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Introduction 

 
XV

th
 Applied Stochastic Models and Data Analysis 

(ASMDA2015) International Conference  
with 

4
th

 Demographics 2015 Workshop 

 

30 June – 4 July 2015, University of Piraeus, Greece 

 
Since 1981, ASMDA aims to serve as the interface between Stochastic 
Modeling and Data Analysis and their real life applications particularly in 
Business, Finance and Insurance, Management, Production and 
Reliability, Biology and Medicine.  
Our main objective is to welcome papers, both theoretical or practical, 
presenting new results having potential for solving real-life problems. 
Another important objective is to present new methods for solving these 
problems by analyzing the relevant data. Also, the use of recent 
advances in different fields will be promoted such as for example, new 
optimization and statistical methods, data warehouse, data mining and 
knowledge systems, computing-aided decision supports and neural 
computing. 
The role played by ASMDA as interface between theory and practice 
means that the conferences are of great interest for both the academic 
and business world. The high standard of the meetings are guaranteed 
by strong international scientific committees. 
The preceding international ASMDA Symposia were organized in Brussels 
(1981, 1983, 1985), Belgium, in Nancy (1988), France, in Granada 
(1991), Spain, in Chania (1993), Greece, in Dublin (1995), Ireland, in 
Anacapri (1997), Italy, in Lisboa (1999), Portugal, in Compiègne (2001), 
France, in Brest (2005), France, in Chania Crete (2007), Greece, in 
Vilnius (2009), Lithuania, Rome (2011), Italy and in Mataró (Barcelona 
2013), Spain. 
In general, the proceeding volumes were published by international 
scientific publishers or local publishers. 
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The ASMDA 2015 Conference focuses on new trends in theory and 
applications of Applied Stochastic Models and Data Analysis. 
A special Demographics2015 Workshop is organized under the umbrella 
ASMDA International. The aim is to gather people interested in 
improving demography and the related fields of analysis and research 
including life and physical sciences as well as medical and technical 
information. We strongly support interdisciplinary studies and the 
improvement of the analytic tools and research methods 
We thank all the contributors to the success of this conference, the 
ISAST Committee, the Secretary Mary Karadima, and especially the 
authors of this Proceedings Book. 
Special thanks to Yiannis Dimotikalis, ISAST Vice-Chair, for publishing 
this Volume and Sotiris Bersimis for his valuable work as local ASMDA 
chair these two years of hard work and dedication to the success of the 
conference. 
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Infant Mortality reduction in Mexico: Is there a 

Matthew Effect?  
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1
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2
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2
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    (E-mail: fvela@correo.xoc.uam.mx) 

 

Abstract. Applying Brass Method we estimated infant mortality rates (IMR) for all the 

states of Mexico using information on children ever born and children surviving 

(CEB/CS) from two censuses. With these results we analyzed regional inequalities in the 
reductions of infant mortality, to test the hypothesis of the "Matthew Effect". Originally 

labeled by Merton the "Matthew Effect" refers to the biblical verse: “Unto every one that 

hath shall be given, and he shall have abundance; but from him that hath not shall be 

taken away even that which he hath” (Matthew 25:29) and refers to an increase in 
inequalities. We tested the hypothesis that reductions in relative differences in the IMR 

are greater in the states with a lower baseline. Spearman and Kendall rank correlation 

coefficients were used to test the hypothesis. Unlike the international experience, results 

for Mexico do not support the Matthew Effect. 
 

Keywords: Infant Mortality, Brass Technique, The Matthew Effect, Spearman and 

Kendall Correlation Tests. 
 

1  Introduction 
 

Health and living conditions in the various regions of Mexico have improved 

considerably since the middle of last century. In this regard, some infectious 

diseases have been controlled; populations have increased their chances of 

development and different public health services are now available to a wider 

number of inhabitants. As a consequence of this, life expectancy has increased 

and infant mortality has decreased significantly. In particular, the analysis of the 

reduction in infant mortality in Mexico can be seen from different perspectives 

according to the level of aggregation of the data used and the characteristics of 

their distribution over different geographical areas. 

 

In this paper the cross section data on infant mortality are analyzed, i.e. 

considering the 32 states of the country. Our goal is to test the hypothesis 

whether reductions in this indicator have been higher in states where child 

mortality was already low. In other words, we want to know whether 

1



inequalities in child mortality have been increasing or decreasing. In the 

literature on the subject to the hypothesis proposed has been referred to, as the 

"Matthew Effect" (Dzakpasu, Kramer and Allen, 2000; Bishai and Poon, 2001). 

 

The conceptualization of Matthew Effect is applied to analyze changes in 

various aspects in the areas of economics, scholar performance and health, in 

order to establish whether these changes deepen or reduce inequalities. The term 

was coined by Robert K. Merton (1968), referring to the biblical phrase as 

follows: "For he that hath, to him shall be given, and he will have abundance; 

and whoever does not have, even what he has will be taken away "(Gideons 

International, 2000, chapter 25, verse 29, p. 50) and implies widening 

inequalities. 

 

Empirically, the existence or not of the Matthew Effect described in the 

literature has considered at least two methodologies applied to data both 

internationally and for different regions of a country. 

 

In its application to infant mortality, the basic idea of the Matthew Effect is to 

verify whether the improvement in the indicator is greater in places where rates 

are already low, increasing the gap. In this vein, Dzakpasu et al (2000) made a 

studio by comparing the experience of the twelve provinces of Canada with 133 

countries, in relation the behavior in the IMR for the years 1960 and 1995. 

 

To conduct their study they calculated Spearman correlation coefficient on 

absolute and relative percentage changes in both infant mortality rates and 

relative difference of the event (infant mortality). Their findings show that while 

in the Canadian provinces the Matthew Effect was not observed, internationally 

it does. 

 

2  Methodology 
 

a) The estimation of infant mortality with the method of children ever born 

/children surviving (CEB/CS) of Brass 
  

William Brass (Brass et al., 1968) developed the indirect method of children 

ever born /children surviving (CEB/CS) to estimate infant and child mortality, 

that has allowed  to ascertain more accurately the actual levels of infant 

mortality of about three quarters of the world's population. The CEB/CS method 

uses information (usually from censuses, although it may come from surveys) of 

the total number of children ever born (CEB), and the children surviving (CS) 

that women have had throughout their life, until the moment in which they are 

interviewed. The information is classified by age of the mother. It is expected 

(on average) that the older the women, the higher the risk of death for their 

children, because they have been exposed to the risk of death during a longer 

period, and thus the proportion of dead children increases with the age of the 

woman. The method is based on the similarity of the values of the proportions 

2



of deceased children, according to the age of the mother, in five-year age groups 

within the reproductive period (i. e. 15-19, 20-24, 25-29, 30-34, 35-39, 40-44 

and 45-49) and the probability of dying between birth and the ages of 1 year, 2, 

3, 5, 10, 15 and 20 years, respectively.   
 

According to the original formulation of Brass, the method relies on several 

assumptions. Although none of them is fulfilled completely in any population, 

its violation in one way or another, in the majority of cases, does not produce 

very important biases. In general the methodology produces -- in the 

populations with data incomplete-- estimates closer to reality, compared to the 

underestimations that produce vital statistics. The assumptions are: 
  

-There is a constant fertility. Although the five-year cohorts at the 

time of the census have different levels of fertility, ultimately the 

method is based on ratios of deceased children (DC) in relation to 

the CEB, DC/CEB, which are not affected by the level of fertility of 

each cohort in particular.  
  

-There is a constant mortality. This was an assumption that was 

fulfilled in African populations in the middle of last century, where 

Brass (1968) worked originally. Given that there was a constant 

mortality, the method estimated the mortality of the population 

under study. The application of the method was spreading to other 

regions of the developing world. Indeed, the method allowed having 

reasonable estimates of infant mortality in the last quarter of the XX 

century, for countries where live around three-quarters of the world's 

population. However, in some of these regions child mortality was 

in decline. Some variants of the original method including Sullivan 

(1972), Trussell (1975), and Feeney (1980) were developed. The 

latter introduced -- considering changes in the mortality -- the 

location in the time of the estimates of each five-year age group of 

women who give the information of CEB and CS. In this way, what 

in the original proposal may have been considered a limitation, with 

Feeney´s adaptations became a virtue of the method, since it allows 

having estimates at several points in time and it is possible to know 

the trends of the indicator. 
  

-There is independence between the mortality of children and the 

age of the mother. The mortality of children depends, among other 

variables, on the age of the mother. The children of very young 

women are more exposed to the risk of dying. This is due to both 

physical and socio-cultural reasons. On one hand some of these 

women still do not complete their own development when they are 

already exerting motherhood, which compromises the survival of 

their children (and their own survival). On the other hand they may 

not be prepared optimally for the care of the infant. This is more 

notorious for the children of women in the 15-19 age group. 

3



However, for the other age groups the assumption is not far from 

reality. 

  

-There is independence between child mortality and the mortality of 

their mothers. An orphan child is more likely to die due to the lack 

of attention and care that his mother could provide. The extreme 

case occurs when the mother dies when giving birth and the infant is 

not of breastfed. Fortunately, maternal mortality is a relatively rare 

event, and even for women in childbearing ages mortality is low. 

