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Abstract. This article focuses on queuing systems with the Poisson input flow and an
infinite number of servers. Service times have the heavy-tailed distribution. We obtain
conditions under which finite-dimensional distributions of the normalized process,
which determines the number of occupied servers, weakly converge with increasing
time to finite-dimensional distributions of the Gaussian process.
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1 Introduction

In our article we regard a convergence of finite-dimensional distributions for
the process of number of occupied servers q(t) in a queuing system with an in-
finite number of servers. For such a system an extensive literature is devoted.
For example, infinite server queuing systems with restrictions( [7], [11]), in-
finite server queuing systems in a random environment [6], infinite network
systems [10] and others were considered. This is due to a wide range of prac-
tical issues in which these models are useful, and a number of emerging here
interesting mathematical problems.

At first glance, infinite channel systems seem to be unrealistic, but in fact,
they can be considered as models of many real-world objects. For example, in
the communication theory, in the study of total flow of impulses [1], as well as
in the description of the formation of queues at the crossroads of unmanaged
highways [2], in some problems of security(see [9] about relation between risk
model of Cramer-Lundberg model and queuing system G/G/∞).

In addition, these models can be considered as approximations of systems
with a large number of servers. Note that approaches used for studying such
systems are useful for queuing problems in the case of the high load.

When we study some complex queuing system, it is sometimes useful to
consider an infinite channel system as the easiest for studying. It is also con-
venient to consider such systems, when in the system a queue does not form,
for some reasons [12].

If service time has a finite mathematical expectation then there exists a
proper limit distribution for the number of customers q(t) in the system at
time t as t → ∞. But it is not the case when distribution function of service
times has a heavy tail, i.e. there is no the mean of the service time. In this
situation q(t) goes to infinity as t→∞ and the problem of asymptotic analysis
of it’s behavior occurs.
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We consider a system with a Poisson input flow with intensity λ(t). Our
aim is to find conditions under which finite-dimensional distributions of the
normalized process, which determines the number of occupied servers, weakly
converge with increasing time to finite-dimensional distributions of the Gaus-
sian process.

2 Description of the system

We consider a queuing system S with an infinite number of servers. Arriving
customers form a Poisson process X(t) with the intensity λ(t). Assume that
the intensity λ(t) of the input flow satisfies the following

Condition 1 Denote Λ(t) =
t∫
0

λ(y)dy. There exist a finite τ ≥ 0, λ > 0 and

the sequence {Sk}∞k=0 such that Sk →∞ as k →∞ and

0 < Sk − Sk−1 ≤ τ and Λ(Sk) = λSk, k ≥ 1, S0 = 0.

It should be noted that from the Condition 1 follows that the limit of 1
tΛ(t)

exists as t→∞ and equals to λ.
We assume that service times {ηi}∞i=1 are independent identically distributed(i.i.d.)

random variables with a distribution function B(x), B(x) = 1−B(x). Suppose
that this function satisfies the following

Condition 2

B(t) ∼ L(t)

tβ
as t→∞, (1)

for some 0 < β < 1 and slowly varying at infinity function L(t) [5].
For some functions f(t) and g(t) the notation f(t) ∼ g(t) as t → ∞ means

that lim
t→∞

f(t)
g(t) = 1.

Let q(t) be the number of customers in the system at time t and q(0) = 0 in
probability. Our aim is to study the asymptotic behavior of the process q(tT )
as T →∞ for t ∈ (0, h), h > 0. Let us formulate our main result.

Theorem 1 Suppose that Conditions 1 and 2 are fulfilled, then finite-dimensional
distributions of the process

q(tT )− ρ(tT )√
L(T )T 1−β

weakly converge as T → ∞ to finite-dimensional distributions of the centered
Gaussian process ξ(t) with the covariance function

R(t, t+ u) =
λ

1− β
(
(t+ u)1−β − u1−β

)
, (t ≥ 0, u ≥ 0).

Here ρ(tT ) =
tT∫
0

B(Tt− x)λ(x)dx, t ∈ (0, h).

In order to clarify the basic idea which was used in the proof of the Theorem
1, we begin by consideration of a simple case.
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3 A particular case: the intensity of the input flow is a
constant

We assume that customers which enter the system form a Poisson process with
the intensity λ. Note that the Condition 1 is always satisfied in this case. We
denote this queuing system by S1.

In order to prove the Theorem 1 let us fix some moments of time 0 < t1 <
. . . < tn−1 < tn < ∞. We denote the number of customers which enter the
system on [Tti−1;Tti] and be served on the interval [Ttj ;Ttj+1] as ξTij for some
fixed T where 1 ≤ i ≤ n, 1 ≤ j ≤ n. Here we assume that t0 = 0, tn+1 =∞.

Lemma 1 For random variables ξTij, i ≤ j, following statements are true:

• ξTij and ξTkl are independent for i 6= k, j 6= l;

• ξTij has a Poisson distribution with the parameter αTij where

αTij = λ

∫ Tti

Tti−1

(
B(Ttj − y)−B(Ttj+1 − y)

)
dy

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ≤ j.

Proof. We introduce the notation

ξTi = (ξTii , ξ
T
ii+1, . . . , ξ

T
in)

where 1 ≤ i ≤ n.
Note that the independence of vectors ξk

T and ξl
T for k 6= l follows from

the property of independence of the jumps’ number of a Poisson process on
disjoint intervals and the independence of service times.

Let us show the independence of coordinates for the vector ξi
T , 1 ≤ i ≤ n.

To do this, we fix some non-negative integers {kj}nj=i. Denote by pTij the

probability that a customer which enters the system on the interval [Tti−1, T ti]
is served on [Ttj , T tj+1]. Using the formula of the total probability we find the
joint distribution of coordinates of the vector ξi

T

P
(
ξTii = ki, ξ

T
ii+1 = ki+1, . . . , ξ

T
in = kn

)
=

=
∑

N≥ki+ki+1+...+kn

N !

ki!ki+1! . . . kn!(N − ki − ki+1 − . . .− kn)!
×

×
(
pTii
)ki (

pTii+1

)ki+1
. . .
(
pTin
)kn

(1− pTii − pTii+1 − . . .− pTin)N−ki−ki+1−...−kn×

× (Tti − Tti−1)
N

N !
e−λ(Tti−Tti−1) =

=
n∏
j=i

(
λpTij(Tti − Tti−1)

)kj
kj !

e−λp
T
ij(Tti−Tti−1) =

n∏
j=i

P
(
ξTij = kj

)
.
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Thus, we obtain that coordinates of a vector ξi
T are independent. The state-

ment, that ξTij has a Poisson distribution with a parameter αTij , follows from
the chain of equalities of previous reasoning, so

P
(
ξTij = kj

)
=

(
λpTij(Tti − Tti−1)

)kj
kj !

e−λp
T
ij(Tti−Tti−1)

where pTij = 1
Tti−Tti−1

Tti∫
Tti−1

(
B(Ttj − y)−B(Ttj+1 − y)

)
dy. Thus, the second

part of the lemma is proved. �

Lemma 2 If the Condition 2 is satisfied then for functions αTij, 1 ≤ i ≤ j ≤ n
the following asymptotic behavior takes place

αTij ∼
λ

1− β
L(T )T 1−βdij as T →∞

where dij = (tj+1 − ti)1−β + (tj − ti−1)1−β − (tj − ti)1−β − (tj+1 − ti−1)1−β .

Proof. In order to facilitate calculations we introduce the following notation

µTij = λ

∫ Tti

0

B(Ttj − y)dy, i ≤ j,

then αTij can be rewritten as

αTij = µTij − µTi−1j − µTij+1 + µTi−1j+1.

Let us find the asymptotic behavior of µTij . For this we consider following cases.

1. Let i < j. It follows from the Condition 2 that for any ε > 0 and sufficiently
large t the following inequalities hold

(1− ε)L(t)

tβ
≤ B(t) ≤ L(t)

tβ
(1 + ε). (2)

Similarly, from the definition of a slowly varying function it follows that for
any a > 0, ε > 0 and sufficiently large t

(1− ε)L(t) ≤ L(at) ≤ L(t)(1 + ε). (3)

It follows from (2) and (3) that for any ε > 0 there is t̄ such that for t > t̄
we have

µTij = λ

∫ Tti

0

B(Ttj − y)dy = λT

∫ ti

0

B(T (tj − z))dz ≥

≥ (1−ε)λT
∫ ti

0

L(T (tj − z))
(T (tj − z))β

dz = λ(1−ε)T 1−β
∫ ti

0

L(T (tj − z))
(tj − z)β

L(T )

L(T )
dz ≥
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≥ (1−ε)2λL(T )T 1−β
∫ ti

0

dz

(tj − z)β
= (1−ε)2 λ

1− β
L(T )T 1−β

(
t1−βj − (tj − ti)1−β

)
.

Similarly, using the inequalities (2) and (3), we obtain an upper bound for
µTij . Combining these results we get the equivalence

µTij ∼
λ

1− β
L(T )T 1−β

(
t1−βj − (tj − ti)1−β

)
for any 1 ≤ i < j ≤ n (4)

as T →∞.
2. Secondly, let i = j. Denote

I(t) =

∫ t

0

B(y)dy.

Then µTii = λI(Tti). Let us find the asymptotic behavior of the integral
I(t) as t→∞. For any 0 < γ < 1 the following representation holds

I(t) =

∫ tγ

0

B(y)dy +

∫ t

tγ
B(y)dy = I1(t) + I2(t).

Thus, now we find the asymptotic behavior of I1(t) and I2(t).
• Using inequalities (2) and (3), we get that for any ε > 0 there is t̃ such

that for all t > t̃

I2(t) =

∫ t

tγ
B(y)dy = t

∫ 1

tγ−1

B(zt)dz ≥ (1− ε)t
∫ 1

tγ−1

L(tz)

(tz)β
dz =

= (1− ε)t1−β
∫ 1

tγ−1

L(tz)

zβ
L(t)

L(t)
dz ≥ (1− ε)2t1−βL(t)

∫ 1

tγ−1

dz

zβ
=

= (1− ε)2 t
1−β

1− β
L(t)

(
1− t(γ−1)(1−β)

)
.

Similarly, we obtain the upper inequality. Thus, as t→∞

I2(t) ∼ t1−β

1− β
L(t).

• For the first integral one can notice that I1(t) ≤ tγ , because B(x) ≤ 1
for all x. Therefore, if we choose 0 < γ < 1−β then the principal term
of the asymptotics I(t) is t1−β .

Combining these estimates, we have

I(t) ∼ t1−β

1− β
L(t) as t→∞.

Since µTii = λI(Tti), then for any i ≥ 1

µTii ∼
λ

1− β
L(T )T 1−βt1−βi (5)

as T →∞.
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The assertion of the Lemma 2 follows from the representation for αTij and given
asymptotics (4) and (5). �

Lemma 3 Let the vector d = (d11, d12 . . . d1n, d22, d23 . . . d2n, . . . , dnn). De-
note

ξ̂
T

=
ξT − λ

1−βT
1−βL(T )d√

λ
1−βL(T )T 1−β

.

If the Condition 2 is satisfied, then

ξ̂
T d→N (0, D) as T →∞. (6)

Here ξT =
(
ξT11, ξ

T
12 . . . ξ

T
1n, ξ

T
22, ξ

T
23 . . . ξ

T
2n, . . . , ξ

T
nn

)
, D is a diagonal matrix with

following values on its main diagonal

{d11, d12 . . . d1n, d22, d23 . . . d2n, . . . , dnn}

where {dij}ni,j=1 are defined in the Lemma 2.

Proof. The assertion follows from the Lemma 2 and the following property of
a Poisson distribution. If a random variable ζλ has a Poisson distribution with
parameter λ and ζβλ = β ζλ−λ√

λ
then

ζβλ
d→N (0, β2) as λ→∞.

Since ξTij has a Poisson distribution with the parameter αTij and αTij → ∞
by the Lemma 2 as T →∞ then

ξTij − λ
1−βT

1−βL(T )dij√
λ

1−βT
1−βL(T )

d→N (0, dij) as T →∞

where 1 ≤ i ≤ n, 1 ≤ j ≤ n.

There is a convergence of vectors, since random variables
{
ξTij
}
n
i,j=1 are

independent. So, the Lemma 3 is proved. �
Now we are ready to formulate and prove the analogue of the Theorem 1

for the system S1.

Theorem 2 If for the queuing system S1 the Condition 2 is satisfied, then

qT − ρ λ
1−βL(T )T 1−β√
λ

1−βL(T )T 1−β

d→N (0, R) as T →∞.

Here the vector ρ = (t1−β1 , t1−β2 , . . . , t1−βn ) and the covariance matrix R =

(rij) consists of elements rij = t1−βj − (tj − ti)1−β for 1 ≤ i ≤ j ≤ n.
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Proof. One can notice that for any 1 ≤ k ≤ n

q(Ttk) =
k∑
i=1

n∑
j=k

ξTij ,

so that a vector qT = (q(Tt1), q(Tt2), . . . , q(Ttn)) has the representation

qT = CξT .

Here C is the matrix with constant coefficients of size n(n+1)
2 ×n. For example,

for n = 4 matrix C has the form
1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0
0 0 1 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0 1 1

 .

We note that a normalized vector

q̂T =
qT − λ

1−βT
1−βL(T )Cd√

λ
1−βT

1−βL(T )

can be rewritten as q̂T = Cξ̂T . Since ξ̂T
d→ ξ∞ as T → ∞, then q̂T

d→Cξ∞

as T → ∞. According to the Lemma 3 random vector ξ∞ is the normal
distributed.

Here we take into account the following property of the Gaussian distri-
bution. If a vector X has a normal distribution with parameters (µ,Σ), then
for any matrix A the vector AX has a normal distribution with parameters
(Aµ,AΣAT ). So, the vector Cξ∞ has a normal distribution with zero mean
and some covariance matrix. To find the form of this matrix we note that for
i ≤ k we have the following equality

cov(q(Tti), q(Ttk)) = λ

∫ Tti

0

B(Ttk − y)dy = µik,

therefore hereinafter all follows from the proof of the Lemma 2.�
It is evident that the Theorem 2 is a corollary of the Theorem 1.

4 Proof of the main result

Assume that the intensity of the input flow λ(t) is a function which satisfies the
Condition 1. We note that statements of lemmas which proved in the previous
section, remain valid in this case. Let us consider them one after another. The
assertion of the Lemma 1 is retained with the only difference that in this case

αTij =

∫ Tti

Tti−1

(
B(Ttj − y)−B(Ttj+1 − y)

)
λ(y)dy.

The Lemma 3 is formulated in the same way as in the case of a constant
intensity. On the proof of the Lemma 2 we will focus in more detail.
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Lemma 4 If Conditions 1 and 2 are fulfilled then for a function αTij the state-
ment of the Lemma 2 takes place.

Proof. We denote

mT
ij =

∫ Tti

0

B(Ttj − y)λ(y)dy.

Using this notation we can rewrite αTij as

αTij = mT
ij −mT

i−1j −mT
ij+1 +mT

i−1j+1. (7)

Thus, to find the asymptotic behavior of αTij as T →∞, it is sufficient to find

the asymptotic behavior for mT
ij as T → ∞, 1 ≤ i ≤ j ≤ n. We prove this

lemma just like the Lemma 2 in two steps.

1. Let i < j. In this case we only need to obtain asymptotics of the integral
for i = 1, j = 2

JT =

∫ Tt1

0

B(Tt2 − y)λ(y)dy.

Let N(T ) = max {k : Sk < Tt1} . In view of the monotonicity of the func-
tion B(Tt2 − y) we have

JT ≤ J+
T =

N(T )−1∑
k=0

B(Tt2−Sk+1)

∫ Sk+1

Sk

λ(y)dy = λ

N(T )−1∑
k=0

B(Tt2−Sk+1)(Sk+1−Sk).

