−1(S1Σ

−1 − Ip))
d

dΣΣ−1(X − µ) d

dΣ
1
2vec (Σ−1(S1Σ

−1 − Ip))

)
=:

(
H1,1 H1,2

H2,1 H2,2

)
: (p+ p2)× (p+ p2) .

First, let us derive H1,1:

H1,1 =
d

dµ
Σ−1(X − µ) =

d(X − µ)

dµ

d(Σ−1(X − µ))

d(X − µ)
= −Σ−1.

Next, let us derive H2,1 :

H2,1 =
d

dΣ
Σ−1(X − µ) =

dΣ−1

dΣ

dΣ−1(X − µ)

dΣ−1

= (−Σ−1 ⊗Σ−1)((X − µ)⊗ Ip) = (Σ−1(µ−X))⊗Σ−1.

Since H1,2 = H′2,1 then H1,2 = ((Σ−1(µ−X))⊗Σ−1)′.
Finally, we derive H2,2 :

H2,2 =
1

2

dvec (Σ−1(S1Σ
−1 − Ip))

dΣ
=

1

2

dΣ−1

dΣ

dvec (Σ−1S1Σ
−1)− vec (Σ−1)

dΣ−1
.

Since

d(vec (Σ−1S1Σ
−1)− vec (Σ−1))

dΣ−1
=
dΣ−1

dΣ−1
(S1Σ

−1⊗Ip)+
dS1Σ

−1

dΣ−1
(Ip⊗Σ−1)−Ip2

= (S1Σ
−1⊗ Ip) + (Ip⊗S1)(Ip⊗Σ−1) = (S1Σ

−1⊗ Ip) + (Ip⊗S1Σ
−1)− Ip2 ,

then

H2,2 = −1

2
(Σ−1 ⊗Σ−1)((S1Σ

−1 ⊗ Ip) + (Ip ⊗ S1Σ
−1)− Ip2)

Hence, the Hessian matrix of X is given by
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H(X,θ) =(
−Σ−1 ((Σ−1(µ−X))⊗Σ−1)′

(Σ−1(µ−X))⊗Σ−1 − 1
2 (Σ ⊗Σ)−1[(S1Σ

−1 ⊗ Ip) + (Ip ⊗ S1Σ
−1)− Ip2 ]

)
.

Finally, the information matrix I(X,θ) is of the form

I(X,θ) = −E(H(X,θ)) =

(
I11 I12
I21 I22

)
=

(
Σ−1 0

0 1
2 (Σ−1 ⊗Σ−1)

)
as

E(S1) = E(X − µ)(X − µ)′ = D(X) = Σ.

For a sample of size n
I(X ,θ) = nI(X,θ).

Now, Rao’s score test (RST) statistic for testing H0 : θ = θ0 can be calcu-
lated using the expressions of U(X ,θ) and I(X ,θ), substituting µ with µ0

and Σ with Σ0, and noting that the inverse of a block-diagonal matrix is a
block-diagonal matrix with the inverses of the diagonal blocks.

Proposition 3. Rao’s score test statistic for testing H0 : Σ = Σ0 when no
constraints are imposed on µ has the following form:

RST (X ,Σ0) =
n

2
tr((Σ−10 Σ̂ − Ip)2), (6)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then RST (X ,Σ0) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

Proof. When there are no restrictions set on µ then maximum likelihood
estimate of µ is inserted into score vector to replace µ (see Gombay, 2002).
Then the part of the score vector corresponding to µ turns to zero and hence
only the second part of the score vector and element I2,2 of the information
matrix will contribute to the calculation of the test statistic. Also, substitut-
ing µ with µ̂ turns Sn into Σ̂. Taking this into account, one gets

RST (X ,Σ0) =
n

2
vec ′(Σ−10 (Σ̂Σ−10 −Ip))(Σ−10 ⊗Σ

−1
0 )−1vec (Σ−10 (Σ̂Σ−10 −Ip))

=
n

2
vec ′(Σ−10 (Σ̂Σ−10 − Ip))vec (Σ̂ −Σ0) =

n

2
tr((Σ−10 Σ̂ − Ip)2).

Note that while deriving Rao’s score test statistic we have taken derivatives by
vecΣ, not by vechΣ which consists of the elements of the lower triangle of Σ.
A transformation via the duplication matrix which is used in the liturature
(see Yuan, Bentler (1999), for example) complicates derivation and is not
necessary. It turns out that both approaches will lead to the test statistic
given in (6) which follows from the next lemma.

Let D : p(p+1
2 × p2 denote the elimination matrix, i.e.,

DvecΣ = vecΣM,
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where ΣM represents the elements of the lower triangle of Σ.