Therefore, there are not so many orphans, and consequently the non-

compliance of this assumption does not have a high impact on the 

estimates. 
  

- The population is closed to migration. The information used for the 

Brass method reflects the experience of mortality of the children of 

the informants at any time in the past. Thus, a woman may be 

reporting in the place where she currently lives, the mortality (or 

survival) of their children in a place where she lived before. This 

bias will be important to the extent that there is a considerable 

differential between the town of origin and that of destination.  
  

For this paper we used the package Q-FIVE: Microcomputer Program for Child 

Mortality Estimation developed by the Population Division of the United 

Nations. This program is based on the Trussell´s variant (1975) of the CEB/CS 

method, and produces results consistent with the four models of the regional life 

tables of Coale and Demeny (1966), as well as the five mortality patterns of  

United Nations life tables for developing countries (1982). 
 

From the assumptions of the original formulation of the method by Brass, one of 

which is more clearly broken, for many countries, and certainly in the case of 

Mexico, is the one of constant mortality. The Q-FIVE package produces 

estimates which have a point of reference in the recent past: the estimates 

derived from data from the women in the seven five-year age groups (between 

15 and 49 years of age) are located in the fifteen years prior to the census. Thus, 

it is possible to observe recent trends in infant mortality. 
 

One of the objectives of this paper was to obtain state-level child mortality 

estimates for 1990 and 2010 in order to evaluate the declining trends. Therefore, 

we used information from the XI and the XIII General Population Censuses 

carried out in 1990 and 2010, respectively. From each of these two sources of 

information we obtained an estimate of the IMR for every state. We then 

proceeded in the following manner: 
 

(i) we applied program Q-FIVE to CEB and CS information by five-year age 

groups (15-19 to 45-49) of women for each state; 

ii) Q-FIVE produced seven estimates of IMR with its location in time 

(approximately from 15 up to 1.5 years before each census). 

(iii) with these estimates we projected the trend of IMR until the time of the 

census, to have estimates in 1990 and 2010. 
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As it was pointed out above, there is a differential mortality by age of the 

mother. The children of women 15-19 years, experience an excess mortality. 

Due to this fact, the estimate for this age group was eliminated from the 

projection since it breaks with the trend observed in the estimates for the other 

six five-year age groups (from 20-24 to 45-49 years). 
 

Given that mortality decreases at a slower rate, and to ensure that the projection 

produced no negative numbers, we adjusted in each case a negative exponential 

curve for the projection. In some cases in particular perhaps there could have 

been a better fit, but we preferred to use a standard protocol in the sixty four 

projections of the IMR by state for 1990 and 2010, that appear in table 1. 
 

b) The Spearman and Kendall coefficients of rank correlation 
 

From the results obtained, in a second stages, we tested the hypothesis under 

study by calculating the Spearman and Kendall coefficients of rank correlation 

to determine whether the IMR inequalities among states have declined or not. 

The Spearman rank correlation coefficient is known in the literature as rho, ρ. 

The use of ranks indicates the relative magnitude of observations. ρ can take 

values between + 1 and - 1. A positive coefficient suggests that the two 

variables are directly related; a negative value indicates that they are inversely 

related. If the two are independent variables, the correlation coefficient would 

be close to zero.  
 

To test whether the correlation coefficient is statistically significant population 

the null hypothesis H0: ρ ≤0 is used, which is contrasted with the alternative Ha: 

ρ > 0, considering that follows a t-student distribution. The rejection of H0 in 

favor of Ha for the event is interpreted as the absence of Matthew Effect. 
 

An alternative method for determining a correlation coefficient ranges is using 

the Kendall correlation coefficient, which is denoted by the greek letter τ (tau). 

Although Kendall τ is suitable for determining the rank correlation with the 

same type of data used in the Spearman ρ, the two methods use different 

techniques to determine this correlation, so their values rarely coincide. The 

formulas used were: 
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3  Results 
 

According to the methodology considered in this paper, it is estimated that for 

1990 and 2010 the infant mortality rate (IMR), nationally stood at around 38.2 

and 17.5 deaths per 1000 live births, respectively. Table 1 shows the indirect 

estimates of the TMI for each of the 32 states for the years 1990 and 2010. 

Considering these estimates, the highest value of IMR in 1990 was located in 64 

deaths while for 2010 this figure reached the value of 23 deaths. For its part, the 

minimum values were in the order of 27 to 12 deaths per thousand live births for 

each of the years shown respectively. Figure 1 shows that this downward trend 

in the level of the IMR -during the period under study-is present in all the states 

of our country. Table 2 shows the ranges of both the absolute values of the IMR 

and the relative differences.  

 

By taking the rank of IMR in 1990 and calculating their correlation in relation to 

the range of the relative difference for the period 1990-2010, according to the 

methodology of the Spearman correlation rank coefficient already mentioned, 

one can feel that small values in differences indicate high chances of a positive 

correlation coefficient, which can be interpreted as the absence of Matthew 

Effect (in other words, the relative differences tend to be greater in the states 

were in 1990 the IMR was high, meaning that inequality is reduced ). To 

envisage this possibility, Figure 2 presents the scatterplot between these two 

variables (where x = range of IMR in 1990; y = range of the relative difference 

for the period 1990-2010), appreciating a cloud of scatter points with a positive 

trend. 

 

If the Matthew Effect existed there would be a negative correlation, i. e. states 

whith a low IMR in 1990 (and therefore with lower ranks) should be associated 

with high relative reductions, which do not seem to occur with the data. Instead 

there is a positive correlation. Calculating the Spearman correlation coefficient 

confirms this idea producing a positive correlation with a value of 0.7152, being 

highly significant (p <0.000). In order to corroborate the results obtained and 

avoid any possibility of miscalculation (caused by the ties in the ranks), we 

proceeded to estimate the Kendall correlation coefficient, τ, (0.5161 and p-

value=0.000). The results obtained confirmed the absence of the Matthew 

Effect. 
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4  Discussion 
 

This paper investigated the possibility of the existence of the Matthew Effect in 

the IMR in Mexico. To meet this goal we proceeded in two stages. In the first, 

indirect mortality estimates were made. Here, the results are consistent with the 

downward trend in the IMR in Mexico. In a second stages two non-parametric 

statistical tests allowed to know the possible increase in inequality in infant 

mortality for the period 1990-2010 in Mexico; these tests consisted of 

calculating the Spearman and Kendall correlation coefficients, which offered 

clear evidence against the Matthew Effect. 

 

 

 

 
Source: Based on data from Table 1. 

Fig, 1. IMR by State in 1990 and 2010 
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Source: Based on data from Table 2 

 
Fig. 2. Scatterplot between the ranges of IMR 1990 and the relative  

difference from1990 to 2010 
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Source: Own elaboration with data Aguirre and Vela (2012). 
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Source: Own elaboration with data Table 1. 
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Bayesian object identification from image data
using the level set method
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Abstract. Many image analysis problems can be characterised as finding objects
within an image. The problem might involve an unknown number of objects with un-
known locations within the image, and with unknown and varying sizes and shapes.
In dynamic imaging these might also change with time, in particular with objects
merging and splitting, as well as moving and changing size and shape. This paper
will study the level-set method for object identification which embeds the object out-
lines within a higher dimensional surface. The method can easily cope with complex
geometric changes whilst maintaining closed and non-overlapping outlines making it
particularly useful for dynamic modelling. The Chan-Vese model based on the level-
set method will be defined and given a Bayesian re-interpretation. Then, the method
will be applied to a sequence of simulated image data, and to 2D image reconstruc-
tions obtained from medical SPECT data to identify the outline of the subject.

Keywords: Bayesian methods, Chan-Vese model, Image analysis, Segmentation.

1 Introduction

Consider a generic object identification problem, where the aim is to find the
shape of objects against a general background. Further suppose that there is
some physical characteristic which can be used to distinguish between objects
and background, for example colour, intensity or texture. However, suppose
that measurements of this property are subject to noise and so some data
processing steps are needed before the objects can be reliably identified.

Traditional approaches to object identification and image segmentation
might consider pixel-wise classification using some multivariate analysis tech-
nique, but would require further post-processing to guarantee compact regions.
Alternative methods could be based on edge-detection but there is no certainty
that region boundaries will be closed, or region growing algorithms which are
usually slow and accuracy depends heavily on the choice of similarity criterion.

In this paper the level set approach [8] will be considered as a method for
locating object outlines; see also [6] and [10]. The method was proposed for
modelling temporal changes of flame shapes, but the same approach is relevant
when searching for best-fit outlines through some iterative algorithm. The main
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advantages are that it can handle an unknown number of objects and compli-
cated topological changes in a simple and natural way. For example, when
changes are between situations with simply and multiply connected regions.

The paper is organised as follows. Section 2 gives a mathematical descrip-
tion of the object-based model and defines notation to be used later. A short
description of the level-set approach is given in Section 3 with a Bayesian re-
interpretation in Section 4. The methods are applied to simulated and real data
in Section 5. Finally, conclusions and further work are discussed in Section 6.