Since t2 > t1 then for any ε > 0 there is T
(1)
ε such that

B(Tt2 − Sk+1) ≤ (1 + ε)
L(Tt2 − Sk)

(Tt2 − Sk)β

for all k ≥ 0. Therefore

J+
T ≤ λ(1 + ε)T

N(T )−1∑
k=1

L(Tt2 − Sk)

T β
(
t2 − Sk

T

)β Sk+1 − Sk
T

=

= λ(1 + ε)T 1−βL(T )

N(T )−1∑
k=1

L(T (t2 − Sk
T ))

L(T )

1(
t2 − Sk

T

)β Sk+1 − Sk
T

.

This implies that there is T
(2)
ε such that for T > max(T

(1)
ε , T

(2)
ε )

J+
T ≤ λ(1 + ε)2T 1−βL(T )

N(T )−1∑
k=0

(t2 − rk)
β

(rk+1 − rk)

where rk = Sk
T . Then

N(T )∑
k=0

rk+1 − rk
(t2 − rk)β

→
∫ t1

0

dy

(t2 − y)β
=

1

1− β

[
t1−β2 − (t2 − t1)1−β

]
as T →∞.
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we have

J+
T ≤

λ

1− β
(1 + ε1)T 1−βL(T )

for any ε1 > 0 and all sufficiently large T . Similarly the lower estimate is
obtained. So, for any i < j we get the following equivalence

mT
ij ∼

λ

1− β

(
t1−βj − (tj − ti)1−β

)
T 1−βL(T ) as T →∞.

2. Now we consider the case when i = j. Let us denote I(t) =
t∫
0

B(y)λ(t −

y)dy, then µTii = I(Tti). We find the asymptotic behavior of the function
I(t) as t→∞. Since for any 0 < γ < 1 the integral I(t) can be represented
as follows

I(t) =

∫ tγ

0

B(y)λ(t− y)dy +

∫ t

tγ
B(y)λ(t− y)dy = I1(t) + I2(t).

Let us find the asymptotic behavior of each of the terms as t→∞.

• Arguing similarly to the first part of this lemma (the case of i < j), we
get

I2(t) ∼ λ

1− β
t1−βL(t) as t→∞.

• Further, we note that I1(t) ≤
tγ∫
0

λ(t− y)dy = Λ(t)−Λ(t− tγ) ∼ λtγ as

t→∞.

Thus, if we choose 0 < γ < 1−β, then the principal term of the asymptotic
for I(t) will be t1−β . So, we obtain that for any 1 ≤ i ≤ n

mT
ii ∼

λ

1− β
t1−βi L(T )T 1−β .

The Lemma 4 implies from obtained asymptotics for mT
ij and representation

(7) for αTij .�
Further using notes given in the case of constant intensity we obtain the

Theorem 1.

Remark 1 For the system S with a Poisson input flow with intensity λ(t)
where λ(t) is a periodic function with a period τ > 0. If the Condition 2 is

satisfied, then the Theorem 1 holds and λ = Λ(τ)
τ .

Author is deeply grateful to Professor L. G. Afanas’eva for her constant in-
terest in this work, valuable suggestions and guidance, significantly contributed
to the writing this article.
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Abstract. We study different ways to include risk margins to the estimation of provisions 
in the IBNR claim reserving problem with run-off triangles. There are different types of 

amounts which are of interest: the provisions for the different accident years, the future 

payments for the different calendar years and the total provision. We are interested in to 

calculate the present value of the future payments for the different calendar years, taking 
into account the Solvency II Directive. In this context, firstly we can calculate the present 

value using a risk-free interest rate term structure. Secondly, we can work in a 

conservative scenario by adding risk margins to the fitted payments by calendar years. 

Assume that we are using a stochastic claim reserving method as the generalized linear 
model (GLM) and that we are able to estimate prediction errors and predictive 

distributions by bootstrapping. There are different ways to include risk margins: one 

could be to add a percentage of the prediction errors to the fitted values, or another one 

could be to calculate the value-at-risk with a given confidence level of the predictive 
distributions of the future payments by calendar years. Finally, we can compute its 

present values in all cases. 

Keywords: Technical provisions, Generalized Linear Model, Solvency II, Calendar 

years. 

 

1  Introduction 
 

Assume a GLM (see, e.g., Boj et al. [2]; Boj and Costa [3] and McCullagh and 

Nelder [12]) to model the incremental losses of a run-off triangle, ijc . Assume a 

parametric family for the error distribution with mean and variance: 

  ij ijE c       and        ij ij ij ij ijVar c w V w    
    ,    (1) 

The variance function depends on a parameter  and this parametric family has 

as particular cases: the Poisson distribution when 1 ; the Gamma distribution 

when 2 ; and the Inverse Gaussian distribution when 3 .  

Assuming the logarithmic link function  

log ij ij  ,       (2) 
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 the predicted values 
îjc  are estimated from  0

ˆˆˆ ˆexpij i jc c    , where 
i  is 

the factor corresponding to the accident year 1,...,i k  and 
j  is the factor 

corresponding to the development year 1,...,j k . The 
0c  value is the term 

corresponding to the accident year 0 and development year 0. 

The future payments for the different calendar years 1,...,2t k k   are obtained 

by adding the incremental losses that were made in the future calendar years: 

,
ˆ

k

t t j j

j t k

FP c 

 

  .    (3) 

We calculate the present value of the future payments by calendar years, as it is 

indicated in the Solvency II Directive (see Albarrán and Alonso [1]). 

Additionally, we describe two ways of consider a risk margin to obtain the 

IBNR claim provisions. We use the prediction errors for the future payments by 

calendar years and also consider the estimated value at risk (VaR) of the 

predictive distribution for the future payments by calendar years at a given 

significance level. 

 

2  Prediction errors for future payments by calendar years 
 

The prediction error (PE) of the parametric family of distributions (1) assuming 

(2) has been studied in the cases of the accident years provisions and the total 

provision in, e.g., England and Verrall [7], [8], [10] and England [9]. The study 

is extended to the IBNR future payments by calendar years  in Boj et al. [4] and 

Espejo et al. [11] for the particular case in which the over-dispersed Poisson 

distribution is assumed.  

Now we extend the formulas of the prediction error to the future payments by 

calendar years for the general parametric family (1) assuming (2). 

The PE for the future payments by calendar years with the analytical formula of 

the distribution can be calculated as the squared root of the Mean Squared Error 

(MSE) of prediction: 
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       .    (4) 

Alternatively, we can estimate the predictive distribution of íjc  by bootstrap 

methodology (see Efron and Tibshirani [5]); in the case of the GLM and the 
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IBNR claim provisions it is usual to apply bootstrapping residuals based on 

Pearson residuals.  

In the bootstrap process estimation we have B resamples and, from these values, 

we can calculate the squared SE, i.e. the variance of the predictive distribution 

for the future payments by calendar years. 

The bootstrap estimations of the PE for the future payments by calendar years 

are: 

 
2

, 1,..,

ˆ ˆ( )
boot

boot P
tt ij

i j k
i j t

PE FP c SE FP


 

   ,  1,..., 2t k k  .    (5)  

 

3  Application 
 

To illustrate the proposed methodology we use the triangle of Taylor and Ashe 

[15] in Figure 1, with n=55 incremental losses for accident years 0, ,9i   and 

development years 0, ,9j  . 

i 
j 

0 1 2 3 4 5 6 7 8 9 

0 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

1 352118 884021 933894 1183289 445745 320996 527804 266172 425046 

 

2 290507 1001799 926219 1016654 750816 146923 495992 280405 

 

3 310608 1108250 776189 1562400 272482 352053 206286 

 
4 443160 693190 991983 769488 504851 470639  

5 396132 937085 847498 805037 705960  

6 440832 847361 1131398 1063269  

7 359480 1061648 1443370  

8 376686 986608 
 

9 344014  

   Figure 1. Run-off triangle of Taylor and Ashe [15] with 55 incremental losses 

    

 This dataset has been used in many texts on IBNR problems (see Boj and Costa 

[5], England and Verrall [7], England [9] and Renshaw [13], [14]. In England 

and Verrall [7] the coefficient of variation (the PE as a percentage of the 

provision estimate) is calculated for the accident years and total provisions in 

the following cases: when the over-dispersed Poisson and the Gamma 

distributions are assumed in the analytic formulas to calculate PE and when the 

over-dispersed Poisson distribution is assumed in the bootstrap methodology for 

the estimation of PE.  

We include in this section the computation of the present values of the future 

payments by calendar years adding a risk margin in two ways. First, we 

calculate the present value of the future payments by calendar year plus a 

percentage   of the PE, with analytic formula and with bootstrap estimation. 

We consider a percentage of 0.25  as in Boj and Costa [5]. Second, we 

calculate the present value of the values at risk of the predictive distribution for 
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the future payments by calendar year at a level of confidence equal to 99.5%, 

following the recommendations of Solvency II. 

We assume the over-dispersed Poisson and the Gamma distributions with the 

logarithmic link function in the GLM and in the bootstrapping estimations we 

obtain B=1000 resamples. In the nine future calendar years it is assumed a fixed 

annual interest rate equal to 1.5%. We have used the R software for the 

computations and, specifically, the glm function of the stats package. 

The numerical results are shown in Tables 1 to 8. If we compare the coefficients 

of variation, the values in the case of the Gamma distribution (when 2 ) are 

lower than in the case of the over-dispersed Poisson distribution (when 1 ). 

 

Calendar year Payment Prediction error Coefficient of variation 

10 5226535.8 747369.6 14.30 % 

11 4179394.4 710144.6 16.99 % 

12 3131667.5 644139.5 20.57 % 

13 2127271.9 479125.6 22.52 % 

14 1561878.9 404967.7 25.93 % 

15 1177743.7 364294.9 30.93 % 

16 744287.4 294424.6 39.56 % 

17 445521.3 250986.8 56.34 % 

18 86554.6 108268.8 125.09 % 

Table 1. Future payments by calendar years, prediction errors and coefficients of 

variation for the over-dispersed Poisson distribution using analytic formula. 

 

Calendar year Payment Prediction error Coefficient of variation 

10 5096855.3 847281.6 16.62 % 

11 4050001.5 749549.8 18.51 % 

12 3064407.7 628141.0 20.50 % 

13 2078010.5 431885.8 20.78 % 

14 1510392.7 345880.7 22.90 % 

15 1095402.7 292255.7 26.68 % 

16 692118.4 220057.8 31.79 % 

17 416539.9 181226.5 43.51 % 

18 82075.9 47918.1 58.38 % 

Table 2. Future payments by calendar years, prediction errors and coefficients of 

variation for the Gamma distribution using analytic formula. 

 

Calendar 

year 

Mean 

payment 

Standard 

deviation 

Prediction 

error 

Coefficient of 

variation 
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10 5262187.6 748660.0 756563.2 14.48 % 

11 4206004.9 718618.2 721067.3 17.25 % 

12 3153556.8 653134.1 649753.2 20.75 % 

13 2139244.8 504395.7 487995.9 22.94 % 

14 1562523.4 408073.2 411005.7 26.31 % 

15 1178586.1 364102.8 365547.7 31.04 % 

16 771451.6 302919.9 292974.4 39.36 % 

17 455633.0 250906.3 254458.2 57.11 % 

18 91579.0 104329.2 107988.8 124.76 % 

Table 3. Future payments by calendar years, standard deviations, prediction 

errors and coefficients of variation for the over-dispersed Poisson distribution 

using bootstrap methodology with 1000 resamples. 

 

Calendar 

year 

Mean 

payment 

Standard 

deviation 

Prediction 

error 

Coefficient of 

variation 

10 5096897.2 1017.5 652964.8 12.81 % 

11 4050047.9 1014.2 545647.9 13.47 % 

12 3064465.1 920.9 434825.7 14.19 % 

13 2078021.4 694.1 297581.3 14.32 % 

14 1510393.3 580.7 233914.7 15.49 % 

15 1095419.1 493.1 194252.2 17.73 % 

16 692130.4 395.9 142601.5 20.60 % 

17 416548.9 342.7 109441.6 26.27 % 

18 82080.9 152.7 26649.2 32.47 % 

Table 4. Future payments by calendar years, standard deviations, prediction 

errors and coefficients of variation for the Gamma distribution using bootstrap 

methodology with 1000 resamples. 

 

Calendar year 
Deferral (in 

years) 
Payment 

Payment +              0.25 

Prediction error 

10 1 5226535.8 5413378.2 

11 2 4179394.4 4356930.6 

12 3 3131667.5 3292702.4 

13 4 2127271.9 2247053.3 

14 5 1561878.9 1663120.8 

15 6 1177743.7 1268817.4 

16 7 744287.4 817893.5 

17 8 445521.3 508268.0 

18 9 86554.6 113621.8 

Present value  17873967 18820197 
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Table 5. Present values of the future payments by calendar years and of the 

future payments by calendar years plus a 25% of the prediction error for the 

over-dispersed Poisson distribution using analytic formula and assuming a 1.5% 

fixed annual interest rate. 

 

Calendar year 
Deferral (in 

years) 
Payment 

Payment +             0.25 

Prediction error 

10 1 5096855.3 5308675.7 

11 2 4050001.5 4237389.0 

12 3 3064407.7 3221442.9 

13 4 2078010.5 2185982.0 

14 5 1510392.7 1596862.9 

15 6 1095402.7 1168466.7 

16 7 692118.4 747132.9 

17 8 416539.9 461846.5 

18 9 82075.9 94055.4 

Present value  17310125 18199962 

Table 6. Present values of the future payments by calendar years and of the 

future payments by calendar years plus a 25% of the prediction error for the 

Gamma distribution using analytic formula and assuming a 1.5% fixed annual 

interest rate. 

 

Calendar 

year 

Deferral 

(in years) 
Payment 

Payment + 

0.25 Prediction 

Error 

VaR99.5 

10 1 5226535.8 5415676.6 7417055.0 

11 2 4179394.4 4359661.3 6364764.7 

12 3 3131667.5 3294105.8 5207534.8 

13 4 2127271.9 2249270.9 3682095.3 

14 5 1561878.9 1664630.3 2735533.8 

15 6 1177743.7 1269130.6 2209257.2 

16 7 744287.4 817531.0 1841310.7 

17 8 445521.3 509135.8 1262432.7   

18 9 86554.6 113551.8 473412.3 

Present value  17873967 18830614 29688278 

Table 7. Present values of the future payments by calendar years, of the future 

payments by calendar years plus a 25% of the prediction error and of the Value 

at Risk with a confidence level of the 99.5% for the over-dispersed Poisson 
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distribution using bootstrap methodology with 1000 resamples and assuming a 

1.5% fixed annual interest rate. 

 

Calendar 

year 

Deferral 

(in years) 
Payment 

Payment +             

0.25 Prediction 

Error 

VaR99.5 

10 1 5096855.3 5260096.5 5099652.6 

11 2 4050001.5 4186413.5 4052656.1 

12 3 3064407.7 3173114.1 3067038.9 

13 4 2078010.5 2152405.9 2079754.3 

14 5 1510392.7 1568871.3 1511867.6 

15 6 1095402.7 1143965.8 1096662.3 

16 7 692118.4 727768.8 693145.23 

17 8 416539.9 443900.3 417478.6 

18 9 82075.9 88738.2 82457.2 

Present 

Value 
 17310125 17938348 17324230 

Table 8. Present values of the future payments by calendar years, of the future 

payments by calendar years plus a 25% of the prediction error and of the Value 

at Risk with a confidence level of the 99.5% for the Gamma distribution using 

bootstrap methodology with 1000 resamples and assuming a 1.5% fixed annual 

interest rate. 

 

Conclusions 
 

We have extended the formulas of the prediction errors for the accident years 

provisions and total provision in England and Verrall [7], [8], [10] and England 

[9] to the future payments by calendar years in the case of the general 

parametric family of error distributions with logarithmic link. 