Lemma 1. Let U2 and I22 denote the part of the score vector and the part of
the information matrix corresponding to Σ. Let UM = DU2 and IM = DI22D

′

denote the part of score vector and the part of information matrix corre-
sponding to the unique elements of Σ, respectively. Then RSTM(X ,Σ0) =
U ′MI−1M UM is identical to RST (X ,Σ0).
Proof.

RSTM(X ,Σ0) = (DU2)′(DI22D
′)−1(DU2) = U ′2D

′(DI22D
′)+DU2

= U ′2D
′(D′)+I−122 D+DU2 = U ′2

1

2
(Ip2 + Kp,p)I−122

1

2
(Ip2 + Kp,p)U2.

On the last line the equality D+D = 1
2 (Ip2 + Kp,p) was used (Magnus,

Neudecker, 1999, p.49).
As I−122 = 2(Σ ⊗ Σ), by a property of the commutation matrix Kp,p (see
Kollo, von Rosen (2005), p. 82, for example)

(Ip2 + Kp,p)I−122 = I−122 (Ip2 + Kp,p).

From here

RSTM(X ,Σ0) =U ′2
1

2
(Ip2 + Kp,p)I−122 U2 = U ′2

1

2
(Ip2 + Kp,p)vec (Σ̂ −Σ0)

=U ′2vec (Σ̂ −Σ0) = RST (X ,Σ0).

Remark. The statement of the lemma above is a consequence of a more general

relation in Kollo (1994) for patterned matrices.

Corollary 2. Rao’s score test statistic for testing H0 : Σ = Ip when no
constraints are imposed on µ has the following form:

RST (X , Ip) =
n

2
tr(Σ̂ − Ip)2, (7)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then RST (X , Ip) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

Proof. It follows directly from (6).

Corollary 3. Rao’s score test statistic for testing H0 : Σ = γIp when no
constraints are imposed on µ has the following form:

RST (X , γIp) =
n

2
tr
(( p

tr(Σ̂)
Σ̂ − Ip

)2)
, (8)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ) and γ > 0 is an unknown
parameter. When n→∞ and H0 holds then RST (X , γIp) ∼ χ2 with degrees

of freedom df = p(p+1)
2 − 1.

Proof. It follows from (6) when substituting Σ0 by γ̂Ip, where γ̂ = 1
p tr(Σ̂)

is the maximum likelihood estimator of γ.
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3.3 Wald’s score test
Definition 6. Wald’s score test statistic for testing hypothesis (1) is given
by

WST (X ,θ0) = (Tθ(X )− θ0)′ · I(X , Tθ(X )) · (Tθ(X )− θ0), (9)

where θ = (θ1, ..., θr)′, Tθ is the maximum likelihood estimator of θ and X is
a random sample. When sample size n→∞ and H0 holds then WST (X ,θ0)
converges to χ2

r-distribution. (Wald, 1943)

Using the results obtained earlier one can calculate Wald’s score test statistic
for the multivariate normally distributed observations and H0 : θ = θ0 by
substituting µ with maximum likelihood estimate µ̂ and Σ with maximum
likelihood estimate Σ̂ in the expression of I(X , Tθ(X )).

Proposition 4. Wald’s score test statistic for testing H0 : Σ = Σ0 when no
constraints are imposed on µ has the following form:

WST (X ,Σ0) =
n

2
tr((Ip −Σ0Σ̂

−1
)2), (10)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then WST (X ,Σ0) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

Proof. When there are no restrictions set on µ then Tθ(X ) is replaced by

Σ̂, θ0 by Σ0 and I(X , Tθ(X )) by I2,2(X , Σ̂) in expression (9). This gives

WST (X ,Σ0) =
n

2
vec ′(Σ̂ −Σ0)(Σ̂

−1
⊗ Σ̂

−1
)vec (Σ̂ −Σ0)

=
n

2
vec ′(Σ̂ −Σ0)vec (Σ̂

−1
(Σ̂ −Σ0)Σ̂

−1
)

=
n

2
tr((Σ̂ −Σ0)Σ̂

−1
(Σ̂ −Σ0)Σ̂

−1
) =

n

2
tr((Ip −Σ0Σ̂

−1
)2).

Corollary 4. Wald’s score test statistic for testing H0 : Σ = Ip when no
constraints are imposed on µ has the following form:

WST (X , Ip) =
n

2
tr((Ip − Σ̂

−1
)2), (11)

where X = (X1, ..., Xn) is a sample from Np(µ,Σ). When n → ∞ and H0

holds then WST (X , Ip) ∼ χ2 with degrees of freedom df = p(p+1)
2 .