2 An object-based image model

Let the unknown physical characteristic, which will be called intensity, be de-
fined x(s), s ∈ S, within some domain, S ⊂ R2. Now, the background and
the objects partition the domain, and so denote these non-overlapping regions,
R = {Rk : k = 0 . . . ,m − 1} with corresponding characteristic intensities
µ = {µk : k = 0, . . . ,m − 1}. Hence, Rk ⊂ S, Rk ∩ Rl = ∅ for k 6= l and
R0 ∪ · · · ∪ Rm−1 = S. Further R0 will be used to denote the background, R1

the first object etc. Also, let R? = R1∪ · · ·∪Rm−1 represent the overall subset
of the domain containing objects, that is R? = Rc0.

(a) (b)

Fig. 1. Grey-level images showing: (a) domain partition and (b) an example dataset.

Suppose that there is a finite set of measurements y = {yi : i = 1, . . . , n}
collected at locations s = {si : i = 1, . . . , n} forming a regular square grid. The
intensity function can be discretised to give unknowns x = {xi : i = 1, . . . , n}
with xi = x(si) for i = 1, . . . , n. See Fig. 1 for an example of a domain parti-
tion composed of two objects and an example dataset both shown as grey-level
images. For a review of the statistical approach to image analysis see, for ex-
ample, [1] and references therein. The measurements can be defined in terms of
a deterministic component, which only depends on the region, and a stochastic
component, thus

yi = xi + εi, i = 1, . . . , n, (1)

where

xi =

{
µ0 if si ∈ R0,

µ? if si ∈ R?;
(2)
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and it will be assumed that the errors are independent and normally distributed
with constant variance, that is εi ∼ N(0, σ2) for i = 1, . . . , n. The object identi-
fication problem is then one of estimating the domain partition, that is the num-
ber of regions and the coverage of each region, along with region intensities and
noise variance. This gives a parameter set Θ = {m,R0, . . . , Rm−1, µ0, µ?, σ} of
length m+ 4 — which is not fixed since m itself is unknown.

3 The level-set method

The overall aim of a generic segmentation problem is to partition a domain
of interest into homogeneous parts, which might be labelled background, R0,
and objects, R?. Then, let γ be the outline of the objects, that is the interface
between R0 and R? — see Figure 2(a).

Suppose that we will use some iterative scheme, starting from an initial solu-
tion, which gradually moves towards a final solution. These steps can usefully
be thought of as temporal changes, and this links object identification from
single images to the original application of tracking a moving flame [7]. Any
estimation method based on an iterative scheme must allow smooth changes in
the position of the curve. An approach which models the curve explicitly will,
however, need additional constraints to guarantee the curve stays well defined.

S

R0

R?

γ

(a)

φ = 0

φ < 0

φ > 0

(b)

Fig. 2. Diagram showing the relationship between the object outline and the corre-
sponding level-set function.

In the level-set method [7] the curve is embedded in a higher dimensional
surface, φ, such that γ(t) = {s : φ(s, t) = 0}, see Figure 2(b), with

φ(s, t) < 0 for s ∈ R0,

φ(s, t) > 0 for s ∈ R?.

The function φ is called the level-set function and γ is the zero level set.
One approach to the estimation of the level-set and the corresponding zero

level-set [3] defines an energy function which is made-up of two parts: one
which measures the model mismatch, and the other, a regularising term which
aims to ensure stability of the iterative process. Firstly, the model mismatch
is defined as

χ(y,x) =

∫
S

(y(s)− x(s))2ds. (3)
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Now, the Heaviside function, H(z), takes the value 1 when z ≥ 0 and zero
otherwise, and the Dirac function, δ(z), is its derivative δ(z) = dH(z)/dz.
These give rise to definitions of the area of the objects and the length of the
object boundary

A? = A(φ(s) > 0) =

∫
S
H(φ(s))ds (4)

and

L? = L(φ(s) = 0) =

∫
S
|∇H(φ(s))|ds =

∫
S
δ(φ(s))|∇φ(s)|ds. (5)

The Heaviside function can also be used to re-write the model mismatch as∫
S

(y(s)− x(s))2(1−H(φ(s)))ds +

∫
S

(y(s)− x(s))2H(φ(s))ds. (6)

Putting these together gives an energy function, in terms of the φ,

E(φ) =

∫
S

(y(s)− µ0)2(1−H(φ(s)))ds +

∫
S

(y(s)− µ?)2H(φ(s))ds

+ α

∫
S
H(φ(s))ds + λ

∫
S
δ(φ(s))|∇φ(s)|ds.

(7)

The best-fit curve is then defined as the solution which minimises the energy,

φ̂ = arg min
φ
E(φ). (8)

It can then be shown [5] that

∂E

∂φ
= δ(φ(s))

[
−(y(s)− µ0)2 + (y(s)− µ?)2 + α− λ div

(
∇φ
|∇φ|

)]
. (9)

Further, since ∂φ/∂t = −∂E/∂φ the corresponding discrete-time updating
equation is

φk+1 = φk +∆t · ∂φ
∂t

∣∣∣∣
φk

for k = 1, . . . (10)

where φk = φ(s, tk) and ∆t is a time step. For this method to work well
a reinitialization step may be required [11] to ensure |∇φ| = 1, and spatial
smoothing of φ to produce smooth object outlines.

4 Bayesian interpretation

The key ingredients in any Bayesian approach are the likelihood function and
the prior distribution; which combine to give the posterior distribution. Fol-
lowing on from the previous section, the model parameters are now Θ =
{φ, µ0, µ?, σ}. The likelihood is the conditional distribution of the data given
the unknown parameters, denoted as f(y|Θ). The data, y, depend on Θ
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through a mapping to the corresponding intensity function x(Θ) and stochas-
tic noise assumed to be well modelled by a normal distribution leading to the
likelihood

f(y|Θ) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − xi(Θ))
2

}
σ > 0, (11)

where xi(Θ) = µk if si ∈ Rk. This can be re-written as

f(y|Θ) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

[ ∑
i:si∈R0

(yi − µ0)
2

+
∑

i:si∈R?

(yi − µ?)2
]}

.

(12)
The prior distribution, denoted p(Θ), quantifies detailed expert knowledge

or, as here, general beliefs about the unknown function. The choice of the exact
form of this distribution is much more subjective than is the choice of likelihood.
Here consider prior distributions which say that smaller and compact regions
are more likely than large or irregular regions. This might suggest modelling
the area of the objects or the length of their boundaries. If we choose to describe
these using independent exponential random variables, then the corresponding
joint prior distribution is

p(Θ) = p(A?)× p(L?) = (αλ) exp{−αA? − βL?}, A? ≥ 0, L? ≥ 0 (13)

where A? is the area of the objects calculated as in equation (4) and L? is the
total length of the object boundaries calculated as in equation (5).

For estimation, evidence from the data and from prior beliefs are brought
together by combining the likelihood and prior distribution, using Bayes theo-
rem, to form the posterior distribution, defined as

p(Θ|y) = f(y|Θ)p(Θ)
/
f(y). (14)

using (12) and (13) gives

log p(Θ|y) =− 1

2σ2

( ∑
i:si∈R0

(yi − µ0)
2

+
∑

i:si∈R?

(yi − µ?)2
)
− αA? − λL?,

(15)
which is the discrete equivalent of the (negative) of the energy function in (7).

In the Bayesian setting a point estimate can be found as the value which
corresponds to the maximum of the posterior distribution, or equivalently the
log-posterior, this is called the maximum a posteriori (MAP) estimate

Θ̂MAP = arg max
Θ

p(Θ|y) = arg max
Θ

log p(Θ|y). (16)

Hence it is clear that the maximization of the posterior is exactly equivalent
to the minimisation of the level-set energy function (7) which means that the
same iterative estimation algorithm based on (10) and using (9) can be used.
The updates continue until any further changes are deemed insignificant. Here,
all calculations are performed in the R language [9] and, of course, in practice
all these terms must be approximated by their discrete equivalents—details will
not be given here.
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5 Numerical results

To illustrate the iterative nature of the level-set method consider Figure 3
which shows the initial zero level-set in (a) and the zero level-set after the
first five iterations. After one iteration the zero level-set begins to encircle the
two objects. Gradually the outlines are more closely matched and the central
region in the annulus appears and grows. By the fourth iteration, (e), the
object outlines are well established with little change afterwards.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Results showing the zero-level set for the first few iterative.

Next a dynamic simulation is considered with result in Figure 4 which
clearly demonstrate that the method can track the boundaries.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results for an image sequence showing data image and final zero-level set.
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As an illustration of a real-world application consider the analysis of image
reconstructions in SPECT. The medical investigation involved the imaging of
the human head where a radioactively tagged chemical was injected into the
bloodstream highlighting areas of high blood flow. The dataset used here was
first analysed in [4], but the reconstructed images are from [2]; the reader is
directed to these papers for further details.

Initially the images had been analysed using a model which wrongly as-
sumed spatial homogeneity, see [2], but this lead to reconstructions which were
grossly over smoothed. So a fixed diameter circle was manually chosen as a
region of interest and the data re-analysed. The level-set approach presented
here is a clear alternative and would allow automatic and case specific regions
to be determined. Figure 5 shows six such cases equally spaced from the neck
upwards to the top of the head. The proposed level-set approach successfully
identifies the central region and could be used as a basis for further analysis.
Note that the grey band around the zero level-set is due to the over smoothing
during image reconstruction which should be largely eliminated if the newly
identified boundary is incorporated into a re-analysis.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Results for real data showing reconstructions as data and final zero level-set.