The present value of the future payments by calendar years allows at the actuary   

calculate the best estimate of the technical provisions in the context of Solvency 

II. We include risk margins by means of the prediction errors and the VaR of the 

predictive distribution for the future payments by calendar years. 
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Abstract. As people live on average longer, and as life expectancy increases, we may 

assume that we live healthier for a longer period. In studies of population ageing not only 

the individual age itself is important, but also the number of years spent in good health. 

Similarly, when we examine the expected number of years we have before us, we are not 
interested only in the length of our remaining life, but also whether those years of life 

will be spent in a good health condition or with health limitations. The priority of each 

state should be the health status of its residents. For example, companies are well aware 

of the importance of the health status of their employees in terms of increasing 
productivity. Submitted paper focuses on the process of population ageing and adult 

health status in the Czech Republic in relation to mental diseases. Solving the health 

status of the elderly and finding the appropriate treatment for diseases in older age groups 

is one of the key objectives.  
 

Keywords: Ageing, Health, Alzheimer's Disease, Dementia, Czech Republic.  

 

1 Introduction 
 

Population ageing belongs to the most discussed topics worldwide. What is 

more important, we need reliable and valid measures to describe population 

ageing and health-related outcomes in the population (COURAGE, 2012). 

Developed regions, including Europe, are facing the increasing proportion of 

people older than 60 years. What is more, population ageing is affecting 

developing countries as well, because of their decreasing fertility rates. We 

expect an increase in the proportion of people older than 65 years to 30% in 

2060 (Börsch-Supan, 2013). The changes in the age structure of the population 

will lead to an increasing attention and importance of care need. Population 

ageing, longevity and reaching old ages lead to a high percentage of old people 

who are in a need of care. In last centuries, the proportion of people who 

survived to old age, was not so significant as in recent period.  
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2 Health and Life Expectancy 
 

There are many indicators affecting health. Retirement, mortality, health care 

are strongly associated with the health status. When examining the quality of 

life, some information is provided by diseases and disabilities. Many old people 

above age 65 suffer from mental health problems. As the process of population 

ageing is spreading all around the world, the issue of quality of life in older ages 

is becoming highly important not only for the seniors themselves, but for public 

sector, health systems and national policies as well (Börsch-Supan, 2008). It is 

not inconsiderable whether added years to life are spent in a good health or with 

health limitations. Old age is becoming a universally achievable stage of life 

irrespective of structural factors such as class, gender or ethnicity (Petrová 

Kafková, 2013). On the one hand, we live longer and the life expectancy is 

prolonging. On the other hand, don't added years of life mean the increasing 

number of people suffering from illnesses occurring at old ages?  

 

 
Fig. 1. Life expectancy at age 65 in the Czech Republic in the years 1992-2012 

Source: Eurostat, authors' construction 

 

In the last twenty years life expectancy at age 65 is increasing in the Czech 

Republic continuously. Difference between females and males was in average 

3.5 years during this period (Fig. 1). The life expectancy at the age 65 was 12.2 

years for males and 16 years for females in 1992. In 2012, the life expectancy at 

the age 65 was 15.7 years for males and 19.2 years for females (Fig. 1). Life 

expectancy and modal age at death belong among the most important 

demographic indicators from the view of adult mortality and longevity 

(Langhamrová et al., 2014). Many authors have been examining the area of life 

expectancy, see e.g. (Fiala, Langhamrová, 2014). 
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3 Alzheimer's Disease and Life Expectancy  
 

Nowadays, mental, behavioral and emotional disorders belong to leading 

disabilities among older population aged 65 years and over. Due to higher life 

expectancy of women, women are more affected by dementia, Alzheimer's 

disease, Parkinson's disease and other neurological disorders (Fig. 2). Mortality 

statistics by causes of death was from 2007 affected by changes in the system of 

coding practices and updates classification, which is one of the innovations of 

the 10
th
 revision. Objective was to improve the coding procedures in the process 

of selecting the underlying cause of death. These changes have affected 

mortality statistics, e.g. deaths by hypertension, heart failure, cerebrovascular 

diseases, atherosclerosis or diabetes (CZSO, 2014). From this reason we can see 

some changes in data in the period 2007–2010 (Fig. 2). We used data for the 

Czech Republic from the International classification of diseases (10
th
 revision). 

As life expectancy at birth is prolonging, the number of males and females with 

mental disorders is also increasing. Life expectancy in 2012 for males was 75.1 

years and for females 81.2 years. In comparison, number of deaths by 

Alzheimer’s disease was 774 females and 446 males.  In 2003, it was only 459 

females and 209 males. The number of deaths by Alzheimer's disease has almost 

doubled over the 10-year period. Which age groups contributed the most in the 

increase of deaths by Alzheimer’s disease? From Fig. 3 it is visible that it was 

for age groups 75-79, 80-84 and 85-89 for males and females. In younger age 

groups the occurrence of Alzheimer's disease is exceptional, it begins to detect 

after the age of 50 (Fig. 3).  

 

 
Fig. 2. Deaths by Alzheimer's disease and life expectancy at birth in the Czech 

Republic in the years 2003-2012 

Source: CZSO, authors' construction 
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Fig. 3. Contribution of age categories to number of deaths by Alzheimer's 

disease in the Czech Republic in 2013 

Source: CZSO, authors' construction 

 

According to estimations, there are globally 35.6 million people with dementia 

with 7.7 million new cases every year–Alzheimer's disease is the most common 

form of dementia among older people and may contribute to 60–70% of cases 

(WHO, 2015). In the context of the increasing number of mentally ill patients, 

the number of mental health facilities will also increase. In the Czech Republic 

during the next two years there should be approximately 30 mental health 

centers established (Deník.cz, 2015).  

What is more, an increased number of social workers will be needed, such as 

psychologists, psychiatrists, doctors, and other employees taking care of 

mentally incompetent patients. 

 

 

4 Deaths by Nervous System Diseases 
 

Nowadays, it is evident and without any discussions, that the length of people’s 

life is prolonging, mainly in the developed societies. We talk about decreasing 

death rates among old people. On the other hand, the more year people live, the 

more diseases can appear in their later stage of life. The importance of presence 

of nervous system diseases among old people is increasing. In the Czech 

Republic in the year 2003, there were altogether 2057 deaths by nervous system 

diseases, including 972 men and 1085 women. In 2013, there were altogether 

2601 deaths by nervous system diseases, including 1163 men and 1438 women.  
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Fig. 4. Contribution of age categories to number of deaths by nervous system 

diseases in the Czech Republic in 2003 

Source: CZSO, authors' construction 

 

 

 

 
Fig. 5. Contribution of age categories to number of deaths by nervous system 

diseases in the Czech Republic in 2013 

Source: CZSO, authors' construction 
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The difference makes 191 men and 353 women between 2003 and 2013 in the 

Czech Republic (Fig. 4 and Fig. 5). From these results it is evident that nervous 

system diseases are higher for women, but it is probably due to higher life 

expectancy of women. Probability of incidence of nervous system diseases is 

higher for women than for men because of their added years of life. From Fig. 4 

it is visible, that in 2003 the number of deaths by nervous system diseases was 

the highest in age intervals 70-84. The contribution of the most important age 

category 75-79 was 15.5% in 2003. From Fig. 5 it is evident, that in 2013 the 

number of deaths by nervous system diseases has shifted to age categories 75-

89. The contribution of the most important age category 80-84 was almost 

20.5% in 2013. The difference between the year 2003 and 2013 makes 5 years 

and five-year age range.   

 

5 Projections of the Future Prevalence of Dementia 
 

For our projections of the prevalence of dementia we used the probabilities from 

EuroCode 2009 and EURODEM 1991. We supposed the same probabilities 

throughout the period and that the prevalence of dementia will be at the level of 

the year 2009 or 1991. We applied these probabilities on the projected age 

structure of the Czech population (we used the medium variant of the age 

structure projection from the Czech Statistical Office, 2013). We calculated the 

projections of the prevalence of dementia in the Czech Republic in the period 

2013-2101 for men and women. 

 

 
Fig. 6. Projection of the prevalence of dementia according to EuroCode 2009 

(women) 

Source: CZSO, authors' calculation 
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Fig. 7. Projection of the prevalence of dementia according to EURODEM 1991 

(women) 

Source: CZSO, authors' calculation 

 

 

 
Fig. 8. Projection of the prevalence of dementia according to EuroCode 2009 

(men) 

Source: CZSO, authors' calculation 

 

0

50,000

100,000

150,000

200,000

250,000

300,000

2
0
1
3

2
0
1
8

2
0
2
3

2
0
2
8

2
0
3
3

2
0
3
8

2
0
4
3

2
0
4
8

2
0
5
3

2
0
5
8

2
0
6
3

2
0
6
8

2
0
7
3

2
0
7
8

2
0
8
3

2
0
8
8

2
0
9
3

2
0
9
8

 95+

 90-94

 85-89

 80-84

 75-79

 70-74

 65-69

 60-64

 30-59

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

2
0
1
3

2
0
1
8

2
0
2
3

2
0
2
8

2
0
3
3

2
0
3
8

2
0
4
3

2
0
4
8

2
0
5
3

2
0
5
8

2
0
6
3

2
0
6
8

2
0
7
3

2
0
7
8

2
0
8
3

2
0
8
8

2
0
9
3

2
0
9
8

 95+

 90-94

 85-89

 80-84

 75-79

 70-74

 65-69

 60-64

133



 
Fig. 9. Projection of the prevalence of dementia according to EURODEM 1991 

(men) 

Source: CZSO, authors' calculation 

 
By comparing results for women, there will be almost 240 000 women suffering 

from dementia in 2101 (using probabilities from EuroCode 2009) and almost 

190 000 women according to EURODEM 1991 (Fig. 6 and Fig. 7).  

In case of men, the difference between using the probabilities from EuroCode 

2009 and EURODEM 1991 is not so significant. According to both versions of 

projections, there will be almost 140 000 men suffering from dementia in the 

Czech Republic in 2101 (Fig. 8 and Fig. 9). When focusing on age categories 

that contribute the most to the prevalence of dementia, in 2013 the most 

important age group was 85-89 for women (according to EuroCode 2009) and 

80-84 (according to EURODEM 1991). For men, it was the age interval 80-84 

in both cases. In the future, the most significant age group will be 90-94 for 

women and 85-89 for men. A significant shift in the contribution of age groups 

is visible.  

 

Conclusions 
 

In our paper we focused on the process of population ageing in the Czech 

Republic from the view of deaths by nervous system diseases and the 

development of Alzheimer's disease among old population. Mental diseases, 

like Alzheimer's disease or Parkinson's disease, are significant mainly at older 

ages, after the age of 50. According to projections of the future prevalence of 

dementia, the share of men and women suffering from dementia will be 

increasing. 
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Population ageing undoubtedly represents an objective advance in the average 

length of human life. On the other hand, in the future, we can't be satisfied only 

with this occurred reality, but we have to focus on possible problems and their 

effective solutions. From this reason 21
st
 century is the century of social 

services, social institutions, healthcare systems. Question of population ageing 

is affecting public institutions, but also family relatives, who will have to take 

care of the ageing family members.  
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Abstract. 

The longevity risk consists in the systematic deviations of the deaths’ number from its expected value caused by improvements of 

mortality trend. This risk impacts ruinously on balance sheets of many holders, such as governments, pension providers, individuals 
and insurers. Transferring of the longevity risk to the capital market opens new opportunities, since it can become tradable. 

The most popular instrument for managing longevity risk consists in longevity swap (bespoke o indexed). In a longevity swap, the 

pension fund agrees to make to the counterparty (insurer or bank) periodic payments based on agreed mortality assumptions. In 

return the counterparty pays to the pension fund regular floating flows based on either the pension plan realized survival rates either 
an agreed mortality index. These instruments involve counterparty risk, i.e. the risk that the other part of a contract will not live up to 

its obligations. 

Nevertheless it is necessary to determine the price of longevity swaps in the most appropriate way, by considering an evaluation 

based on integrated risk analysis. In particular the counterparty risk should be taken into account as relevant risk, in order to 
guarantee the market transparency and standardization of longevity swap. 

In recent years innovative instruments of collateralization have been developed such as Credit Value Adjustment (CVA), Bilateral 

CVA (BCVA) and Debt Value Adjustment (DVA). While CVA represents the price of the counterparty risk in the derivative contract 

computed assuming the counterparty may default prior the contract maturity and the investor is default risk-free and the BCVA is the 
cost of the counterparty risk considering its bilateral nature under the assumption that both party of the derivative contract may 

default prior the contract maturity, the DVA consists in the cost of the counterparty risk under the assumption that only the investor 

may default and his counterparty is default risk-free. In particular it is typically defined as the difference between the value of the 

derivative assuming the bank is default-risk free and the value reflecting default risk of the bank. In this contest we present a pricing 
formula for a fair valued longevity swap, since to do this it is necessary to consider market variables and the creditworthiness of both 

parties entering into the contract, as well as the valuation methodologies used by parties. 

Typically a bank or insurance, which grants a longevity swaps to the pension funds, can be interested in including the cost of 

counterparty risk in a such instrument, by forcing the pension fund to pay a DVA. 
In this context we propose a pricing model for a completed longevity swap, being a DVA included. 

An empirical analysis is provided. 

 

Keywords: Longevity Risk, Counterparty risk, Longevity swap, Debt Value Adjustment, Credit Value Adjustment, bilateral Credit 
Value Adjustment. 

 

1. Introduction 

 
With few exceptions, longevity has been increasing throughout the world during the last century. The emergence of 

increasing longevity is the result of substantial  demographic changes over the last century. Particularly several studies 

show that the aging of the population is due to two firmly established and parallel trends: life expectancy is increasing 

and birth rates remain at historically low levels. Besides, the first half of the 20
th

 century saw substantial reductions in 

early life mortality, while the second half century has shown significant improvements in mortality rates at older ages. 

These demographic changes have caused an underestimation over the year of the like expectation and the mortality 

probabilities. This fact represents a financial risk so-called demographic risk.  

The demographic risk is divided in two components: the insurance risk and the longevity risk. The insurance risk arises 

from accidental deviations of the number of deaths from its expected values, and it is a pooling risk, i.e. it can be 

mitigated by increasing the number of policies. The longevity risk derives from improvements in mortality trend, which 

determine systematic deviations of the number of deaths from its expected values ( Di Lorenzo and Sibillo 2002). 

The risk can be transferred from those who hold it, including individuals, governments, and private providers of 

retirement income, to insurers and banks through de-risking strategies as for instance buy-outs and buy-ins. 

Nevertheless banks and insurers have a finite capacity to take longevity risk. They may pass longevity risk at the 

reinsurer offering a transaction similar to the longevity risk mentioned above.  Currently there are many proponents of a 

capital market solutions where longevity risk can become tradable. So that this to occur, it is need transformed a non-

financial risk in a financial asset. The market for the longevity-linked securities has developed substantially in recent 

years. The longevity-linked securities allow to the holders of the longevity risk (particularly the pension fund) of 

transferring longevity risk to the capital market. The longevity-linked securities are derivatives or bonds where the 

underlying is the trend of the mortality of the reference population. 
_________________ 
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The most popular  longevity-linked instruments the longevity swap. In a longevity swap, the pension fund agrees to 

make to the counterparty (insurer or bank) periodic payments based on agreed upon mortality assumptions. In return the 

counterparty provides the pension fund with regular floating payment based on either the pension plan realized survival 

rates or an agreed upon mortality index. 

Certainly, we must consider that with few exceptions, the longevity swap pricing formulas views so far pose an issue of 

opacity. Indeed we believe that for allowing an improvement of market liquidity and for achieving a standardized 

market where exchanging the longevity swap, we cannot exempt from considering the counterparty risk that this 

instrument may involve.  

Counterparty risk consists in the risk that the entity with whom one has entered into a financial contract (the 

counterparty to the contract) will fail to fulfill their side of the contractual agreement, i.e. will default prior to expiration 

of a trade and will not therefore make the current and future payments required by the contract. 

Then this risk is similar to other forms of credit risk in that the cause of economic loss is obligor’s default. There are, 

however, two features that set counterparty risk apart from more traditional forms of credit risk: the uncertainty of 

exposure and bilateral nature of credit risk (Pykhtin and Rosen 2009).  