Proof. It follows directly from (10).

Corollary 5. Wald’s score test statistic for testing H0 : Σ = γIp when no
constraints are imposed on µ has the following form:

WST (X , γIp) =
n

2
tr
((

Ip −
tr(Σ̂)

p
Σ̂
−1)2)

, (12)

where X = (X1, ..., Xn) is a sample from Np(µ, bΣ) and γ > 0 is an unknown
parameter. When n→∞ and H0 holds then WST (X , γIp) ∼ χ2 with degrees
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of freedom df = p(p+1)
2 − 1.

Proof. It follows from (10) when substituting Σ0 by γ̂Ip, where γ̂ = 1
p tr(Σ̂)

is the maximum likelihood estimator of γ.

4. Simulation experiment

In the simulation experiment we have compared the behaviour of the likeli-
hood ratio test, Rao’s score test and Wald’s score test in different situations:
both under H0 and the alternative, with dimension of the covariance matrix
going from 2 to 50 and with the sample size growing from 100 to 5000. The
simulation experiment was carried out using the R software. Note that we
have used relatively small sample sizes and critical values from asymptotic
distributions for testing the behaviour of the test statistics. This was done in
order to mirror realistic analysis situations, where the amount of data is lim-
ited and statistical softwares produce p-values from asymptotic distributions.

Testing Σ = Ip under H0

The following procedure was used for the simulation:
1. Generate a random sample x1, ...,xn from multivariate Np distribution
with mean vector µ = 0 and covariance matrix Σ = Ip.
2. Use the LRT, RST and WST to test Σ = Ip.
3. Repeat N = 300 times for each combination of p = 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 25, 30, 35, 40, 45, 50 and n = 100, 250, 500, 1000, 2500, 5000.
4. Count the number of H0 rejected by LRT, RST and WST for each combi-
nation of p and n.

The results of the simulation experiment are presented in Figure 1.

Testing Σ = Ip when Σ = γIp

The following procedure was used for the simulation:
1. Generate random sample x1, ...,x300 from multivariate Np distribution
with mean vector µ = 0 and covariance matrix Σ = γIp, where γ = 1.1, 1.2,
1.3, 1.4, 1.5, 2.0.
2. Use LRT, RST and WST to test Σ = Ip.
3. Repeat N = 300 times for each combination of p = 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 25, 30, 35, 40, 45, 50 and γ.
4. Count the number of H0 rejected by LRT, RST and WST for each combi-
nation of p and γ.

The results of the simulation experiment are presented in Figure 2.
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Figure 1. Simulation results for testing H0 : Σ = Ip under H0
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Figure 2. Simulation results for testing H0 : Σ = Ip under the alternative

Simulation results

Figure 1 shows that when H0 is true, then RST and WST almost never
reject the null-hypothesis. At the same time the LRT rejected the correct
null-hypothesis too often, especially in the case when the sample size was
smaller than the number of different parameters in the covariance matrix.
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From Figure 2 one can see that the LRT rejected the null-hypothesis mostly
when it should have been rejected. Here we tested Σ = Ip but simulated
data from a multivariate normal distribution with Σ = γIp, and γ = 1.1,
1.2, 1.3, 1.4, 1.5, 2.0. LRT rejected the null hypothesis almost all the time
even if γIp was quite close to the hypothetical H0. Rao’s score test was not
as sensitive and a larger difference from the null hypothesis was needed in
order to reject it. However, with γ = 1.3, 1.4 and dimension of the covariance
matrix realtively small, RST gave correct results. When γ=1.5, then RST
rejected the null hypothesis all the time, as did the LRT. WST tended to
stay with the null hypothesis and even with γ=2.0, it still stayed with the
null-hypothesis when the dimension of the covariance matrix was large.

5. Summary
In chapter 3 we derived the likelihood ratio test statistic, Rao’s score test
statistic and Wald’s score test statistic for testing H0 : Σ = Σ0, H0 : Σ = Ip
and H0 : Σ = γIp.

In chapter 4 we carried out simulation experiment and reached the following
conclusion. Under realistic conditions and while using critical values from the
asymptotic distribution (as implemented in most statistical software), Rao’s
score test statistic should be preferred to the likelihood ratio and Wald’s
score test statistics. RST stays with H0 when it holds and rejects it realtively
easily when it does not hold - hence reaching the correct conclusion both
under null and the alternative. Meanwhile, the LRT tends to reject the null
hypothesis even if it holds (particularly when sample size is less than the
number of unique parameters in the covariance matrix) and WST tends to
stay with the null hypothesis even if it should be rejected.
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