6 Conclusions

Object identification is a common problem in image analysis which can be
challenging when the number of objects is unknown and the location, shape
and size of the objects also has to be determined. There are further difficulties
when the object geometries change with time. The level-set approach provides
an ideal option for such situations in that it is fast and can cope with dynamic
changes in a natural way. The proposed method has been successfully applied
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to both simulated and real data. This technique is not widely used in statistics,
but has a simple and direct interpretation in statistical language. Once this
has been done the probabilistic framework can easily be seen and understood,
and hence adaptations made for tackling other problems.

The work presented here is the first part of an ongoing research project and
there are many practical and methodological issues still to be addressed. There
are many choices of prior descriptions, both in terms of which model param-
eters or other summary measures to include in the model, but then also the
choice of prior distribution. In the original method the specified regularising
function corresponds to an exponential distribution. This, however, has the
unusual property that the most likely values are close to zero, which is not a
meaningful statement. Instead it might be more appropriate to use a distri-
bution which allows a non-zero mode, such as a gamma distribution. There is
then the choice of what prior parameter values should be used. Perhaps these
could be estimated in some way which would then allow the approach to be
fully automated. It is also important to perform a sensitivity analysis to see
how robust the approach is to changes in model aspects which are somewhat
arbitrary. This discussion emphasises the great range of generalisations possi-
ble which make it clear that this approach has potential use in many important
practical applications.
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Abstract. Statistical Process Monitoring is one of the most well-known sectors of
Statistics. The most advanced procedure of Statistical Process Monitoring is control
charting. Control charts are applied to monitor the levels of a variable related to the
quality of a product/process. When the quality of a product is related to more than
one characteristics, then a Multivariate Statistical Process Monitoring technique is
applied. Moreover, when the multivariate dispersion has to be monitored we use a
multivariate control chart for the dispersion. The aim of this paper is to compare
some well known multivariate control charts for the dispersion of Normally distributed
processes.
Keywords: Multivariate Statistical Process Monitoring, Control Charts Compari-
son, Bivariate Dispersion, Multivariate Dispersion.

1 Introduction

Statistical process monitoring (SPM ) is a well known method for controlling
and improving a product’s quality in an industrial or manufacturing process.
By using statistical methodology, the researcher can either establish conforming
standards or contribute to the maintenance of a desirable product’s quality or
both. In practice, the quality of a product is not related to one but to more
than one characteristics. In other words, it is necessary to monitor more than
one characteristics simultaneously to assure product’s quality. Jackson [14], has
stated that 4 points are necessary to be answered by a multivariate statistical
process monitoring (MSPM ) procedure:

• is the process in-control or out-of-control?
• what is the overall probability for the event ”procedure diagnoses an out-

of-control state erroneously”?
• is the relation between the variables/attributes taken into account?
• if the process is out-of-control, what is the problem?

Historically speaking, Hotteling [9] applied first the idea of MSPM in a dataset
regarding bomb sights in World War II. A huge amount of studies followed Hot-
teling’s idea thereafter including Jackson [11][12][13], Montgomery and Wadsworth
[21], Alt [1], Crosier [6], Hawkins [7][8], Pignatiello and Runger [22], Tracy et
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al. [25], Lowry and Montgomery [16], Maravelakis et al. [19], Koutras et al.
[15], and Maravelakis and Bersimis [20].
In the area of SPM and MSPM, the main interest lies in monitoring the mean of
the process. Nevertheless, controlling the dispersion of the process is as equally
important as controlling the mean. By monitoring the mean in an industrial
or manufacturing process, the researcher investigates if the characteristics of
the product comply to the predetermined specifications. By assuming that an
appropriate statistic is plotted in a point in time between the Upper Control
Limit (UCL) and the Lower Control Limit (LCL) when monitoring the mean
of the process, then the process is considered to be in-control on the condition
that the dispersion of the process has not changed through time. It should be
noted that when constructing a control chart (CC ) for the mean level of the
process, the dispersion of the process is also taken into account indirectly by
computing the control limits. In other words, the control limits of a process
always depend upon the dispersion and therefore, the dispersion of the process
should always be monitored. In the case that the dispersion is out-of-control,
the level of the process fluctuates more, leading the process out-of-control.
The purpose of this paper is to present and compare multivariate CC s for the
dispersion of the process by assuming normally distributed data. It is known
that the CC s are compared by using the Average Run Length (ARL) which
is the expected waiting time until the first occurrence of an event creating
an out-of-control signal. In the literature there are two distinct cases for the
ARL. The in-control ARL and the out-of-control ARL. The in-control ARL
is the average number of plotted samples until an out-of-control signal, when
the process is truly in-control. On the other hand, the out-of-control ARL is
the average number of plotted samples until an out-of-control signal when the
process is truly out-of-control. Thus, the aim of the paper is to identify, which
is the optimal way for monitoring a dispersion process under certain conditions
(these conditions, in our study, correspond to different simulation scenarios).
In the case that we have a best suited methodology for each and every possi-
ble monitoring scenario (large sample size, small sample size, high dimensional
case, case with missing values, bivariate processes, multivariate processes, etc.),
we are in place of knowing if the process is in- or out-of-control faster (1st point
of Jackson).

2 Methods

In this section, eight well known bivariate and multivariate CC s for the dis-
persion are presented. These CC s have been constructed for monitoring the
dispersion of two or more characteristics simultaneously. The Phase II versions
of these CC s are presented since in the comparison study the in-control pa-
rameters are assumed known. By following Bersimis et al. [5] definition, ”in
Phase II, CCs are used for testing whether the process remains in control when
future subgroups are drawn. In this phase, the charts are used as aids to the
practitioner in monitoring the process for any change from an in-control state.
At each sampling stage, the practitioner asks the question -Has the state of the
process changed?- ”.
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2.1 CC1: A CC based on the Moments of the Generalized
Variance

Alt [1] proposed the development of a |S|-CC by using the first two moments
of |S| (Generalized Variance). The statistic that is plotted on this CC is the
|S|. The 3σ control limits are calculated using:

UCL = |Σ0|
(
b1 + 3

√
b2

)
,

CL = |Σ0|b1,

LCL = |Σ0|
(
b1 − 3

√
b2

)
,

where Σ0 is the known variance-covariance matrix,

b1 =

∏p
i=1 (n− i)
(n− 1)

p ,

b2 =

∏p
i=1 (n− i)
(n− 1)

2p ×

 p∏
j=1

(n− j + 2)−
p∏
j=1

(n− j)

 ,
and n and p are the sample size and the number of variables, respectively. If
the LCL is less than zero, then it is replaced by zero.

2.2 W: A CC based on the Likelihood Ratio Test (LRT)

Another method for monitoring the dispersion of a multivariate process pro-
posed by Alt [1] uses the statistic:

W = −pn+ pn lnn− n ln

(
|A|
|Σ0|

)
+ trace

(
Σ−1

0 A
)
.

Alt, made use of the asymptotic LRT result from Anderson [3] for computing
the above statistic. The W statistic is used to test repetitively: H0 : Σ = Σ0 vs
H1 : Σ 6= Σ0. In the LRT, the likelihood between the null and the alternative
hypothesis are compared. Large difference between the likelihoods suggests
that the null hypothesis poorly describes the current situation relatively to the
alternative hypothesis.
The α probability control limits for the CC, where α denotes the probability
of wrongly reject the H0, are:

UCL = χ2
p(p+1)/2;1−α,

LCL = 0.

It is noted that A is the sum of squares and cross products matrix, i.e. A =
(n − 1)S. If W plots over UCL then the process is considered out-of-control.
χ2
p(p+1)/2 refers to a Chi-Square distribution with p(p+1)/2 degrees of freedom

and α refers to the upper α percentile of the Chi-Square distribution with
p(p+ 1)/2 degrees of freedom.
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2.3 CC2: A CC based on the Distribution of the Generalized
Variance

Alt [1], proposed that the variability of the process can be monitored using a
CC that is based on the distribution of |S|. The plotted statistic is again the
|S|. The CC2 has the following α probability limits:

UCL =
|Σ0|

(
χ2

2n−4;1−α/2

)2

(2 (n− 1))
2 ,

LCL =
|Σ0|

(
χ2

2n−4;α/2

)2

(2 (n− 1))
2 ,

and center line CL = |Σ0| where

2(n− 1)|S|1/2

|Σ0|1/2
∼ χ2

2n−4.

2.4 CC3: A Modified CC based on the Distribution of the
Generalized Variance

Alt and Smith [2] proposed a modified CC for monitoring simultaneously p
quality characteristics, in which |S|1/2 is used as the plotted statistic. The α
probability control limits are the following:

UCL =
|Σ0|1/2χ2

2n−4,1−α/2

2 (n− 1)
,

LCL =
|Σ0|1/2χ2

2n−4,α/2

2 (n− 1)
,

with center line CL = |Σ0|1/2.