In addition  in longevity swap counterparty risk exposure is large, since generally the longevity swaps have very long 

maturities. 

We believe that if the counterparty risk is not considered in the pricing formula of the longevity swap, it could lead at an 

issue of mispricing. 

In light of these considerations, we propose pricing formulas of the longevity swap that include the counterparty risk 

through innovative collateralization tools, i.e. the Debt Value Adjustment ( from herein DVA). 

The pricing formula of the longevity swap that involves the DVA allows to obtain a "completed" pricing formula; 

indeed, allows to the hedger of the longevity risk of reaching to a value of the swap that considers an important risk as 

counterparty risk, obtaining the riskiness value of the longevity swap.  

The pricing formula of the longevity swap that involves the DVA is important for the development of a standardized 

and liquid market, where it is possible to exchange the longevity swaps. Indeed this pricing formula could be used by an 

authorities to guarantee the efficiency and transparency of the market.   

The paper is organized as follows. The paper is organized as follows. In section 2 we develop formulas for pricing the 

fair value of longevity swap with Debt Value Adjustment. Section 3 illustrates the main outcomes of the empirical 

application. 

 

2. Pricing a completed longevity swap: the case of debt value adjustment 

 
According to Biffis et al (2014) the market value of the longevity swap’s payment that occurs at the maturity t=T at the 

inception is given by: 

𝑆0 =  𝑛𝐸𝛲 [ 𝑒− ∫ 𝑟𝑡𝑑𝑡
𝑇

0 (
𝑛 − 𝑁𝑇

𝑛
− 𝑃𝑁)]   =   𝑛𝐸𝛲[ 𝑒− ∫ (𝑟𝑡+𝜇𝑡)𝑑𝑡

𝑇
0 −𝐵(0, 𝑇)𝑃𝑁)]                (2.1) 

where P
N 

denotes the survival fixed rate referred to the maturity T; while 𝑒− ∫ (𝑟𝑡+𝜇𝑡)𝑑𝑡
𝑇

0  the risk neutral survival 

probability at the same maturity T referred to the homogeneous group of individuals, i.e. the estimation of the floating 

rate at the maturity T, where 𝑟𝑡 is the risk-free interest rate  and 𝜇𝑡 is the mortality intensity; B(0,T) corresponds to the 

discounting factor; n denotes both the notional that the policyholders’ number that join to the pension fund. As regard 

the intensity of mortality and  then the survival probability may be modeled  using a stochastic mortality model. 

By this equation it is obtained the survival fixed rate referred at the maturity T relying on the assumption that the 

expected value of each payment at each maturity of the longevity swap evaluated at time t=0 is equal to 0. Then the 

survival fixed rates are determined letting the above equation equal to 0 and solving for 𝑝𝑁: 

𝑝𝑁 = �̃�𝑇 + 𝐵(0, 𝑇)−1𝐶𝑜𝑣�̃� (𝑒− ∫ 𝑟𝑡𝑑𝑡
𝑇

0 , 𝑒− ∫ 𝜇𝑡𝑑𝑡
𝑇

0 )                                              (2.2) 

The survival fixed rate is given by the risk-neutral survival probability, �̃�𝑇, more the covariance between intensity of 

mortality and bond market returns. 

This equation shows that if the intensity of mortality is uncorrelated with bond market returns, the latter term of the 

equation (2.2) is equal to 0 and the survival fixed rates associated to different maturities involve only the survival 

probabilities {�̃�𝑇i } referred at the same maturities. Then the survival fixed rates referred each maturity are determined 

basing only on the mortality forecasts made at the inception of the longevity swap.  

The pension fund cannot reach to a complete assessment of the longevity swap namely based on integrated risk 

analysis, unless it is not taken into account the counterparty risk on the pricing formula. In this regard we can use 

innovative collateralization tools such as Debt Value Adjustment (DVA),  indeed only the consideration of the 

counterparty risk allows to represent an internal management model which take into account an integrated analysis of 

risks.   
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In D’Amato and De Martino (2014a, 2014b)  formulas of evaluation of the longevity swap by including the unilateral 

and bilateral counterparty risks from the point of view of the pension fund through the credit value adjustment (CVA) 

and bilateral credit value adjustment  (BCVA) have been proposed, being the CVA the market price of counterparty risk 

on a contract obtained by the risk neutral expectation of the loss that could occur for the counterparty default over the 

term of the contract and the BCVA the cost of the counterparty risk under the assumption that both counterparties could 

default. 

However it could result necessary to assess the present value of the longevity swap considering the impact of the risk 

that the pension fund could default and his counterparty is default free, then to consider the counterparty risk from the 

point of view of the pension fund’s counterparty. 

 In this way a such evaluation of the longevity swap could allow to the pension fund of analyzing the impact of the own 

default on the longevity swap value and identifying the entity of the collateral that could be required from the 

counterparty institution. 

For this kind of evaluation we can use the DVA as a spread, namely the market price of counterparty risk on a contract 

obtained by the risk neutral expectation of the gain that could occur for the pension fund default over the term of the 

contract weighted with the risk-neutral probability of the own default. 

The DVA is analogous to the CVA and is the price of counterparty credit risk from the perspective of the counterparty, 

i.e., the price of the risk that the investor defaults before maturity of a derivative contract and fails to full his obligat ions 

to the counterparty. Then the DVA for the pension fund is the CVA for his counterparty.  

The unilateral DVA as a stand-alone value is given by: 

𝑈𝐷𝑉𝐴 = (1 − 𝛿�̅�
̅ ) ∑ 𝐵(𝑡𝑖)𝑁𝐸𝐸(𝑡𝑖)𝑞𝐹(𝑡𝑖, 𝑡𝑖−1)                                                (2.3)

𝑇

𝑖=1

 

𝑞𝐼(𝑡𝑖, 𝑡𝑖−1) denotes the default probability of the institution;  𝛿�̅�  denotes the recovery of the institution; while 

𝑁𝐸𝐸(𝑡𝑖) denotes the negative expected exposure, i.e. the EE from the point of view of the counterparty with the 

difference that the 𝑁𝐸𝐸(𝑡𝑖) is a negative value. 

The unilateral DVA as a credit spread is given by the following equation:  

𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑋𝐹
𝐶𝐷𝑆 × 𝐸𝑁𝐸                                                             (2.4) 

where 𝑋𝐹
𝐶𝐷𝑆 is the periodic premium paid by the investor that enter into the credit default swap to cover his counterparty 

risk exposure and 𝐸𝑁𝐸 is the expected negative exposure.  

The DVA as a stand-alone value and as a credit spread unlike the CVA are negative values.   

The pension fund can evaluate approximately the P&L (profit and loss) impact of the longevity swap considering the 

cost of counterparty risk under the assumption that the pension fund could default and his counterparty is default free, 

simply subtracting the DVA as a running spread at the expectation under the risk neutral measure of net  rate that he 

will receive, i.e. the different among the floating rate and the fixed rate that occurs at each maturity, as reported by the 

following equation: 

𝑆0 =  𝑛 {𝐸�̃� [(𝑒− ∫ (𝑟𝑡+𝜇𝑡)𝑑𝑡
𝑇

0 −𝐵(0, 𝑇)𝑃𝐷] − 𝐷𝑉𝐴𝑆𝑝𝑟𝑒𝑎𝑑}                                 (2.5) 

   

However as it is possible to note the consideration of the cost of the own default through of the DVA as a spread 

increases the risky market value of the longevity swap, since a negative value, the DVA, is subtracted to the expectation 

under �̃� of the net rate that could receive the pension fund. Indeed if the pension fund defaults and the present value of 

the longevity swap form his point of view is negative, he will make an gain. This because the pension fund should pay 

an amount, that will not be paid in case of own default. The formula (2.5) might be used by the pension fund for self-

rating the impact of the own default on the present value of the longevity swap in such a way that he can check the 

consistency of the collateral potentially required by institutions. 

In addition the DVA could be understood as a charged to apply to the pension fund for covering the cost of the 

counterparty risk from the point of view of the institution that grants the longevity swap. Indeed an institution that 

grants the longevity swap to the pension fund, having major bargaining power and higher credit quality than the pension 

fund, could require that the longevity swap is completed of collateral and the collateral could be an DVA as a spread.  

Basing on  this consideration, you can determine the survival fixed rate of a longevity swap that includes as collateral a 

DVA simply putting equal to zero the equation (1.4) and solving for 𝑃𝐷 . In this way you obtain: 

𝑃𝐷 = �̃�𝑇 + 𝐵(0, 𝑇)−1𝐶𝑜𝑣�̃� (𝑒− ∫ 𝑟𝑡𝑑𝑡
𝑇

0 , 𝑒− ∫ 𝜇𝑡𝑑𝑡
𝑇

0 ) − 𝐷𝑉𝐴𝑠𝑝𝑟𝑒𝑎𝑑 𝐵(0, 𝑇)−1              (2.6)  
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In this case the fixed rates of the longevity swap depend not only on the survival probabilities and the covariance among 

the intensity of the mortality and the bond market returns, but also on the market value of the cost of counterparty risk 

under the assumption that the pension fund could default and his counterparty is default free.  

To determine the survival fixed rates considering the charge to cover the counterparty exposure of the institution trough 

the DVA as a spread involves that the pension fund pay at each maturity a net rates higher than those that he should pay 

if it is not considered the cost of the own default. 

Then this higher amount that the pension fund overpays could be accounted by his counterparty to cover the potential 

losses that could arise in the event of pension fund default.  

 

3. Numerical Applications 

 
We consider a pension fund with 1500 policyholders from a group composed by  65-67 years old Italian individuals. 

The pension consists of a payment of €25000 each year to each policyholder alive. For covering the longevity risk 

exposure the pension fund could enter in the fixed side of a longevity swap. 

Then let us suppose that the pension fund enter in a 20-year indemnity longevity swap where the counterparty is an 

insurer.  

Basing on this kind of contract the pension fund agrees to pay a series of fixed payment obtained multiplying the 

survival fixed rates (or pre-determined) to the notional at each maturity, that occurs every July 10th from 2015 to 2035.  

Whilst in return the pension fund receives by the insurer a series of floating payments obtain multiplying effective 

survival rate of the policyholder to the notional at the same maturity date. You let us assume that the notional of the 

longevity swap is €37,500,000. 

The first issue to face up, which involves an high cost and time intensity analysis on the pension plan’s book, is of 

estimating the floating rate and defining the fixed rates also called forward survival rate.  

For estimating the floating rates of the longevity swap it is needed simply to calculate the contingent probabilities that 

an Italian individual group aged between 65-67 today survives every year up to the end of the next 20 years. These 

probabilities are obtained with the Lee and Carter model (1992) and are reported in the table 1. 

 

Table 1 – Best estimation of floating rates, Lee and Carter model 

 

 

For setting the survival fixed rates referred at each maturity we use the same forecast of the mortality trend, but we 

include into the survival rates also the risk premium that the insurer requires for granting the longevity swap to the 

pension fund. Indeed, an insurer o bank enter into the floating side of longevity swap only if the longevity risk assumed 

is remunerated with adequate risk premium.   

Then supposing that the contract provides a risk premium given by an additional mortality improvement of 0.5% and by 

the 95% of the base mortality table, i.e. the mortality table of the year 2010. 

The table 2  reports the contingent survival probabilities of the Italian population aged between 65-67 years today that 

include also the risk premium for the longevity risk. 

 Floating rate 

P65-67(2014) 0,990877167 

P65-67(2014:2015) 0,981010215 

P65-67(2014:2016) 0,970360249 

P65-67(2014:2017) 0,958991816 

P65-67(2014:2018) 0,94664446 

p65-67 (2014:2019) 0,933217517 

p65-67 (2014:2020) 0,918457062 

p65-67 (2014:2021) 0,902319878 

p65-67 (2014:2022) 0,884907835 

p65-67 (2014:2023) 0,866054588 

p65-67 (2014:2024) 0,845696765 

p65-67 (2014:2025) 0,823516197 

p65-67 (2014:2026) 0,799495083 

p65-67 (2014:2027) 0,772747317 

p65-67 (2014:2028) 0,742871152 

p65-67 (2014:2029) 0,709872659 

p65-67 (2014:2030) 0,674377512 

p65-67 (2014:2031) 0,636713078 

p65-67 (2014:2032) 0,596593789 

p65-67 (2014:2033) 0,553913895 

p65-67 (2014:2034) 0,508583842 
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Table 2 – Fixed rates, Lee and Cartel model  

 Fixed rate 

�̌�65-67(2014) 0,991507 

�̌�65-67(2014:2015) 0,982363 

�̌�65-67(2014:2016) 0,972535 

�̌�65-67 (2014:2017) 0,962089 

�̌�65-67(2014:2018) 0,950789 

�̌�65-67 (2014:2019) 0,93855 

�̌�65-67(2014:2020) 0,925145 

�̌�65-67(2014:2021) 0,910541 

�̌�65-67(2014:2022) 0,894834 

�̌�65-67(2014:2023) 0,877878 

�̌�65-67(2014:2024) 0,859618 

�̌�65-67(2014:2025) 0,839768 

�̌�65-67(2014:2026) 0,81831 

�̌�65-67(2014:2027) 0,794448 

�̌�65-67(2014:2028) 0,76781 

�̌�65-67(2014:2029) 0,738378 

�̌�65-67(2014:2030) 0,706678 

�̌�65-67(2014:2031) 0,67296 

�̌�65-67(2014:2032) 0,636916 

�̌�65-67(2014:2033) 0,598378 

�̌�65-67(2014:2034) 0,557166 

 

 

Once estimated the floating rates and set the survival fixed rates before of calculating the expected present value of the 

longevity swap it is necessary to choice the discounting rate. In this regard considering that the reference population is 

Italian we can use as discounting rate the yield of the Italian bearing coupon bonds i.e. BTP issued at 14/07/2014 with 

maturity at 15 years, i.e. 3.5%. 

Table 1.3 shows the discounting factors for each maturity of the longevity swap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

141



Table 3 – Present value of €1, discounted to the n
th

 year 

DATE Discount Factor 

10/07/2014 1 

10/07/2015 0,966183575 

10/07/2016 0,9335107 

10/07/2017 0,901942706 

10/07/2018 0,871442228 

10/07/2019 0,841973167 

10/07/2020 0,813500644 

10/07/2021 0,785990961 

10/07/2022 0,759411556 

10/07/2023 0,733730972 

10/07/2024 0,708918814 

10/07/2025 0,684945714 

10/07/2026 0,661783298 

10/07/2027 0,639404153 

10/07/2028 0,61778179 

10/07/2029 0,596890619 

10/07/2030 0,576705912 

10/07/2031 0,557203779 

10/07/2032 0,53836114 

10/07/2033 0,52015569 

10/07/2034 0,502565884 

10/07/2035 0,485570903 

 

 

Now it is possible to build up the cash flows of the longevity swap and to evaluate the expected present value of the 

longevity swap as shown by the table 4. 
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Table 4 – Evaluation of the indemnity longevity swap 

 

 

 

The first column reports the years of reference of the survival rates; the second column the maturity date. In particular 

the payment is achieved the next year to the reference year of the survival rates. This is due by the fact that since the 

floating rates paid by the insurer is the effective survival rates of the reference population we could know these rates 

only if the reference year is concluded. The third and the fourth column report respectively the survival fixed rates and 

the best estimation of the floating rates. While the fifth column shows the net rates received by the pension fund at each 

maturity, namely the difference between the best estimation of the floating rates and the survival fixed rates. How it is 

possible to note the net rates are negatives, that’s why the best estimation of the floating rates and the survival fixed 

rates are determined basing on the same mortality forecast, however the survival fixed rates include also the risk 

premium for the longevity risk required by the insurer. 

The net rates multiplied for the notional allow to obtain the net payments for each maturity as shown in the sixth 

column. The last column shows the present value of each payment which sum gives the expected present value of the 

longevity swap from the point of view of the pension fund. This value is about €-8,362,000  for the presence of the risk 

premium. The following figure 1 shows the difference between the floating and the fixed rates underlining the entity of 

the risk premium 

Year Payment date Fixed 
rate 

Floating 
rate 

Difference 
between 
floating 
rate and 
fixed rate 

Net payment Present value Net 
Payment 

2014 10/07/2015 99,15% 99,09% -0,06% -23636,27 -22836,98 

2015 10/07/2016 98,24% 98,10% -0,14% -50725,37 -47352,68 

2016 10/07/2017 97,25% 97,04% -0,22% -81564,10 -73566,14 

2017 10/07/2018 96,21% 95,90% -0,31% -116139,79 -101209,12 

2018 10/07/2019 95,08% 94,66% -0,41% -155427,64 -130865,90 

2019 10/07/2020 93,85% 93,32% -0,53% -199956,19 -162664,49 

2020 10/07/2021 92,51% 91,85% -0,67% -250786,33 -197115,78 

2021 10/07/2022 91,05% 90,23% -0,82% -308280,17 -234111,52 

2022 10/07/2023 89,48% 88,49% -0,99% -372236,79 -273121,66 

2023 10/07/2024 87,79% 86,61% -1,18% -443385,22 -314324,12 

2024 10/07/2025 85,96% 84,57% -1,39% -522035,33 -357565,86 

2025 10/07/2026 83,98% 82,35% -1,63% -609431,55 -403311,62 

2026 10/07/2027 81,83% 79,95% -1,88% -705562,11 -451139,34 

2027 10/07/2028 79,44% 77,27% -2,17% -813766,90 -502730,37 

2028 10/07/2029 76,78% 74,29% -2,49% -935192,10 -558207,39 

2029 10/07/2030 73,84% 70,99% -2,85% -1068954,66 -616472,47 

2030 10/07/2031 70,67% 67,44% -3,23% -1211262,22 -674919,88 

2031 10/07/2032 67,30% 63,67% -3,62% -1359259,61 -731772,55 

2032 10/07/2033 63,69% 59,66% -4,03% -1512086,18 -786520,23 

2033 10/07/2034 59,84% 55,39% -4,45% -1667404,24 -837980,49 

2034 10/07/2035 55,72% 50,86% -4,86% -1821840,08 -884632,53 

 Present value of 
the swap 

        -14228932,84 -8362421,2 
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Figure 1 – Trend of the forward survival rate and best estimation of the survival rate 

 

As it is possible to note, this difference increases over the time. This because over the time increases the uncertainty of 

the prediction, therefore also the entity of the risk premium increases over the time. 

Certainly it must be considered that the evaluation of the indemnity longevity swap, as well as made, is incomplete. 

Indeed this evaluation do not consider the counterparty risk. In D’Amato and De Martino (2014a, 2014b) we have 

assessed the longevity swap considering the impact of the unilateral counterparty risk of the pension fund and the 

bilateral nature of the counterparty risk through innovative collateralization tools such as CVA and BCVA. 

However we have not considered the impact of the counterparty risk under the assumption that the pension fund could 

default and the insurer is default-free. For measuring the influence on the expected present value of the longevity swap 

of the own default we iclude another innovative collateralization tool such as DVA as a spread. As aforementioned the 

DVA is the market price of the counterparty risk on the contract obtained considering the risk neutral expectation of the 

gains that could derive from the own default over the term of the contract. 

It is intuitive that the consideration of the impact of the own default on longevity swap from the point of view of the 

pension fund increases the expected present value of this contract. Indeed if we consider that the pension fund fails and 

the value of the contract is negative, it will get a gain, since it will not perform the future payment. 

As pointed out in section 2 the DVA as a spread is given by the following equation: 

𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑋𝐹
𝐶𝐷𝑆 × 𝐸𝑁𝐸 

where 𝑋𝐹
𝐶𝐷𝑆

 is the periodic premium paid by the insurer that enter into the credit default swap to cover his counterparty 

risk exposure and 𝐸𝑁𝐸 is the expected negative exposure. The 𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑is always negative. 

We suppose that the 𝑋𝐹
𝐶𝐷𝑆 is equal to 3% and the 𝐸𝑁𝐸 is equal to -4% we have a DVA as a spread equal to: 

 

𝑈𝐷𝑉𝐴𝑠𝑝𝑟𝑒𝑎𝑑 = −4% × 3% = −0.12% 

 

Once calculated the 𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑 we can assess the expected present value of the longevity swap considering the 

cost of the default of the pension fund simply subtracting this spread to the floating rates received by the pension fund 

(or adding to fixed rates paid by the pension fund) for each maturity. 

The table 5 shows the cash flows of the longevity swap for the pension fund considering the impact of the own default.  
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Table 5 - Valuing the indemnity longevity swap with DVA as a spread 

Year Payment date Fixed rate Floating rate 
Floating rate - 
dva spread 

Difference 
between 
floating 
rate(including 
dva spread) and 
fixed rate Net payment 

Present value 
Net Payment, 
considering 
counterparty 
risk 

2014 10/07/2015 0,991507 0,990877167 99,21% 0,057% 21363,7257 20641,281 

2015 10/07/2016 0,982363 0,981010215 98,22% -0,015% -5725,3742 -5344,6981 

2016 10/07/2017 0,972535 0,970360249 97,16% -0,098% -36564,097 -32978,721 

2017 10/07/2018 0,962089 0,958991816 96,02% -0,190% -71139,79 -61994,217 

2018 10/07/2019 0,950789 0,94664446 94,78% -0,294% -110427,64 -92977,106 

2019 10/07/2020 0,93855 0,933217517 93,44% -0,413% -154956,19 -126056,96 

2020 10/07/2021 0,925145 0,918457062 91,97% -0,549% -205786,33 -161746,19 

2021 10/07/2022 0,910541 0,902319878 90,35% -0,702% -263280,17 -199938 

2022 10/07/2023 0,894834 0,884907835 88,61% -0,873% -327236,79 -240103,77 

2023 10/07/2024 0,877878 0,866054588 86,73% -1,062% -398385,22 -282422,77 

2024 10/07/2025 0,859618 0,845696765 84,69% -1,272% -477035,33 -326743,3 

2025 10/07/2026 0,839768 0,823516197 82,47% -1,505% -564431,55 -373531,37 

2026 10/07/2027 0,81831 0,799495083 80,07% -1,761% -660562,11 -422366,16 

2027 10/07/2028 0,794448 0,772747317 77,39% -2,050% -768766,9 -474930,19 

2028 10/07/2029 0,76781 0,742871152 74,41% -2,374% -890192,1 -531347,31 

2029 10/07/2030 0,738378 0,709872659 71,11% -2,731% -1023954,7 -590520,7 

2030 10/07/2031 0,706678 0,674377512 67,56% -3,110% -1166262,2 -649845,71 

2031 10/07/2032 0,67296 0,636713078 63,79% -3,505% -1314259,6 -707546,3 

2032 10/07/2033 0,636916 0,596593789 59,78% -3,912% -1467086,2 -763113,22 

2033 10/07/2034 0,598378 0,553913895 55,51% -4,326% -1622404,2 -815365,02 

2034 10/07/2035 0,557166 0,508583842 50,98% -4,738% -1776840,1 -862781,84 

 Present value of the swap -13283933 -7701012,3 
 

   

As it is possible to note from this cash flows, we have added a column where we have reported the floating rates minus 

the 𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑.  

Then the 𝑈𝐷𝑉𝐴𝑎𝑠 𝑎 𝑠𝑝𝑟𝑒𝑎𝑑, that is always negative, is subtracted to the rates received by the pension fund, increasing the 

expected present value of the longevity swap for the pension fund. 

Indeed, the present value of the swap for the pension fund obtained considering the impact of the own default is again a 

negative number but is higher than the expected present value of the free risk longevity swap.  
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Figure 2 - Expected value of the payment in the different hypotheses  

 

This graph underlines the difference between the free risk value of the longevity swap’s payment and its risky market 

value obtained under the assumption that the pension fund could default and his counterparty is default free.        

Finally we can affirm that the examination of the own default on the longevity swap through the DVA as a spread from 

the point of view of the pension fund involves that the risky present value of the contract is higher than  its free risk 

value. 

However the counterparty institution which grants the longevity swap to the pension fund may require as collateral the 

DVA. In this latter case, also if in the pricing formulas will appear the DVA, the present value of the swap results 

decreased by the present of this kind of collateral. 

 

Conclusion 
 

In the previous sections, we have considered the longevity risk and the most popular instrument for transferring this risk 

to the capital market, i.e. the longevity swap. Although this instrument allows to transfer this important risk which 

impact the balance sheet of many stakeholders, it involves another risk such as counterparty risk.  

Without an integrated analysis risk it may occur problems of mispricing. In particular it could be important an 

evaluation of the longevity swap that consider the impact of the own default from the point of view of the pension 

found, allowing at this latter of identifying the entity of the collateral that could be required from the counterparty 

institution and, exceptionally, of reaching an fair valued longevity swap formula.  

We have proposed an pricing formula that includes an innovative collateralization tools, i.e. the DVA, for obtaining the 

fair value of the longevity swap.  

The longevity swap valued with the formula of pricing proposed, namely that include the impact of the own default for 

the pension fund, results greater than an longevity swap valued with an classic formula, that then does not include the 

cost of the own default. 

In addition we have proposed a formula to determine the fixed rates of the longevity swap including again DVA as a 

spread, allowing to the pension fund to analyze the impact of the collateral that may be required from the counterparty 

of the pension fund. 

Further researches will be on the comparison between different pricing formulas that include different collateralization 

tools such as CVA, BCVA and DVA.   
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Detection of similar behaviors and abnormal
segments in time series
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92141 Clamart Cedex, France
(E-mail: christian.derquenne@edf.fr)

Abstract. The objectives of time series analysis are many: forecast their future be-
havior, understand how the response is built using predictors, synthesize information
from several time series, detect breaks behavior or search similar or abnormal time
intervals. This paper is placed in the context of the latter objective. For this, we use a
method of segmentation of time series that we have developed. This method provides
constant, increasing or decreasing linear segments. Then we introduce a method of
ascending hierarchical clustering of segments using a stopping rule to determine the
number of clusters. This criterion is based on statistical tests comparing the coeffi-
cients associated with the segments. Therefore, each cluster will contain similar time
intervals while those which include a single element may correspond to abnormal pe-
riods relative to the general behavior of the time series. Tests of multiple comparisons
are used to decide if these clusters are atypical compared to others. This approach
is applied to data coming from the energy management. Finally, we propose future
directions based on the approach introduced previously.
Keywords: Time series, segmentation, clustering.

1 Context and issues

The time series are decomposed into several types of changes: trend, season-
ality, volatility and noise. They may be more or less regular according to
the application domain. Behavioral changes that characterize these series are
mainly of several types: peak (price of energy in tense situation, but on a
very short period), jumps in level or trend (data stream), jumps variability
(yield of the FTSE 100). Modeling of these series is very delicate and requires
a lot of experience in the application domain. It may be interesting to detect
changes in behavior for many applications in the pre-treatment: construction of
sub-models in each segment, stationnarized series using segmentation, building
of symbolic curves to achieve a clustering of curves, modeling of multivariate
time series, etc. Many segmentation methods in Arlot [1] , Guédon [9], Lavielle
and Teyssière [10] have been and are developed to address various problems
in economics, finance, human sequencing, meteorology, energy management,
etc. Most of these methods rely on the use of dynamic programming to reduce
drastically the number of possible segmentations because it would obviously be
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totally illusory to calculate them all. Indeed, the number of segmentations for
a serie of length T and M fixed number of segments is

(
T−1
M−1

)
whereas the set

of all segments M = 1, T , the total number of segmentations increases to 2T−1.
The complexity of these algorithms is in general O(T 2). These methods to de-
tect break points are designed to solve three problems: (i) detecting a change in
the mean, with a constant variance, (ii) detecting the change in variance with
a constant mean (iii) detecting changes in the overall distribution of the phe-
nomenon, without distinguishing changes in level, variability and distribution
errors.

We introduced a method in Derquenne [3] which not only reduces the complex-
ity compared to other methods, but above all proposes solutions segmentation
of the series containing segments which are constant , which increase or decrease
with different dispersions. Our method is original in its approach because it
offers a decision support for time series, step by step. It contains two main
phases: data preparation to obtain a first segmentation of data and modeling
of segments based on a Gaussian heteroskedastic linear model by successive
adaptations. Each of the two phases is repeated a few times depending on the
degree of smoothing applied to the data. The degree of smoothing can vary
from 1 to T theory. It corresponds to the number of observations included in
moving median used in the phase of data preparation. The empirical complex-
ity is O(T

√
T ) and the theoretical complexity is O(T 2). This method has been

improved by a better consideration of the variability of the data in Derquenne
[4] and through a meta-segmentation approach in Derquenne [5], selecting the
best segments from different degrees of smoothing j available. This method
has been tested on many series and has provided encouraging results on both
simulated data to assess the quality of reconstruction of the series: detection
of breakpoints and modeling segments, but mainly on real data, especially in
the field of training in energy market prices.

If this method of segmentation and many others used to meet most of the fol-
lowing questions: ”Are there breaks behavior and how to detect them ?” it is
also important to address other issues associated with the problems encoun-
tered in different fields of applications such as: (i) Are there similar behaviors
between these series? in particular, are there common failures? (ii) Are there
common features groups and/or different lines? (iii) Are there any unobserv-
able leverage of one or more temporal phenomena to explain? (iv) Is a response
series systematically explained by the same inputs along the entire length of the
series? (v) Which are weights of these inputs? (vi) Are there similar behaviors
in the same time series? (vii) Are there atypical behaviors in the same time
series?

We have proposed approaches to address (i) and (ii) in Derquenne [6], (iii)
in Derquenne [7] and, (iv) and (v) in Derquenne [8]. The objective of this
paper is to introduce a method to answer to (vi) and (vii). Section 2 below,
formalizes this approach, and Section 3 is devoted to an application on the
prices of the energy market, and finally the last section concludes on inputs,
potential improvements of the proposed approach, as well as future researches
and applications based on the segmentation of time series.
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2 Detection of similar and atypical behaviors

In case of irregular time series, stock prices (energy market, CAC40, FTSE100,
GDP, etc.), it can be interesting to detect similar intervals time (segments)
where the response follows same behavior (fig. 1.a). The proposed solution is
based on clustering of segments τ1, ..., τm, ..., τM . Indeed, a cluster containing
several segments is related to a similar behavior of parts of time series. On the
other hand, if we analyse regular times series (fig. 1.b), such as temperature
curve, detection of atypical segments can be fruitful to identify a problem on
the data. The detection process is based on statistical tests of comparison of
means.

Fig. 1. (a) Irregular time series (b) Regular time series

2.1 The model and its inference

Let’s be a time series (Yt)t=1,T , we assume that it decomposes according to the
Gaussian heteroskedastic linear model (or variance components) [11] as follows:

Yt =

M∑
m=1

(β
(m)
0 + β

(m)
1 t+ σmεt)1[t∈τm] (1)

where (β
(m)
0 , β

(m)
1 ) ∈ R2 and σm > 0 are respectively the parameters of level,

slope and dispersion for the segment τm and εt follows a standard Normal. This
model has a structure of piecewise regression.

The number of observations per segment τm is denoted nm with
∑M
m=1 nm = T .

Each segment τm contains the set of values: Yt for t = Um−1 + 1 to Um, where
Um = Um−1 + nm, finally UM = T . There are so 3M parameters to be es-
timated, knowing the number of segments M is unknown. The segmentation
approach proposed in Derquenne [3], [4] and [5] is entirely unsupervised. Fi-
nally, to estimate the Gaussian heteroskedastic linear model we have used the
REstricted Maximum Likelihood estimator (REML).
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2.2 Detection of similar segments by clustering method

The proposed method is based on a hierachical ascending clustering controlled
by a statistical stopping rule. Indeed, a statistical test of similarity of clusters
will allow to aggregate or not two groups of segments. The process is as follows.