2.5 VMAX: A MEWMA Scheme Based on the VMAX Statistic

Machado and Costa [18] proposed a Bivariate Exponentially Weighted Moving
Average CC scheme based on VMAX for detecting changes in the covariance
matrix Σ0 of a bivariate process.
The EWMA CC s introduced by Roberts [24] are used as a tool for detecting
small shifts in a manufacturing process. EWMA CC s have no memory, since
they take into account information obtained from all previous samples, where
each sample is weighted proportionally to the distance from the current sample.
The MEWMA scheme based on VMAX uses the following statistics:

Zi = λYi + (1− λ)Zi−1, i = 1, 2, . . .
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A signal is given when Zi > UCL where:

UCL =

(
χ2

2n−4,α

)2 |Σ0|
4 (n− 1)

2 .

It is noted that Yi = max
{
S2
xi
, S2
yi

}
. S2

xi
and S2

yi are the sample variances of
X and Y , respectively. The starting value Z0 is often taken to be the expected
in-control value of Z as defined by Lucas and Saccucci [17].

2.6 T1 and T2: Two CC s for Testing Covariance Changes Without
Large Data

Hung and Chen [10] proposed two statistics -T1 and T2- for monitoring the
variance-covariance matrix. Their proposal is based on the fact that (n− 1)S
follows the Wishart distribution as defined by Wishart [26] with parameters
(n− 1) and Σ0 (S ∼ Wp (n− 1,Σ0)). Since Σ0 is positive definite, there is
a matrix A satisfying AΣ0A

′ = Ip so that (n− 1)ASA′ ∼ Wp (n− 1, Ip).
Using the Cholesky’s decomposition theorem developed by Cholesky [4], Σ0

can be decomposed into MM ′ with M being a lower triangular matrix with
positive diagonal elements. As mentioned by the authors, the aforementioned
A can be chosen to be M−1. By applying the Cholesky’s decomposition the-
orem once more to the (n− 1)ASA′ another lower triangular matrix T can
be obtained. The elements of the matrix T are mutually independent and are
distributed as follows:

t2ii ∼ χ2
n−i, for 1 ≤ i ≤ p,

and

tij ∼ N (0, 1) , for 1 ≤ j < i ≤ p,

which is a result from Bartlett’s decomposition theorem. The following hy-
pothesis test is considered: H0 : Σ = Σ0 versus H1 : Σ 6= Σ0. Any departure
from the null hypothesis will make certain tij behave abnormally. By using
the lower triangular matrix T two statistics can be derived (Tdiag and Toff-diag)
which are defined as:

Tdiag =
∑

1≤i≤p

t2ii ∼ χ2
(p/2)(2n−p−1),

and

Toff-diag =
∑

1≤j<i≤p

t2ij ∼ χ2
(p/2)(p−1).

By making use of the elements in the lower diagonal matrix T and the 2
defined statistics (Tdiag and Toff-diag) the following two sets of test statistics
can be defined:

T1 = {t2ii for 1 ≤ i ≤ p, Toff-diag},
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and

T2 = {Tdiag, Toff-diag}.

The set T1 with all t2ii’s and Toff-diag as plotted statistics (p+1 statistics) signals
when one of the following occurs:

{t211 < χ2
n−1,(a1/2) or t211 > χ2

n−1,1−(a1/2)},
or

...

or

{t2pp < χ2
n−1,(ap/2) or t2pp > χ2

n−1,1−(ap/2)},

or

{Toff-diag > χ2
(p/2)(p−1),1−αoff-diag

}.

On the other hand, the set T2 with two plotted statistics (Tdiag and Toff-diag)
signals when one of the following occurs:

{Tdiag < χ2

(p/2)(2n−p−1),
(
αdiag/2

)},
or

{Tdiag > χ2
(p/2)(2n−p−1),1−(αdiag/2)},

or

{Toff-diag > χ2
(p/2)(p−1),1−αoff-diag

}.

By setting the overall type-I error for each set of statistics equal to α an

αbase = 1− (1− α)
(1/p(n−1))

is defined. The αi, αoff-diag and αdiag are defined
as:

ai = 1− (1− αbase)
n−i

,

aoff-diag = 1− (1− αbase)
p(p−1)/2

,

adiag = 1− (1− αbase)
p(2n−p−1)/2

.

2.7 VMIX: A CC Based on the VMIX Statistic

Quinino et al. [23] proposed a statistic for controlling the covariance matrix
of a bivariate process with known means and variances. The CC is known as
VMIX CC and the monitoring statistic VMIX is:

VMIX =

∑n
i=1X

2
i +

∑n
i=1 Y

2
i

2n
.

The CC is defined by considering X∗ and Y ∗ as two quality characteristics of
interest with means µX∗ and µY ∗ , respectively. The variances are defined as
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σ2
X∗ and σ2

Y ∗ and the covariance is defined as σX∗Y ∗ . If all the parameters are
known, the new variables can be defined as:

Xi =
(X∗i − µX∗)

σx∗

and

Yi =
(Z∗t − ρXi)√

1− ρ2
,

where Z∗i =
(Y ∗i − µY ∗)

σY ∗
. When the process is in-control, Xt and Yt follow the

standardized normal distribution and become free of the correlation parameter
ρ. The CC signals when VMIX > UCL. For determining the UCL, the
following has been used:

P (VMIX ≤ UCL) = P (TX + TY ≤ 2nUCL) = 1− α,

where TX =
∑n
i=1X

2
i and TY =

∑n
i=1 Y

2
i . The statistic T = TX + TY follows

a χ2 distribution with 2n degrees of freedom so:

P (T ≤ 2nUCL) = 1− α.

3 Simulation Study and Results

3.1 Simulation Study

Every case that can be considered in real life is special and differs with any
other. A practitioner may deal with various problems that can occur during
production. In the case that the process is out-of-control, the practitioner
should be capable to recognize an out-of-control signal as soon as possible. In
other words, he should monitor the process with the CC that best suits the
problem. This section, deals with this problem. Various scenarios based on the
available sample and possible shift have been considered.
Regarding the comparison of the various CC s, the control limits of the CC s
were computed for achieving an in-control ARL equal to 200. The number of
variables was set equal to p = 2. Furthermore, scenarios for different sample
sizes have been considered with n = 5, 10, 20. In addition, the scenarios
were made for simulating a process with mean vector µ = (0, 0) and variance-

covariance matrix Σ =

[
1 σ11ρσ22

σ11ρσ22 1

]
with ρ = −0.75,−0.3, 0 and 0.5.

Finally, the out-of-control ARL are compared for a shift in one or two variances
and the shifts had the form kσ2 with k = 1, 1.1, 1.2, . . . , 2. In the plots, the
volume of the shift and the ln(ARL) are presented. The number of simulations
were set to be 105.
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3.2 Results

Scenario with ρ = −0.75 The first scenario assumes that the correlation
between the variables is -0.75 meaning that the variables have a strong neg-
ative correlation. Figures 2(a), 2(c), and 2(e) show the shift in variability of
only one variable for sample sizes equal to 5, 10 and 20, respectively. For a
sample sizes n= 5, 10, 20 and shift in the dispersion of both variables, we
have Figures 2(b), 2(d), and 2(f).

From Figure 1 it appears that the VMIX CC performs better regardless the
sample size and the shift. A high negative correlation between the two variables
indicates that the VMIX CC should be applied for monitoring the dispersion
of the process. Figures 2(a), 2(c), 2(e) also show that the VMAX CC per-
forms better for a shift in one variable regardless the volume of the shift. More
specifically as the sample size increases the VMAX CC approximates the per-
formance of the VMIX CC. VMAX CC can also be selected for monitoring the
process if the sample size is small (n=5) when the shift occurs in both variables
(see Figure 2(b)). On the contrary, W CC is the worst chart for monitoring
the process especially if a shift in both variables takes place (Figures 2(b), 2(d),
and 2(f)). In the case of a large shift (1.7σ2) in one variance, W CC has similar
performance to VMIX and VMAX for large sample sizes (n=10, 20) (Figures
2(c), 2(e)). T2 CC should be considered for shifts in both variables regardless
the sample size (Figures 2(b), 2(d), and 2(f)) but preferably for shifts over
1.4σ2. The T2 CC can also be selected for shift in one variable with a small
sample size (n=5) because it has the third best performance recorded (Figure
2(a)). T1 CC is able to detect a shift in one variable when the sample size is
more than 10 (Figures 2(c), 2(d)). Finally, the CC2 chart has a moderate per-
formance since it does not perform best with any specific sample size (Figures
2(a) - 2(f)).

Scenario with ρ = −0.30 The second scenario assumes that the correla-
tion between the variables is -0.30 meaning that the variables have a moderate
negative correlation. Figures 3(a), 3(c), and 3(e) show the performance of the
CC s for the case of a shift in the variance of one variable and for sample sizes
5, 10 and 20 respectively. Figures 3(b), 3(d), and 3(f) show for sample sizes 5,
10 and 20 the performance of the CC s when there is shift in the variances of
both variables.