First step: M segments in M clusters

The dissimilarity dkl between two clusters Gk = {τk} and Gl = {τl} (only
one segment by cluster for the first step) is calculated with the p-value of
statistical test associated to the comparison of regression coefficients by couple
of segments. A preliminary test is necessary to verify the homoskedasticity of
residual variances associated to two segments τl and τk.

H0 : σ2
k = σ2

l vs H1 : σ2
k 6= σ2

l .

The statistics used is:

Fobs = σ̂2
k/σ̂

2
l (2)

where σ̂2
k and σ̂2

l are respectively the estimated residual variances associated to
each segments τk and τl. Under H0, (2) is distributed as a Fisher distribution
F (nk − 2, nl − 2).

If the p-value obtained is less than α fixed, for instance: 0.05 or 0.10, the error
variances of τk and τl are different.

There are two tests to aggregate two clusters. The first one compares two
segments with slope and intercept coefficients, whereas the second one tests
only the equality of intercept coefficients of two segments.

For the first test, the hypothesis of equality of regression coefficients are as
follows:

H0 :
(
β

(k)
0 = β

(l)
0

)
vs H1 :

(
β

(k)
0 6= β

(l)
0

)
H0 :

(
β

(k)
1 = β

(l)
1

)
vs H1 :

(
β

(k)
1 6= β

(l)
1

)
In addition, this test depends on result of the previous homoskedasticity test
(2). If the null hypothesis of this last one is rejected then the statistic of
comparison of regression coefficients is:

t
(k,l)
1 =

[
β

(k)
1 − β(l)

1

] [ σ̂2
k

nkS2
k

+
σ̂2
l

nlS2
l

]−1/2

(3)

and

t
(k,l)
0 =

[
(β

(k)
0 − β(l)

0

] [ σ̂2
k

nk
+
σ̂2
l

nl

]−1/2

(4)

where S2
k and S2

l are respectively the variance of the centered times index of
the segments τk and τl.
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If the homoskedasticity test is kept then σ̂2
k and σ̂2

l are replaced by σ̂kl
2.

Under H0, t
(k,l)
1 and t

(k,l)
0 follow a Student distribution with nk+nl−4 degrees

of freedom. If we suppose that there are M1 segments which have slope and
intercept coefficients, then this test is made for all couple of segments. We

obtain M1(M1 − 1)/2 p-values:
(
p

(k,l)
0 , p

(k,l)
1

)
.

For the second test, there are M0 segments which are only an intercept coeffi-
cient, the hypothesis are the following:

H0 :
(
β

(i)
0 = β

(j)
0

)
vs H1 :

(
β

(i)
0 6= β

(j)
0

)
and the statistic is:

t
(i,j)
ȳ = [ȳi − ȳj ]

[
σ̂2
i

ni
+
σ̂2
j

nj

]−1/2

(5)

Under null hypothesis, this statistic follows a Student distribution with ni+nj−
2 degrees of freedom. As for the previous test, σ̂2

i and σ̂2
j are replaced by σ̂ij

2,
if the homoskedasticity is not rejected. In addition, we obtain M0(M0 − 1)/2
p-values.

Remarks: M = M0 +M1.

The stopping rule is the following, if

p
(1)
min = min

(k,l),(i,j)

[
min

(
p

(k,l)
0 , p

(k,l)
1

)
, p

(i,j)
ȳ

]
> α (6)

then the two associated segments τk and τl (or τi and τj) are aggregated to
constitute a cluster G(1). Finally there are M − 1 clusters. However, if H0 is
rejected at this first step, the M clusters (M segments) are not separable.

Second step: M − 2 clusters with one segment in each one and one
cluster with 2 segments

The same process of statistical tests is applied on the M − 2 clusters, but
only G(1) is compared to M1 − 2 segments if this segment has the slope and
intercept regression coefficients or to M0 − 2 segments, if G(1) has only an
intercept parameter. It is an efficient way to reduce the time computing. The
stopping rule based on the minimum of p-values (6) is used to decide if the
process of aggregation of clusters continues or not. If the process continues
then we have two cases. For the first one, we have two clusters containing two
segments each ones G(1) (coming from first step) and G(2) (coming from second
step) and M − 4 clusters owning one segment each one. For the second case,
we have one cluster which contains three segments denoted: G(2) =

(
G(1), τk

)
and M − 3 clusters having one segment each one.

The following steps of aggregation of clusters

This process continues while the minimum of p-values is greater than a fixed α.
The more α is small, the more number of clusters is small. Finally, we obtain

M̃ clusters of segments
(
G(1), ..., G(m), ..., G(M̃)

)
which are similar in terms of

behavior.
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2.3 Detection of abnormal segments

We define an abnormal segment as a statistically far from the other segments.

The process of detection of abnormal segments is the following. We compare
each segment τk to the M1 − 1 or M0 − 1 other segments depending on their
structure (slope and intercept coefficients or only intercept coefficient). This
comparison is made with the tests introduced in subsection 2.2. Then for each
constant segment for example, we obtain M0 − 1 p-values, then we apply a
multiple test approach. For the segment τk, there are M0 − 1 null hypothesis
to test:

For H(0,l) :
(
β

(k)
0 = β

(l)
0

)
vs H1 :

(
β

(k)
0 6= β

(l)
0

)
; for l = 1 to M0 − 1 and l 6= k.

For each test l, if p-value≤ α, then H0,l is rejected.

When we use a multiple test approach, there are approximately 100α% of false
positive results, then a simple rule to reject overall the null hypothesis is that
the observed percentage of rejection is greater than 100α%. The mean rate of
false positive penalized introduced by Benjamini et al. [2] can be used. These
authors show that the mean rate of false positive is approximatively equal
to π0α, where π0 represents the expected proportion of true null hypothesis.
These authors give an estimation of the number of rejected tests, such as:
k̂ = max{k : p(k) ≤ αk/m}, where p(k) is the kth p-value in increasing order
and m is the number of tests. Then the estimated proportion of rejected null
hypothesis is equal to π̄(k̂) = k̂/m. Then it will be interesting to compare the
evolution of proportion of observed rejected tests to the evolution of proportion
of expected rejected tests. Whenever the observed proportion is greater than
the expected proportion, then intersection value corresponds to significant level
of multiple test.

The more intersection value is high, the more proportion of observed rejected
tests is high. In other words, the more intersection value is high, the more the
segment is abnormal.

3 Application on energy management data

We apply our methodology on two databases of energy management: market
prices and marginal costs. The name of these data is not given for confidential
reasons.

3.1 Detection of similar behaviors in market prices

The first data corresponds to daily evolution of an energy market prices named
Y2. The figure 2 shows the observed data (in blue) and its segmentation (in red).
This one contains 21 increasing, decreasing and constant segments. The goal
is to detect similar behaviors among this evolution of market prices, then we
apply methodology of hierarchical ascending clustering developed in subsection
2.2. We have chosen α = 0.01.
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Fig. 2. Evolution of observed market prices and its segmentation

The figure 3 shows the clustering tree. The first both segments aggregated are
τ5 and τ21 (in cyan) and their dissimilarity is d(5,21) = 0.15 denoted ”1-pvalue”
on x−axis. Then τ15 and τ16 are mixed at a dissimilarity equal to 0.47 (purple
color). We can remark that this cluster is aggregated with the segment τ19.

Fig. 3. Clustering tree

The figure 4 shows 14 clusters of 21 segments with α = 0.01. For instance,
the cluster 4 (red dot) contains two constant segments τ4 and τ14 whereas the
cluster 11 (purple cross) has two increasing segments τ15 and τ16.
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Fig. 4. Clustering of segments with α = 0.01

Finally, the figure 5 gives 14 clusters on the original data. The circled segments
correspond to clusters with at least two segments, whereas the others contain
only one segment.

Fig. 5. Evolution of observed market prices and its clustering of segments (α = 0.01)

The results obtained of this energy Y2 provide potential information to analyse
behavior market prices, not only for this energy, but also with respect to others
energy.
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3.2 Detection of abnormal behaviors in marginal costs

The figure 6.a (top-left) shows the hourly evolution of marginal costs on three
weeks (in blue) and we remark a daily periodicity. 75 change points have been
detected (76 constant segments) and are represented in red on the figure 6.b
(top-right). The evolution of observed ordered p-values (in red) and expected
p-values (in blue) in figure 6.c (bottom-left) show an intersection with an high

level of the order k for the segment number 12. Indeed, π̄(k̂) = 0.96 with
α = 0.01. This segment is very atypical. At the opposite, on figure 6.d (bottom-

right) the segment number 57 is the most ”normal” because π̄(k̂) = 0.

Fig. 6. (a) Marginal cost (b) Change points (c) Atypical seg. (d) No atypical seg.

The figure 7.a (top) shows 76 constant segments of marginal costs (mean of
marginal costs). However, it is not possible to detect statistically, if there are
atypical segments.

On the figure 7.b (bottom), confidence interval is provided for each segment.
For the atypical segment 12, the confidence interval (95%) is very narrow.
Notably its lower bound is greater than the upper bound of the all others
confidence intervals. At the opposite, the confidence interval of segment 57 is
very large and contains all means of others segments. In addition, the segment
22 has the largest confidence interval, whereas the segments 52, 71, 72, 75 and
76 have the more little for a marginal cost of 0.
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Fig. 7. (a) 76 segments of marginal cost (b) Segments with confidence intervals

4 Contribution, applications and further researches

The two approaches introduced in this paper allow to detect similar behaviors
in irregular time series and atypical behaviors in regular time series. These two
approaches are applied on segmented time series. The first ones consists in ap-
plying a hierarchical ascending clustering to aggregate the segments, in using a
controlled stopping rule depending of a threshold α associated to the compar-
ing regression coefficients between two segments. The detection of abnormal
behaviors uses the same tests of comparing regression coefficients between seg-
ments. For each one, M − 1 tests are applied and the method of multiple tests
is used to measure the proportion of rejected tests. If this one is abnormally
high then the segment is atypical. The two applications in section 3, have
provided interesting results not only in terms of ability to detect similar or
abnormal behaviors in time series, but also it gives a very fruitful information
for the experts in energy management. The contribution of two approches is
particulary important when there are lot of time series to analyse. Indeed,
in frame of simulator in domain of energy management, a task is to detect
anomalies of simulated time series. However the number of output time series
can be very high. In this case, it is impossible to analyse these data one by
one. Then the approach proposed in section 2.3 is very interesting to reduce
the time computing of analysis of data. Our further researches will develop an
approach to detect similar and atypical behaviors on multivariate time series.
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Valuation of American Put Options with
exercise restrictions

Domingos Djinja1
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Abstract. Many authors have been researching American Put Options, particularly
on seeking an explicit formula for it or numerical methods with better performances.

In this paper we price American put options with exercise restrictions on week-
ends. The basic idea relies on removing weekends and shrinking the interval (useful
days). Then, jumps may arise on the stock price. Thus, some theory of jump diffusion
process is used on pricing these options both analytically and numerically. On this
last, an extension to the algorithm presented by B. Kim et al (2013) is presented in
order to get the corresponding optimal exercise boundary.
Keywords: American Options, Martingale, Partial differential equation, Finite dif-
ference method, Jump diffusion Processes, Early exercise, Optimal Exercise boundary,
Critical stock price.

1 Introduction

American options are commonly traded through the world. It is well known
that they are a kind of optimal stopping problems since they can be exercised at
any time during its lifetime. Moreover, they can be formulated as free boundary
value problems. On Peskir & Shiryaev [6] for instance, the conversion from an
optimal stopping to a free boundary value problem is explained.

We consider American put options under standard Black-Scholes conditions
but with exercise restrictions on weekends. The idea is to remove weekends and
shrink the interval. Then, jumps may arise on the stock price. Thus, we use
some theory of jump diffusion processes on Cont & Tankov [2] to hedge and
price these options. Moreover, in order to get the critical price we extend the
algorithm presented by B. Kim et al [5] which relies on solving numerically the
Black Scholes equation.

2 The stock price for the problem in analysis

We regard a problem of pricing an American put with exercise restrictions on
weekends. We suppose that have a standard brownian motion [W (t)] under a
complete probability space (Ω, F , P ) and (Ft)t≥0 is a filtration which satisfy

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST
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the usual conditions. Furthermore, we consider a financial market with a con-
stant risk-free interest rate r > 0 and a stock price S(t) follows a geometric
brown motion.

In order to deal with the exception of exercising the American put option
during weekends, we suppose the following cases:

1. The stock price is traded continuously at any time;
2. The stock price cannot be traded during the weekends but during the week

it is continuously traded.

Case 1: The stock price is traded continuously at any time.

Suppose that we the stock price is a geometric brownian motion, it is continuous
and follows the dynamic:

dS(t) = µSdt+ σSdW (t), t ∈ [0, T ],

where µ is the drift, σ is the volatility, W (t) is a standard brownian motion.
Since we are not allowed to exercise the option during the weekends, we will

remove the weekends and consider the stock price during the week. Therefore,
we may have jumps from Friday to Monday since the price may change during
the weekend. As S is a geometric brownian motion, with σ, µ constants, by
Björk [1], we have

S(t2) = S(t1−) exp
{

(µ− σ2/2)(t2 − t1) + σ[W (t2)−W (t1)]
}
,

for t1 < t2 and µ, σ constants.
Thus, if we regard that there are n weekend over the interval [0, T ], and we

order them as

(τ1, τ2), ...., (τ2n−1, τ2n).

The jump size at each interval is given by

Yi = exp{(µ− σ2/2)(τ2i − τ2i−1) + σ[W (τ2i)−W (τ2i−1)]}.

By removing the weekends on the stock price, we will have the following dy-
namic

dS(t)

S(t−)
= µdt+ σdW (t) + dJ(t), t ∈ [0, T ] \ {∪ni=1(τ2i−1, τ2i)},

where

J(t) =

n(t)∑
i=1

(Yi − 1), n(t) is the number of weekends up to time t

and

Yi = exp{(µ− σ2/2)(τ2i − τ2i−1) + σ[W (τ2i−1)−W (τ2i−1)]}.
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In other to simplify notations and for calculations proposes, We regard that
the stock price has the dynamics:

dS(t)

S(t−)
= µdt+ σdW (t) + [Y (t)− 1]dn(t),

where n(t) is one if we have jump at time t (i.e. if t = τ2j the time just after a
weekend), it is zero otherwise and S(t−)[Y (t)− 1] represents the jump at time
t. We suppose that dW and dn are independent. Therefore,

S(t) = S(0) ∗ exp

(µ− σ2/2)t+ σW (t) +

n(t)∑
i=1

(Yi − 1)

 . (1)

In order to avoid arbitrage, We need the model to be a martingale. Without
removing the weekends we have the standard Black-Scholes model which is
complete and with a unique martingale measure. By removing the weekends
and shrinking the time interval we may have a different scenario, i.e, some jumps
on the stock price may appear at known dates. Since we know that e−rtS(t) is
a martingale (in this case µ = r on (1)), it should be natural to it keep so even
with the referred possible jumps since the stock price is continuously traded.
Then, the jumps must be a martingale. So,

E[S(τi−)Yi(t)|Fs] = S(τi−), s < t, i = 1, ..., n(T ),

{Ft}t≥0 is the information flow up to time t. The last formula is equivalent to

E[Yi(t)|Fs] = 1. (2)

Thus,

e−rtE[S(t)|Fs] = e−rt · S(0) · ert · e
[∑n(t)

i=1 (E[Yi|Fs]−1)
]

= S(0).

From condition (2), follows that the interest rate should be zero along the
weekend. Therefore,

Yi = exp{−σ2/2(τ2i − τ2i−1) + σ[W (τ2i−1)−W (τ2i−1)]}.

Remark 21 The market is still complete since the stock is traded continu-
ously and the adjustments that we do only are made in order to compute the
option price which cannot be exercised during weekends.

Case 2: The stock price cannot be traded during the weekends but
during the useful week days it is continuously traded.

As before, we suppose that the stock price is a geometric brownian motion and
has the following dynamic:

dS(t)

S(t−)
= µdt+ σdW (t), t ∈ [0, T ] \ {∪ni=1(τ2i−1, τ2i)},
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where (τ2i−1, τ2i) i = 1, 2, ..., n(T ) are weekends.
Since it is not traded during the weekends, after a weekend we may have a

different value from the last one we end up with on the week before. There are
many reasons that may be in the origin of this change, for instance, a political
decision, a natural catastrophe, a terrorist attack, of course, depending on
the asset on trading. Therefore, it is more convenient to consider that there
will be a jump from Friday to Monday. Then, we have more random sources
than traded assets. So, the market is incomplete and we may have then many
martingale measures. However, if we suppose that the jumps are given by
a stochastic variable which has log-normal distribution since the stock price
has log normal distribution during the useful week days, we would have a bit
similar case with the previous one. Thus, the value of the stock price just after
a weekend is

S(τ2i+) = S(τ2i−1−)ea+b·Z(t),

where a, b are constants and Z(t) ∼ N(0, 1), i.e, Z(t) has standard normal
distribution.

Therefore, a similar argument as on the previous case to avoid arbitrage,
we must have the jumps to be martingale

E[S(τ2i−1−)ea+b·Z(t)|Fs] = S(τ2i−1−), s < t

which implies that
E[ea+bZ(t)|Fs] = 1.

Consequently, we have a = −b2/2. Since the jumps should reflect the stock
price behavior during the weekend if it is traded along this time, then the
natural value for b is the corresponding coefficient of a standard brownian
motion that we have along the week which is

b = [W (ti+1)−W (ti)] · σ, ti < ti+1.

By introducing these possible jumps under martingale measure in S(t), we
have

S(t) = S(0) · exp

(r − σ2/2)t+ σW (t) +

n(t)∑
i=1

(e−b
2/2+bZ(τ2i+ ) − 1)

 ,
where

b = σ · [W (τ2i)−W (τ2i−1)], i = 1, 2, .., n(T ).

Remark 22 Both cases have similar (equal) formulas. However they are
different, on the first one the market is complete and the second one not.
Nevertheless, by choosing the martingale measure as we did on both cases, we
have the same price process. Therefore, from now on we will treat them as a
unique case, i.e, the stock price is given by

S(t) = S(0) · exp

(r − σ2/2)t+ σW (t) +

n(t)∑
i=1

(Yi − 1)

 .
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where

Yi = exp{(−σ2/2)(τ2i − τ2i−1) + σ[W (τ2i)−W (τ2i−1)]}, i = 1, 2, ..., n(T ).

3 The pricing problem

We will now price an American option when the stock price is given by the
last two cases and suppose that the strike price is K. We regard that P (t, S)
is the option price. By applying Itô formula for diffusions with jumps on Cont
& Tankov [2], we have:

dP =

(
∂P

∂t
+ µS

∂P

∂S
+

1

2
σ2S2 ∂

2P

∂S2

)
dt+ σS

∂P

∂S
dW (t) + [P (t, S(t))− P (t, S(t−))]dn(t).

Let us now make a ∆-hedged portfolio and we regard δ =
∂P

∂S
:

Π(t) = P (t)− δ · S(t).

We have thus,

dΠ(t) = dP − δdS =

(
∂P

∂t
+ µS

∂P

∂S
+

1

2
σ2S2 ∂

2P

∂S2

)
dt+ σS

∂P

∂S
dW (t)+

+[P (t, S(t))− P (t, S(t−))]dn(t)− ∂P

∂S
S(µdt+ σdW (t)+

+(Y − 1)dn(t)) =

=

(
∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2

)
dt+ [∆P (t, S(t))− δ ·∆S] dn(t).

In order to avoid arbitrage, the expected return of the hedged portfolio
must be equal to the value of the portfolio invested at risk-free interest rate r.
Therefore,

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ E[∆P (t, S)− δ∆S(t)|Fs] · I(τ2i−1,τ2i)(t) = r(P − δS),

s < t, I(a,b)(t) is the indicator function of the interval (a, b). Since each Yi − 1
is a martingale, we have

E[δ∆S(t)|Fs] = E[δS(τ2i−1−)(Yi − 1)|Fs] = δS(τ2i−1−)E[Yi − 1|Fs] = 0.

Thus, for the e−rtP (t, S) be a martingale, we impose the condition

E[∆P (t, S(t) · I(τ2i−1,τ2i)|Fs] = 0, i = 1, 2, ..., n(T ),

which is equivalent to

E[P (τ2i−1− , S(τ2i−1−)Yi)|Fs] = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ).
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Therefore, the pricing problem becomes

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, t ∈ (0, T )

E[P (τ2i−1− , SYi)|Fs] = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ),

P (T, S) = max{K − S, 0}.

(3)

We will have both analytical and numerical valuation for this problem.

3.1 Analytical valuation

We will now derive a formula for the option price under the stock price defined
on the previous section. Consider an American put on the corresponding asset
with strike priceK and maturity time T . We consider the value of the American
put at time t = T − t′ as PA(t′, S), which is taken on the space D = {(t′, S) :
S ∈ (0,∞), t′ ∈ [0, T ]}. There is a critical stock price S∗ (exercise boundary)
at each time t ∈ [0, T ] such that it is optimal to exercise the option when
S ≤ S∗ and it should continue otherwise. Thus, the American put can be
written as

PA(t′, S) =

K − S(t), if S(t) ≤ S∗(t)

PA(t′, S) > K − S(t), otherwise ,

where t = T − t′.
We rewrite the pricing problem as

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, t ∈ (0, T ) (4)

satisfying

E[P (τ2i−1− , SYi)|Fs] = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ), (5)

with the terminal and boundary conditions (also known as smooth-pasting
conditions) 

P (T, S) = max{K − S, 0}

lim
S→∞

P (t, S) = 0

lim
S→S∗

P (t, S) = K − S∗

lim
S→S∗

∂P

∂S
(t, S) = −1.

(6)

Following the steps of Gukhal [4], we proved the following theorem:
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Theorem 31 The solution for the problem above is given by

PA = PE +Kr

 τ1∫
0

e−rtE(I{S≤S∗})dt+

n(T )∑
i=1

τ2i−1∫
τ2i

e−rtE(I{S≤S∗})dt

−
−
n(T )∑
i=1

E[I{S>S∗,Y S≤S∗}[K − Y S(τ2i−1−)− P (S(τ2i−1))]]−

−
n(T )∑
i=1

E[I{S≤S∗, Y S>S∗}[P (YiS(τ2i−1−))−K + S(τ2i−1−)]],

where PE is the corresponding European option, T is supposed to be a Friday
and τi correspond to the a beginning or a end of a weekend.

Remark 31 The solution is a sum of an European put, a premium for early
exercise and some negative components. These last components correspond to
the cases when the stock price jumps from the exercise region to continuation
region and vice-versa without across the boundary. We can interpret it as a
loss for not exercise the option at that time.

The critical stock price is given when S(t) = S∗(t), thus it is the solution
to the following equation

PA(S∗, t) = PE(S∗, t) +Kr

t∫
0

e−rξE(I{S(t)≤S∗(t−ξ)})dξ−

−
n(t)∑
i=1

E[I{S>S∗,Y S≤S∗}[K − Y S∗(τ2i−1−)− P (S∗(τ2i−1))]]−

−
n(t)∑
i=1

E[I{S≤S∗, Y S>S∗}[P (YiS
∗(τ2i−1−))−K + S∗(τ2i−1−)]].

3.2 Numerical valuation

We will rely on the numerical method presented by Kim (2013) et al [5] to price
this American put option with jumps. We will use Bermudan options, regard-
ing that it is only exercisable at discrete time points (days) which (τ2i−1, τ2i)
i = 1, 2, ..., n(T ) correspond to weekends. First of all, we will make some
transformations on the expectation of the price variation along the jumps. We
have,

E[P (τ2i−1− , SYi)|Fs] = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ),

then if we suppose that the price just after the jump is equal to the one just
before the jump we will have

P (τ2i−1− , SYi) = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ).
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Therefore, regarding β(t, T ) the critical stock price, we have the following
free boundary problem:

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, t ∈ (0, T ), S ∈ (β, ∞)

satisfying

P (τ2i−1− , SYi) = P (τ2i−1− , S(τ2i−1−)), i = 1, 2, ..., n(T ),

moreover

P (T, S, T ) = max{K − S, 0}, β(T, T ) = K,

and the boundary conditions

lim
S↑∞

P (t, S, T ) = 0,

lim
S↑β

P (t, S, T ) = K − β(t, T ),

lim
S↓β

∂P (t, S, T )

∂S
= −1.

For a numerical treatment, we need to generate the jumps. Since they con-
tain brownian motion or normal distribution in their formula and a determinis-
tic part, we only need to generate brownian motion paths. We chop the interval
[0, T ] in N equal subintervals such that tn = n∆t, n = 0, 1, ..., N , ∆t = T

N . We
interpret each tn as one day. By using the random walk construction in P.
Glasserman (chapter 3.2, [?]), we have

W (ti+1) = W (ti) +
√
ti+1 − tiZi+1, i = 0, ..., N − 1,

where 0 = t0 < t1 < ... < tn, W (0) = 0, Z1, Z2, ..., Zn are independent normal
distribution. Thus,

W (ti+1)−W (ti) =
√
ti+1 − tiZi+1, i = 0, ..., N − 1.

We have therefore,

Yi = exp[−σ2/2(τ2i − τ2i−1) + σ
√
τ2i − τ2i−1Zi]

= exp

[
3T

N
(−σ2/2) + σ

√
3T

N
· Zi

]
, i = 1, 2, ..., N,

where Z1, Z2, ..., Zn are independent standard normal random distribution.
At each weekend, we can simulate a sample of jumps and determine its mean.
Then, we regard the sample mean as a jump at each weekend.

We follow then the algorithm for pricing a standard American put option
(in Kim 2013 cited above), but with some adjustments because of the possible
jumps on the stock price. Let Ωe, Ωc be the exercise and continuous region,
respectively, (Smin, Smax) the interval of the stock price. By setting Q =√
P −K + S, we see that Q = 0 on the free boundary and Ωe.
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The method consists on solving the backward time Black-Scholes equation.
We consider a variable weekdayforT, the starting useful day T as the number
of days backward up to Sunday. We chop the interval of the stock price,
[Smin, Smax] in M equal subintervals, such that Sni = Si(tn) i = 0, 1, 2, ...M ,
and ∆S = Smax−Smin

M ,

Sni = βn + ρ∆S + i∆S, n = N, N − 1, ..., 0, i = 0, 1, ...,M,

0 < ρ < 1, (constant)

and the option price P (tn, S
n
i , T ) = Pni . Sni is computed after the free boundary

βn+1 be computed, and βN = K. Then we proceed by following the steps:

1. Determine the option price Pn−1i , i = 1, 2, ...,M explicitly from Pni . The
price Pni of the American put option is a discrete solution to the discrete
Black Scholes equation:

Pni − P
n−1
i

∆t
+

1

2
σ2S2

i

Pni+1 − 2Pni + Pni−1
∆S2

+ rSi
Pni+1 − Pni

∆S
− rPni = 0

for n = N, N − 1, ..., 1, Si = Sni , i = 1, 2, ...,M − 1,

PNi = 0 for i = 0, 1, 2, ...,M.

2. Find Pn−10 by solving:

Pn0 − Pn−10

∆t
+

1

2
σ2S2

0

 Pn
1 −P

n
0

∆S − Pn
0 −P

n
−1

ρ∆S

∆S+ρ∆S
2

+ rS0

(
Pn1 − Pn−1
∆S + ρ∆S

)
− rPn0 = 0

Pn−1 = K − βn.

Assuming the computational domain is large, we impose zero boundary
condition
PnM = 0, n = N, N − 1, ..., 0.

3. Determine βn−1 =
Sn−10

1 + ξ
, where ξ is the solution for the equation

ξ3 −
{

ln
Sn−10

βn
+ (σ2 + r)∆t

}
ξ2 + 3σ2∆tξ − 3σ2∆t√

rK
Q(tn−1, S

n−1
0 , T ) = 0,

(7)

which has a unique real root ξ ∈ (0, 1).
4. Change the values of Sn−1 from old Sn−1i = βn + ρ∆S + i∆S to new
Sn−1i = βn−1 + ρ∆S + i∆S for i = 0, 1, 2, ...,M . If we archive a weekend
day (Sunday), then we determine the jump (we simulate n jumps and take
expectation), we ignore Sunday and Saturday. Then, we determine the
value on the previous useful day, Friday by

Sn−3j = Snj /Yn, j = 0, ...,M,
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and we set the price on Friday by

Pn−3j = Pnj

for j = 0, ...M − 1. Then, we determine the value of β[n− 3] from β[n] by
solving the equation (7) and by setting

βn−3 =
Sn−30

1 + ξ
.

If we finish step 4, then we repeat the running step 1 through 4 until t0.

A simulation with the following data: T = 0.5, σ = 0.2, r = 0.05, K =
1, ρ = 0.4, MaxS = 30 give the plots in Fig. 1:

 

Fig. 1 Optimal exercise boundary for the standard case and the one with
exercise restrictions on weekends

Remark 32 We have a continuous line during the useful week days and we
set 0 along the weekends. When there is no jump, the line looks continuous.
The jumps are random but they may arrive only on weekends (where we set
the critical stock price as zero).

4 Conclusion

We found a similar result compared to the general cases of jump diffusion
models. The critical stock price is peace-wise continuous and have similar
behavior during useful week compared to the standard case. However, it is
bigger than the standard case. Thus, there are more chances to exercise earlier
the option on the case with restriction on weekends than the standard one.
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Abstract. In this work lower bounds for the estimation of a real-valued parameter
α of parametric models in the presence of a nuisance parameter β are presented. In
particular, an optimal estimating function which provides an estimator for α with the
smallest possible variance was developed, when for the elimination of the nuisance
parameter an estimator which is independent of the sample is available. The resulting
estimating function is better as compared with Stein’s adaptive score function.
Keywords: Estimating functions; nuisance parameters; adaptive score function.

1 Introduction

Let Pθ, θ ∈ Θ be a family of probability measure on a measurable space (X ,A),

where Θ is an open subset of R2. Let also f(x; θ) =
dPθ
dµ (x) be the probability

density function of Pθ in terms of a σ-finite measure µ. We write θ = (α, β)t

where α, β ∈ R. The aim is to estimate the structural parameter α while the
second part β is considered as nuisance parameter. Let us use the notation

J(x; θ) = (J1(x; θ), J2(x; θ))t = (
∂ log f(x; θ)

∂α
,
∂ log f(x; θ)

∂β
)t

where the corresponding information matrix is

I(θ) = E(J(x; θ)J t(x; θ)) =

[
I11(θ) I12(θ)
I21(θ) I22(θ)

]
.

The existence of optimal estimating function(O.E.F.) for α in the presence of
nuisance parameter β has been studied by many authors. Stein[10] introduced
the concept of efficient score function

Ĵ1(x; θ) = J1(x; θ)− I12(θ)I−122 (θ)J2(x; θ). (1)

Neyman[9], Bickel et al.[2] proved that the use of a
√
n consistent estimator

β̂n for β results to an asymptotically efficient estimator for α with asymptotic
variance

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST
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Î(θ) = I11(θ)− I12(θ)I−122 (θ)I12(θ). (2)

Lindsay[8], Liang[7] defined as Fisher information for α in the presence of β
the quantity

I(α;β) = Infc∈RE[
∂ log f

∂α
− c∂ log f

∂β
]2. (3)

Bhapkar[1] generalized (2) for the multivariate case. The optimality is
achieved for c = I12I

−1
22 . Thus the optimal estimating function for the esti-

mation of α in the presence of β is Stein’s efficient score (1). Let us assume

that an estimator β̂m for β from another sample y = (y1, y2, ..., ym) is available
where the total sample of size n+m consists of dependent observations.
We emphasize that we do not demand the knowledge of the sample y but only

of the estimator β̃m. The problem we face is how to use the estimator β̃ in
the estimation of α. Provided that the sample y is not available, we can not
write the likelihood function in order to proceed in the usual way. With the
use of the sample x we can have the maximum likelihood estimator β̂n of β.
the aim of the paper is to find the O.E.F. for the estimation of α when for the
elimination of β we shall use a pooled type estimator

β̂n+m = w1β̂n + w2β̃m (4)

of the following structure

(i) w1 + w2 = 1 where 0 < w2 ≤ 1.The case w2 = 0 correspond to the case
where we estimate α and β from the same sample and the O.E.F. is (1).