From Figure 2 it seems that the VMAX CC is the best for detecting a shift in
only one variable regardless the sample size and the volume of the shift (Figures
3(a), 3(c), and 3(e)) while VMIX CC outperforms all CC s for shift in both
variables regardless the sample size and the volume of the shift (Figures 3(b),
3(d), and 3(f)). In this scenario, the W CC performs really good only in big
sample sizes (n = 20) and great shifts (> 1.8σ2) in only one variable (Figure
3(e)). T1 CC in this case seems to have one of the best performances when it
comes to a shift in one variable regardless the sample size (Figures 3(a), 3(c),
and 3(e)). For sample sizes equal to 5, T1 should be preferred for shifts over
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Fig. 1. CC Performance for ρ = −0.75

(a) n = 5 and shift in one variable (b) n = 5 and shift in two variables

(c) n = 10 and shift in one variable (d) n = 10 and shift in two variables

(e) n = 20 and shift in one variable (f) n = 20 and shift in two variables
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Fig. 2. CC Performance for ρ = −0.30

(a) n = 5 and shift in one variable (b) n = 5 and shift in two variables

(c) n = 10 and shift in one variable (d) n = 10 and shift in two variables

(e) n = 20 and shift in one variable (f) n = 20 and shift in two variables
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1.4σ2 (Figure 3(a)), for sample size equal to 10, T1 should be preferred for
shifts over 1.3σ2 (Figure 3(c)) and for big sample sizes (n = 20), T1 should be
preferred for shifts over 1.2σ2 (Figure 3(e)). T2 CC should be considered for a
shift in one variable regardless the sample size but for shifts over 1.2σ2 (Figures
3(a), 3(c), and 3(e)). For a shift in both variables, T2 should be preferred if
the sample size is 5 and the shift is over 1.6σ2 (Figure 3(b)), for sample size 10
when the shift is over 1.5σ2 (Figure 3(d)) or for sample size of 20 if the shift
is over 1.2σ2 (Figure 3(f)). CC1 and CC3 should be considered only for shift
in both variables when sample size is 5 and the volume of the shift is less than
1.6σ2 (Figure 3(b)) or for sample sizes 10 and 20 regardless the shift (Figures
3(d), 3(d)). Again, CC2 is not exceptional in any case so it should not be
considered (Figures 3(a) - 3(f)).

Scenario with ρ = 0 The third scenario assumes that the correlation be-
tween the variables is 0 meaning that the variables are uncorrelated. The ARL
curves for shift in the variance of one and two variables can be seen in Figure 3.

It seems that VMAX CC is the best chart for detecting shifts in any case
(Figures 4(a) - 4(f)). VMIX CC performs near optimally for a shift in the
dispersion of both variables but for large sample sizes (n=10 or 20) (Figures
4(d), 4(f)). T1 can be chosen for detecting shifts over 1.2σ2 in one variable for
sample size over 10 (Figures 4(e), 4(b)) and should not be preferred at all if the
shift occurs in both variances simultaneously (Figures 4(b), 4(d), and 4(f)). In
the case of shift in one variable, T2 can be considered when the shift is over
1.3σ2 (Figures 4(a), 4(c), and 4(e)). In the case of shift in both variances, T2
can be preferred when the shift is larger than 1.3σ2 and the sample size is up
to 10 (Figures 4(b), 4(d)) or if the sample size is large (n = 20) regardless the
volume of the shift (Figure 4(f)). CC1 and CC3 can be chosen for shift in both
variances regardless the sample size (Figures 4(b), 4(d), and 4(f)).

Scenario with ρ = 0.5 The fourth scenario assumes that the correlation be-
tween the variables is 0.5 meaning that the variables have a moderate positive
correlation. Figure 4 shows the ARL curves for shift in the variance of one and
two variables under the fourth scenario.

The correlation in the fourth scenario is moderately positive (ρ = 0.5). It seems
that the VMAX CC should be chosen for a shift in one variable regardless the
sample size (Figures 4(a), 4(c), and 4(e)) or for shift in both variables when the
sample size is small (n = 5) (in this case it has the second better performance)
(Figure 4(b)). VMIX CC has the best performance when the shift occurs in
both variables regardless the sample size (Figures 4(b), 4(d), and 4(f)) and has
the second better performance for a shift in one variable (Figures 4(a), 4(c), and
4(e)). T1 CC has a good performance when it comes to a shift in one variable
but for sample sizes of 10 or 20 (Figures 4(c), 4(e)). It best performs for a shift
over 1.3σ2 when the sample size is 10 (Figure 4(c)) and for a shift over 1.2σ2

when the sample is size equal to 20 (Figure 4(e)). T2 performs good for shifts
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Fig. 3. CC Performance for ρ = 0

(a) n = 5 and shift in one variable (b) n = 5 and shift in two variables

(c) n = 10 and shift in one variable (d) n = 10 and shift in two variables

(e) n = 20 and shift in one variable (f) n = 20 and shift in two variables
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Fig. 4. CC Performance for ρ = 0.5

(a) n = 5 and shift in one variable (b) n = 5 and shift in two variables

(c) n = 10 and shift in one variable (d) n = 10 and shift in two variables

(e) n = 20 and shift in one variable (f) n = 20 and shift in two variables
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in both variables when the sample size is 5 and the shift is over 1.6σ2 (Figure
4(b)). Also when the sample size is 10 and the shift is over 1.5σ2 (Figure 4(d))
and finally when the sample size is 20 and the shift is over 1.2σ2 (Figure 4(f)).
It also performs well for sample size of 5 and shift over 1.2σ2 in one variable
(Figure 4(a)). Again CC1 and CC3 perform good for shifts in both variables
regardless the sample size (Figures 4(b), 4(d), and 4(f)). Also for small shifts
(< 1.2σ2) in one variable regardless the sample size (Figures 4(a), 4(c), and
4(e)). Finally, there is no case in which CC2 should be preferred.

4 Discussion and further work

In this paper some bivariate and multivariate CC s were presented. Moreover,
these CC s were compared for determining the most efficient CC s for any given
scenario which involves a bivariate process.
It was clear that almost in any considered case, the VMAX CC by Machado
and Costa [18] and the VMIX CC by Quinino et al. [23] had the best perfor-
mance. Both charts are bivariate CC s and should be preferred if the process
consists of 2 variables. From the remaining CC s, T2 developed by Hung and
Chen [10] performs really good in large shifts either in one or both variables
especially for big samples. T1 also developed by Hung and Chen [10] performs
better for a shift in one variable and also for big sample size regardless the
correlation between the variables. CC1 and CC3 perform good for shifts in
both variables regardless the correlation between the variables. Finally, W CC
seems to perform well when big shifts occur in one variable especially for high
correlation between the variables.
While Jackson’s [14] list is right on what information should be obtained from
MSPM, it is probably incomplete and should be expanded by one information
that should be provided to the researcher. The researcher should be in position
to answer to the question ”Am I using the optimal way to monitor the pro-
cess?”. The reason is really simple. If the best CC is not used for the scenario
encountered then it is not sure for the researcher to know in any given time
whether the process is in-control (first information from Jackson [14]) leading
to ignorance. A large-scale study should be done with main objective to deter-
mine the best option for every scenario that can be encountered. This painful
study should include scenarios for different number of variables, different sam-
ple sizes, different correlations and different shifts in variances. Also scenarios
with different in control ARLs should be included.
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Abstract. Asset price processes with stochastic volatilities have been actively used
by researchers in financial mathematics for valuing derivative securities. This type of
models allows characterizing the uncertainty of the volatility variable in the asset price
process in financial markets. In a recent paper Chiarella and Ziveyi [3] analyzed a
model with two stochastic volatility variables of mean reversion type with one variable
changing fast and the other changing slowly. They used method of characteristics to
solve the obtained partial differential equation and determine the price of an American
option. Fouque et al [6], [7] and [8] presented also a similar model in which the
volatility of the underlying asset is governed by two diffusion processes which are not
of mean reversion type. They developed a first-order asymptotic expansion for the
European option price via a perturbation method.

In this paper we consider the model given in Chiarella and Ziveyi [3]. Instead of
pricing American options we price European options by generalizing the techniques
presented in Fouque et al [6], [7] and [8] to a more complex model with mean reverting
stochastic volatility factors. We analyse both regular and singular perturbations to
obtain an asymptotic expansion up to second order which can serve as an approxima-
tion for the price of non-path-dependent European options. Similar work is done in
authors earlier work Canhanga et al [1] in which a first-order asymptotic expansion
has been developed. Involving the second order terms has the advantage of capturing
more accurately the effects of volatility smile and skew on the option pricing. Ana-
lytical approximation formula for pricing European Option is presented.
Keywords: Financial market, Mean reversion volatility, asymptotic expansion, Stochas-
tic Volatilities, Regular perturbation, Singular perturbation, European option.

1 Introduction

The idea that in the financial market there is no free lunch suggests that one
should not get for free rights without obligations. An option is a financial
contract that gives the buyer the right but not the obligation to buy, in case
of a call option, or sell, in case of a put option, an underlying asset at the
maturity time (for European options) or any time up to the maturity (for
American options) at a predetermined strike price. Thus, there is an amount
of money, namely premium or price of the option, that the buyer of a option
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has to pay in order to acquire this right. It is clear that this price depends on
the stochastic process followed by the price of the underlying asset.