(ii)The estimator β̂n is the maximum likelihood estimator for β from the sam-
ple x.
(iii) The estimator β̃m is a consistent and asymptotically normal estimator for
β based on the sample y with asymptotic variance v.
(iv) Concerning the sample sizes we suppose that they converge to infinity in
such a way that

lim
n,m→∞

(n/m) = r, where 0 ≤ r ≤ ∞.

The term optimal estimating function understood as the estimating function
(E.F.) which provides as a root a consistent and asymptotically normal dis-
tribution with the smallest possible asymptotic variance. The search of the
O.E.F. will take place within the set Gθ which includes the estimating func-
tions g(x; θ) which satisfy the following regularity properties ( Godambe [3],[4])
R1.Eg(x; θ) = 0, for all θ ∈ Θ.
R2. Eg2(x; θ) <∞, for all θ ∈ Θ.
R3. g(x; θ) is continuously differentiable for θ ∈ Θ.
R4.
∫
g(x; θ)f(x, θ)dx is differential with respect to θ under the integral sign.

R5. Eθ(
∂g
∂α ) 6= 0 and Eθ(

∂g
∂β ) 6= 0 for all θ ∈ Θ.

R6. There are Mi(x; θ), i = 1, 2, 3 with EθMi(x; θ) < ∞ such that in a
neighborhood B(θ, r) of the true value θ holds that
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| ∂
2g

∂α2
| < M1(x; θ), | ∂

2g

∂β2
| < M2(x; θ), | ∂

2g

∂α∂β
| < M3(x; θ).

For such a g ∈ Gθ we consider the equation

n∑
i=1

g(xi;α, β̂n+m) = 0 (5)

which will give as a solution and estimator for α.
In terms of the notation we denote the maximum likelihood estimator of θ =

(α, β) as θ̂n = (α̂n, β̂n). Also D stands for the determinant of the information
matrix I(θ) and I2×2 for the 2×2 identity matrix. We also define the following
column matrices

C(θ) = (C1(θ), C2(θ))t = lim
n→∞

cov
( 1√

n

n∑
i=1

g(xi; θ),
√
n(θ̂n−θ)

)
and R(θ) =

[
cov(J1, g)
cov(J2, g)

]
.

The symbol � denotes the end of a proof.
The rest of the paper is organized in the following way. In Section 2 the

main results are developed, in Section 3 the results are discussed. Finnaly in
Section 4 we apply the results for the Gamma distribution.

2 Main Results

2.1 Consistency
Theorem 1. Let g(x; θ) be an estimating function from Gθ which satisfies the
following conditions
(1) Eθg(x; θ′) = 0 only when θ = θ′

(2) the E.F. g is a monotone function for α.
If β̃m is a consistent solution for β then the equation

∑n
i=1 g(xi;α, β̃m) = 0

possesses a consistent solution for α.
Proof.

Let (αo, βo) be the true value and ε > 0. Let also assume that the g(x;α, β)
is decreasing for α. Since E(αo,βo)g(X;αo, βo) = 0 from the monotonicy of g
we have

1

n

n∑
i=1

g(xi;αo + ε, β̃m)→ E(αo,βo)g(X;αo + ε, βo) = c < 0 as n,m→∞.

which means that

P [| 1
n

n∑
i=1

g(xi;αo + ε, β̃m)− c| < ε]→ 1 as n,m→∞

For ε = −c we conclude that

P [−ε < 1

n

n∑
i=1

g(xi;αo + ε, β̃m) < 0]→ 1 as n,m→∞
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or

P [
1

n

n∑
i=1

g(xi;αo + ε, β̃m) < 0]→ 1 as n,m→∞. (6)

In a similar way from the relation

1

n

n∑
i=1

g(xi;αo − ε, β̃m)→ E(αo,βo)g(X;αo − ε, β) = c < 0 as n,m→∞

we obtain

P [
1

n

n∑
i=1

g(xi;αo − ε, β̃m) > 0]→ 1 as n,m→∞. (7)

Let us define the sets

Sn,m =

{
(xn, ym) :

1

n

n∑
i=1

g(xi;αo + ε, β̃m) < 0,
1

n

n∑
i=1

f(xi;αo − ε, β̃m) > 0

}

and

An,m =

{
(xn, ym); a solution α̂n exists of :

1

n

n∑
i=1

g(xi;α, β̃m) = 0, αo − ε < α̂n < αo + ε

}

From (6) and (7) we have that

P (Sn,m)→ 1. (8)

Since Sn,m ⊂ An,m from (8) we have that

P (An,m)→ 1. (9)

Thus
P(αo,βo)(αo − ε < α̂n < αo + ε)→ 1.

The proof is similar when we asume that g(x;α, β) is increasing for α. �

Lemma 2.1 It holds that

C(θ) = I−1(θ)R(θ). (10)

Proof. Expanding in Taylor series we obtain

1√
n

n∑
i=1

J(xi; θ) = − 1

n

n∑
i=1

∂J(xi; θ)

∂θt
√
n(θ̂n − θ) + op(1).

Applying the central limit theorem at the expression

1√
n

[∑n
i=1 J(xi; θ)

∑n
i=1 g(xi; θ)

]
=

[
− 1
n

∑n
i=1

∂J(xi;θ)

∂θ̂
0

0 1

][ √
n(θ̂n − θ)

1√
n

∑n
i=1 g(xi; θ)

]
+op(1)
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and equating the variance covariance matrices we obtain (10). �

Corollary 2.1 It holds that

cov(
1√
n

n∑
i=1

J(xi; θ),
√
n(θ̂n − θ)t) = I2×2.

For g ∈ Gθ we call g̃ the orthogonal projection of g into the space H =
span {J1, J2} and g̃⊥ the orthogonal complement of g. We call V (g) the asymp-
totic variance of the consistent estimator α̂n which is obtained as a solution of
the equation (5).

Theorem 2.1 Let g ∈ Gθ. It holds that

V(g) > V(g̃). (11)

Proof.

We write g = g̃ + g̃⊥ with Eθg = Eθ ĝ + Eθĝ
⊥. The following holds

var(g) = var(g̃) + var(g̃⊥) ≥ var(g̃). (12)

Also

Eθ
∂g

∂α
= −Eθ(gJ1) = −Eθ(g̃J1) = Eθ

∂g̃

∂α
. (13)

Similarly

Eθ
∂g

∂β
= Eθ

∂g̃

∂β
(14)

and obviously
cov(Ji, g) = cov(Ji, g̃), i = 1, 2. (15)

Let now ân be a consistent solution of the equation

n∑
i=1

g(xi; α̂n, β̃n+m) = 0 (16)

Next we expand the left-hand side of (5) around the true value (α, β) and we
solve for

√
n(α̂n − α). We yield the expression

√
n(α̂n − α) =

1√
n

∑n
i=1 g(xi;α, β) + 1

n

∑n
i=1

∂g(xi;α,β)
∂β

√
n(β̃ − β)

−[ 1n
∑n
i=1

∂
∂αg(xi;α, β)]

+ op(1).

For the algebraic manipulations see Lehmann[6]. With the use of central limit
theorem and Slutcky’s theorem we see that

√
n(α̂n−α) converges in distribution

to
N(0,V(g)) as n→∞

where
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V(g) =
E(g2) + 2CEg′β + (w2

1v1 + rw2
2v)(Eg′β)2

(Eg′α)2
(17)

where v1 is the asymptotic distribution of β̂n. From expressions (12) to (15)
we conclude (11). �
From the last theorem we conclude that it is enough to focus on estimating
functions of the form

λ1J1 + λ2J2 for λ1, λ2 ∈ R.

From the expression (17) we can see that for any constant a we have V(ag) =
V(g). Thus it is enough to focus on estimating functions of the form

gλ = J1 + λJ2. (18)

Theorem 2.2 The optimal estimating function in Gθ is obtained for

λ̂ = − I12

I22 + 1

w2rv−w1
I11
D

. (19)

Proof. For gλ as in (18) and with the use of Corollary 2.1, the resulting
asymptotic variance becomes

V(λ) =
(I11 + 2I12λ+ I22λ

2) +Ω(I12 + I22λ)2 − 2w1(I12 + I22λ)λ

(I11 + I12λ)2

or

V(λ) =
(I11 +ΩI212) + 2I12(w2 +ΩI22)λ+ I22(w2 − w1 + I22Ω)λ2

(I11 + I12λ)2
(20)

where

Ω = w2
1

I11
D

+ w2
2rv. (21)

Differentiating (20) for λ we obtain

λ̂ = − I12(ΩD − w1I11)

I22(ΩD − w1I11) + w2D
.

Finally replacing Ω from (21), λ̂ can be written as in (19).
In order prove that the function V (λ) in (20) takes on a minimum value for

λ̂ given in (19), instead of working with the second derivative and with te-
dious calculations we can argue on the following way: The function V (λ) has
a vertical asymptote (increases to infinite because V (λ) is always positive) at
the point λ = −I11I−112 and it has as an horizontal asymptote because both

enumerator and denominator are a second degree polynomial. Thus λ̂ is point
of minimum because if it were a local maximum, between the local maximum
and the asymptote it should be a local minimum. But the V ′(λ) = 0 has only
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one solution. �

From the last theorem we conclude that the optimal estimating function is

Jopt = J1 −
I12

I22 + 1

w2rv−w1
I11
D

J2. (22)

Theorem 2.3 The optimal asymptotic variance is

Vopt = (I11 −
I212

I22 + 1
rv

)−1. (23)

Proof. We write the enumerator of (20) as

E = I11 +ΩI212 +Q1 +Q2 (24)

where
Q1 = 2I12(w2 +ΩI22)λ (25)

and
Q2 = I22(w2 − w1 + I22Ω)λ2. (26)

Replacing λ̂ in (25) and (26) we obtain

Q1 = −2I212

[
Ω − w1w2I11

I22(ΩD − w1I11) + w2D

]
(27)

and

Q2 = I212

[
Ω +

(w2 − w1)(ΩD − w1I11)− 2w2ΩD

I22(ΩD − w1I11) + w2D

+ w1w2D
(w2 − w1)I11 +DΩ

[I22(ΩD − w1I11) + w2D
]2
]
. (28)

With the use of (27) and (28) the enumerator E becomes

E = I11 −
I212(ΩD − w1I11)

I22(ΩD − w1I11) + w2D
+ I212w1w2D

(w2 − w1)I11 +DΩ

[I22(ΩD − w1I11) + w2D]2
.

(29)
Replacing (29) in (20) and after some calculations we obtain

Vopt =
I22(ΩD − w1I11) + w2D + I212w1w2

[(w2 − w1)I11 +ΩD]D
.

Replacing Ω from (21) finally we obtain

Vopt =
rvI22 + 1

rvD + I11
.

The last relation implies (23). �
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3 Discussion

The Jopt is the analogue to Stein’s efficient score function when a pooled type
estimator of the form (4) is used for the elimination of β. In fact, since Jopt
depends on w2 it consists a class of estimating functions. However all estimating
functions (22) result to the same variance (23) which is independent of w2. The
simplest in structure is the one for w2 = 1 which corresponds to the case where
for the elimination of β we are based only on the estimator β̃m. In this case
the optimal estimating function becomes

Joopt = J1 −
I12

I22 + 1
rv

J2. (30)

This is a very interesting result which claims that the optimal estimating func-
tion Joopt which is obtained when we eliminate the nuisance parameter β with
the help of an independent sample it can not be improved if for the elimina-
tion of β we utilize the available sample X. The Joopt does not share the same

properties with Stein’s score Ĵ1. Indeed we can see that

V−1opt < var(Joopt).

The Joopt is not orthogonal to J2. Indeed

cov(Joopt, J2) =
I12

1 + rvI22
.

Also

E
∂Joopt
∂α

6= var(Joopt).

When the second sample increases faster compared to the first sample such
that n

m = o(1), i.e. r = 0, then from (30) we observe that Joopt becomes the J1
score function with variance I−111 . This case corresponds to the case where β is
known. When the first sample converges faster compared to the second sample
such that m

n = o(1), i.e. r =∞ then Joopt becomes Stein’s estimating function
with corresponding variance

[I−111 − I212I
−1
22 ]−1.

For 0 < r <∞ we have

I−111 < Vopt < [I−111 − I212I
−1
22 ]−1.

4 Application

Let us assume that a sample X from the Gamma(α, β) distribution with pdf

f(x;α, β) =
xα−1exp(− x

β )

Γ (α)βα
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is available. The aim is to estimate the parameter α while β is considered as
a nuisance parameter. Furthermore we assume that the method of moments
estimator β̃n of β is available from a sample Y independent of the sample X.
For simplicity purposes we assume r = 1. Utilizing the asymptotic variance-
covariance matrix of

√
n(α̂n, β̂n) where α̂n and β̂n are the MLEs of α and β

respectively given by [5], we can find that Stein’s optimal asymptotic variance
V1 when we estimate both α and β from the same sample X is given by

V1(α) = (Ψ ′(α)− 1

α
)−1.

The method of moments estimators for α and β are

β̃n =
X2 − (X)2

X

and

α̃n =
(X)2

X2 − (X)2
.

With the help of delta method and the functions

g1(X,X2) =
(X)2

X2 − (X)2

and

g2(X,X2) =
X2 − (X)2

X

we find
√
n

[
α̃− α
β̃ − β

]
→ N(0, Σ(θ))

with Σ(θ) = BΛBt where

B =

[
2(1+α)
β

−1
β2

−(2α+1)
α

1
αβ

]

and Λ is the covariance matrix

Λ =

[
αβ2 2β3α(α+ 1)

2
ββ

3α(α+ 1) 2β4α(α+ 1)(2α+ 3)

]
.

After few calculations we obtain

Σ(θ) = BΛBt =

[
2a(1 + α) −2β(1 + α)

−2β(1 + α) β2(3+2α)
α

]
.

From (23) the optimal asymptotic variance of
√
nα̂ when the method of

moments estimator for β is available from an independent sample is

V2(α) = (Ψ ′(α)− 1

2α
)−1.
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Fig. 1. Graphs of asymptotic variances V1 (dotted line) and V2 (solid line).

The Figure 1 shows the relation between the two variances and as it is expected
the V2 is always better compared to V1.

Next in order to produce the O.E.F. (30), we produced two independent
simulated samples x and y of size n = 50. For the finding of the MLE of α from
the sample x we find the root of the function

f(α) = ln(x)− ln(x) + ln(α)− Ψ(α) (31)

In order to write the O.E.F. (30), we find the method of moments estimator
for β from the second sample y which is β̃ = 3.087. Thus the (30) becomes

Joopt(α) = Ψ(α) +
β̃

2α
x− ln(x) + ln(β̃)− β̃2

2
(32)

The next Figure 2 shows the graph of the f and Joopt estimating functions.
From (31) the MLE estimator of a α is α̂ = 1.629 while the E.F. (32) utilizing

a

0.5 1.0 1.5 2.0 2.5

2

4

6

8

10

12

Fig. 2. Graphs the estimating functions Jo
opt (dotted line) and f (solid line).

the estimator for β from the second sample gives as an estimation for α the
value α̂∗ = 1.851 which is closer to the true value α = 2.
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