Following the fairness principle that financial models must assume, from the
beginning of history of financial mathematics up to now, there has been a lot of
efforts to develop models that capture all characteristics of asset price behav-
iors. The well-known Black-Scholes-Merton model values options based on the
geometric Brownian motion for the asset price process under constant volatility.
With a closed-form and easy-to-use option pricing formula this model has the
weakness of not considering the variability through time for the volatility vari-
able. Later Cox and Ross [15] introduced constant elasticity of variance model
which did not consider a proper stochastic process for the volatility but instead,
introduced a constant to characterize the changes of the volatility variable ac-
cording to the increasing or decreasing of the underlying asset price. Following
ideas from Vasicek [5] and Cox and Ross [15], Heston [2] brought a solution to
the Black-Scholes option pricing model extended to the setting of non-constant
and non-deterministic volatility. Heston [2] considered in his model a single fac-
tor volatility of mean reversion type in order to confine volatility distribution
to realistic level. The mean reversion property of the the volatility process is
justified by the long term equilibrium observed in real life movement of volatil-
ity variable of an underlying asset. He presented a semi-analytical formula for
pricing European options.

Afterwards numerous researchers have increasingly realized that asset prices
are influenced at least by two volatilities of mean reversion type with different
speeds (see for example Fouque et al [8] and LeBaron [11]), thus the lightness
from the single-factor Heston model was dropped and new research took place
trying to capture all effects on the volatilities behavior to the option pricing.

One of this research was done by Christoffersen et al [12]. They improved
the single factor Heston model by considering the variance of the underlying as-
set price as the sum of two uncorrelated stochastic variances of mean-reverting
type, which relaxed the assumption of a single volatility factor in the Hes-
ton model. The volatility factors, more accurately the variance rate processes,
have different reverting rates with one factor reverting fast and the other one
reverting slowly. Using the method of characteristics and Fourier inversion they
determined prices for European call options. These results were extended by
Chiarella and Ziveyi [3] for the American option pricing problem.

In the present paper we consider the aforementioned model with two stochas-
tic volatility factors. Instead of American options we consider pricing European
options. The fact that it has a fast and a slow changing volatilities makes the
determination of the option price a very tedious process. We replace the method
of characteristics by constructing an approximating solution using asymptotic
expansion method. Such method was described in Fouque et al [6], [7] and [8]
for a similar but simpler model of asset price process. In the authors earlier
work (Canhanga et al [1]), singular and regular perturbation analysis was per-
formed to develop an asymptotic expansion up to the first order which can serve
as an approximation to European option prices. The perturbation parameters
represent the rate of reverting for the two variance rate processes. The present
paper follows this line of research and perform a second-order singular and
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regular perturbation analysis to capture more accurately the skew and smile of
volatilities. The obtained results on second order asymptotic expansion provide
more accurate approximation to the options prices.

2 The Problem

Let dWi, i = {1, 2, 3, 4} be independent Wiener processes, we consider an asset
process (St)0≤t≤T driven by the following stochastic differential equation

dSt = µStdt+
√
V1,tSt dW1 +

√
V2,tSt dW2, (1)

where µ is the expected return of the asset. Under the assumption 0 < ε << 1,
0 < δ << 1, |ρ13| < 1, |ρ24| < 1, the finite variance rates V1,t and V2,t are
stochastically governed by

dV1,t =
1

ε
(θ1 − V1,t)dt+ ρ13

√
1

ε
V1,t dW1 +

√
1

ε
(1− ρ213)V1,t dW3,

dV2,t = δ(θ2 − V2,t)dt+ ρ24
√
δV2,t dW2 +

√
δ(1− ρ224)V2,t dW4,

(2)

where the parameters θ1, θ2 are reverting means and 1
ε and δ refer to the

rates/speeds of mean-reversions. It can be shown that the parameter ρ13 (ρ24)
is the constant instantaneous correlation coefficient between St and V1,t (be-
tween St and V2,t). Note that since dWi, i = {1, 2, 3, 4} are independent
Wiener processes, the variance rate processes V1,t, V2,t are uncorrelated. Since
0 < ε << 1 and 0 < δ << 1, the variance rate V1,t will be changing fast on
the direction of its long run mean θ1, while the variance rate V2,t will change
slowly on the direction of its long run mean θ2. The speeds of changing for
these two variance rates, V1,t, V2,t, are given by 1

ε and δ respectively and the

corresponding volatilities (volatilities of volatilities) are
√

1
ε and

√
δ. We will

hereafter call V1,t the fast volatility factor and V2,t the slow volatility factor.
Moreover the assumption |ρ13| < 1 and |ρ24| < 1 will make the system to

fulfill the condition proposed in Feller [4], which guarantees that the stochastic
differential equation for the underlying asset has an analytic solution under real
world probability measure. It also guarantees that there exists an equivalent
solution to the underlying asset price equation under risk neutral probability
measure. Since our system is under real world probability measure we need to
transform it to a risk neutral probability measure. With the same thought as
Chiarella and Ziveye [3] we consider the market prices of risk λ1, λ2 associated
to Wiener processes dW1 and dW2 respectively to be constants. The other two
market prices of risk are given in terms of λ1 and λ2 by

λ3,t =
λ1
√
V1,t

σ1
√

1− ρ213
and λ4,t =

λ2
√
V2,t

σ2
√

1− ρ224
,

where σ1 and σ2 are the instantaneous volatilities of V1,t and V2,t per unit time
respectively. The use of Girsanov theorem (see for example Kijima [5]) will
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transform our system to a new system under risk neutral probability measure

dSt = (r − q)St dt+
√
V1,tSt dW ∗1 +

√
V2,tSt dW ∗2 ,

dV1,t =

(
1

ε
(θ1 − V1,t)−

1√
ε
λ3,t

√
V1,t(1− ρ213)

)
dt+

1√
ε

√
V1,tρ13 dW ∗1

+
1√
ε

√
V1,t(1− ρ213) dW ∗3 ,

dV2,t =

(
δ(θ2 − V2,t)−

√
δλ4,t

√
V2,t(1− ρ224)

)
dt+

√
δ
√
V2,tρ24 dW ∗2

+
√
δ
√
V2,t(1− ρ224) dW ∗4 ,

(3)

where dW ∗i , i = {1, 2, 3, 4} are the Wiener processes under risk neutral prob-
ability measure. Details of this transformation and computation to the new
system under risk neutral probability measure can be seen in Canhanga et al
[1]. Consider an European option on an underlying asset governed by model (3)
with maturity T, and a given payoff function h(ST ) when ST is the underlying
price at maturity time T. Let U(t, S, v1, v2) denotes the options price at time
t < T when the underlying has price S and the spot fast volatility factor and
slow volatility factor are v1 and v2 respectively.

The option price U(t, S, v1, v2) is then the expected payoff under risk-neutral
probability measure discounted to time t, i.e.

U(t, S, v1, v2) = e−rτE∗[h(ST )|S, v1, v2], τ := T − t (4)

For the system of stochastic differential equation given in this paper, the
calculation of the above expected value will require analysis of many parameters
which makes it difficult. Andersen and Piterbarg [13] proves that the option
price given by (4) is equal to the unique solution of the following parabolic
partial differential equation

rU − ∂U
∂t = (r − q)S ∂U∂S +

[
1
ε (θ1 − v1)− λ1v1

]
∂U
∂v1

+ [δ(θ2 − v2)− λ2v2] ∂U∂v2 +

1
2

[
(v1 + v2)S2 ∂2U

∂S2 + 1
εv1

∂2U
∂v21

+ δv2
∂2U
∂v22

]
+

1√
ε
ρ13Sv1

∂2U
∂S∂v1

+
√
δρ24Sv2

∂2U
∂S∂v2

,

(5)
with boundary conditions U(T, S, v1, v2) = h(ST ).

Thus, instead of the difficult computation involved in using formula (4),
we will search for the option price via the approximate solution of (5) using
asymptotic expansion method, simplifying even more the calculation and using
much less parameters than those imposed by calculating expected values. On
the asymptotic expansion procedure, the results become asymptotically better
when we increase the order of expansion. In our case we have extended the
order of asymptotic expansion to the second order, expecting that our solution
will be more adjusted to the real values of the option price. We will capture
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the skewness and smiles of volatilities during the life time of the option and it
will make the option price to express closely the real markets situation.

Let us define the following operators

L2 =
∂

∂t
+ (r − q)S ∂

∂S
+

1

2
(v1 + v2)S2 ∂2

∂S2
− r − λ1v1

∂

∂v1
− λ2v2

∂

∂v2
,

L1 = ρ13Sv1
∂2

∂S∂v1
,

L0 = (θ1 − v1)
∂

∂v1
+

1

2
v1

∂2

∂v21
,

M1 = ρ24Sv2
∂2

∂S∂v2
,

M2 = (θ2 − v2)
∂

∂v2
+

1

2
v2

∂2

∂v22
.

and

Lε =
1

ε
L0 +

1√
ε
L1 + L2.

Equation (5) can be written for short as(
Lε +

√
δM1 + δM2

)
U = 0 (6)

where

• 1
εL0 is the infinitesimal generator of the process V1,t;

• L1 express the correlation between the asset price S and the volatility V1,t;
• L2 is the multidimensional Black-Scholes operator presented in Conze et al

[9] and Sin et al [14] with volatility level given by f(v1, v2) =
√
v1 +

√
v2

and can be denoted as LBS ;
• M1 express the correlation between the asset price and the volatility pro-

cess V2,t;
• δM2 is the infinitesimal generator of process V2,t.

In equation (6) the operators assigned with ε are diverging in the small ε
limit and the operators assigned to δ are converging to zero in the small δ.
This drives us to a singular and a regular perturbation about the operator
LBS which is neither assigned to ε nor to δ. It is possible to present the
single and regular perturbation at the same time, but for better explanation
we will present the perturbation analysis stepwise starting from the regular to
the singular perturbation. It could also be done in the reverse order without
affecting the solution.

3 Regular perturbation

Consider the option price U as function of ε and δ. In the regular perturbation
we expand operators and the solution Uε,δ in (6) in terms of powers of

√
δ. Let
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us assume that our solution can be expressed in the following form

U = Uε,δ =
∑
j≥0

√
δ
j
Uεj = Uε0 +

√
δUε1 + δUε2 + δ

√
δUε3 + · · · (7)

where the omitted terms are of order o(δ
√
δ). Using this expansion in (6),

collecting all terms with the same power of
√
δ and considering the fact that

0 < δ << 1, gives that equation (6) holds only if all coefficients of
√
δ
j
, j =

{0, 1, 2, · · · } equals zero with its final conditions. The first three lowest order
components of the regular expansion will be

LεUε0 = 0, Uε0 (T, S, v1, v2) = h(S);

LεUε1 +M1U
ε
0 = 0, Uε1 (T, S, v1, v2) = 0;

LεUε2 +M1U
ε
1 +M2U

ε
0 = 0, Uε2 (T, S, v1, v2) = 0.

(8)

We could produce infinitely many equations of this type. However only the first
tree equations are needed since we are interested in performing the second-order
asymptotic expansion. Indeed from the fourth equation that we would obtain,
all contained terms would be of o(δ

√
δ)) and hence not of our interest. In the

regular perturbation we are looking for Uε0 , U
ε
1 and Uε2 . Then the singular per-

turbation analysis will be performed on each of these three solution-components
to produce our approximation.

4 Singular Perturbation

Operators in (8) and Uε0 , U
ε
1 , U

ε
2 have to be submitted to a singular pertur-

bation. We do it by expanding Uεj , j = {0, 1, 2} in terms of powers of
√
ε

according to the formula

Uεj =
∑
i≥0

√
ε
i
Uj,i. (9)

We need to obtain all Ui,j for i+ j ≤ 2 to determine the expansion for option
price. Applying the above formula to (8) and solving them gives us the desired
Ui,j . Putting the resulting expansions for Uε0 , Uε1 , U

ε
2 in (7), our asymptotic

expansion for the option price will take the following form

Uε,δ = U0,0 +
√
εU1,0 + εU2,0 +

√
δU0,1 + δU0,2 +

√
δεU1,1 + · · · (10)

4.1 Singular perturbation on O(1)

Here we use (9) to do the singular perturbation on the first equation of (8)

Uε0 = U0,0 +
√
εU1,0 + εU2,0 + ε

√
εU3,0 + · · · . (11)

Let us for simplicity from now on denote U0,0 = U0. Applying the expansion
(11) in the first equation of (8), collecting terms with the same power of

√
ε

and using the fact that 0 < ε << 1, the resulting equation will be attended
only if
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L0U0 = 0, U0(T, S, v1, v2) = h(ST );

L0U1,0 + L1U0 = 0, U1,0(T, S, v1, v2) = 0;

L0U2,0 + L1U1,0 + L2U0 = 0, U2,0(T, S, v1, v2) = 0;

L0U3,0 + L1U2,0 + L2U1,0 = 0, U3,0(T, S, v1, v2) = 0;

L0U4,0 + L1U3,0 + L2U2,0 = 0, U4,0(T, S, v1, v2) = 0.

(12)

• Operator L0 contains only derivatives on v1 and is a second order linear
ordinary differential operator. It can be solved and will have solutions with
exponential form that will cause our system to diverge. It also contradicts
the mean reversion approach that characterizes the variances in the system.
For our system to converge we have to consider the trivial solution of this
type of equation, i.e, U0 = U0(t, S, v2).

• Operator L1 contain derivative with respect to v1, therefore, applying any
Ui,j(t, S, v2) to L1 gives L1Ui,j(t, S, v2) = 0; ∀i, j ∈ N : 0 ≤ i+ j ≤ 2;

• If we have Poisson equation, the solvability condition imposes that the non-
homogeneous part of the equation must be centered with respect to the
invariant distribution of the process generated by L0. This is equivalent
to saying that the average of the non-homogeneous source with respect
to invariant distribution of the process V1 must equal zero. More clearly,
letting 〈·〉 be the average with respect to invariant distribution N(m,υ2)
of the fast volatility factor process V1. If we have L0χ + z = 0, then, the
solvability condition says that

〈z〉 =
1

υ
√

2π

∫
R
z(v1)e

−(m−v1)2

2υ2 dv1 = 0;

• Operator L2 is the two-dimensional Black-Scholes operator meaning that if
we apply Ui,j to L2 and we realize that it equals zero, then Ui,j is the Black-
Scholes option price. We denote this price by UBS(σ(v2)) with volatility
given by σ(v2) defined below.

• The averaged effective volatility σ(v2) is defined as

σ2(v2) = 〈v1 + v2〉 =

∫
(v1 + v2)Π(dv1)

where Π is the invariant distribution of the process V1,t.

With this in mind, the first three equations in the system (12) gives

U0 = UBS , (13)

where UBS is the solution to the corresponding two-dimensional Black-Scholes
model, when the volatility is given by σ(v2). Before we compute the other
components of the approximation, let us first introduce the notation

Dk = Sk
∂k

∂Sk
, k = 1, 2, 3, · · ·

and define an operator that will help on our calculation.
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Suppose that the function φ(v1, v2) is the solution of

L0φ(v1, v2) = f2(v1, v2)− σ2(v2)

then

L2 − 〈L2〉 =
1

2

[
f(v1, v2)− σ2(v2)

]
D2 (14)

can be expressed as

L2 − 〈L2〉 =
1

2
L0φ(v1, v2)D2

which implies that

L−10 (L2 − 〈L2〉) =
1

2
φ(v1, v2)D2.

If we apply L1 operator on both side of the above equation we obtain

L1L−10 (L2 − 〈L2〉) = L1
1

2
φ(v1, v2)D2

or

〈L1L−10 (L2 − 〈L2〉)〉 =

〈
1

2
ρ13v1

∂φ(v1, v2)

∂v1
D1D2

〉
.

Then we define the operator

Bε = −Υ ε2 (v2)D1D2 (15)

where

Υ ε2 (v2) = −
√
ερ13
2

〈
v1
∂φ(v1, v2)

∂v1

〉
. (16)

Now, considering that the fourth equation on the System (12) is a Poisson
equation on U3,0 and the solvability condition impose that

〈L1U2,0〉+ 〈L2〉U1,0 = 0; (17)

together with the fact that L1U1,0 = 0 the third equation in the system (12)
will be transformed into

L0U2,0 + L2U0 = 0

which is again Poisson equation; its solvability condition will impose that
〈L2U0〉 = 0. On the other hand

L0U2,0 = −L2U0

implies that

U2,0 = −L−10 [L2 − 〈L2〉]U0. (18)

Using the above definition of U2,0 in equation (17) we obtain

〈L2〉U1,0 = BεU0 (19)
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for the operator Bε defined in equation (15). In case we consider European
options, the equation (19) can be expressed as

LBS(σ(v2))U1,0(t, s, v2)ε = BεUBS ; Uε1,0(T, s, v2) = 0, (20)

therefore

Uε1,0 = −(T − t)BεUBS . (21)

Using definitions of the operators presented in equation (18) one can compute
U2,0 and obtain

U2,0 = −1

2
φD2U0 + c2,0(t, S, v2), (22)

where c2,0 is constant with respect to v2 which is obtained from the integration
of U2,0.

Computation of c2,0(t, S, v1)

To determine the constant c2,0, we use last equation in (12) which is a Poisson
equation, therefore

〈L1U3,0 + L2U2,0〉 = 0⇒ 〈L1U3,0〉+ 〈L2U2,0〉 = 0.

We need to compute the two terms on the left side of the last equation,

〈L2U2,0〉 = 〈L2 (−1

2
φD2U0 + c2,0(t, S, v1))〉.

The fact that the average is with respect to invariant distribution of V1,t allows
us to rewrite

〈L2U2,0〉 = −1

2
〈φL2〉D2U0 + 〈L2〉c2,0(t, S, v1).

Considering that U0 does not depend on the fast volatility factor v1

〈L2U2,0〉 = −1

2
〈φ〉
(
∂

∂t
+ (r − q)S ∂

∂S
− λ2v2

∂

∂v2
− r
)
D2U0

−1

4
〈φ(v1 + v2)〉D2

2U0 + 〈L2〉c2,0(t, S, v2)

which is

〈L2U2,0〉 = − 1
2 〈φ〉

(
∂
∂t + (r − q)S ∂

∂S − λ2v2
∂
∂v2

+ 1
2 〈(v1 + v2)〉D2 − r

)
D2U0−

1
4 [〈φ(v1 + v2)〉D2 − 〈φ〉〈(v1 + v2)〉D2]D2U0 + 〈L2〉c2,0(t, S, v2);

thus

〈L2U2,0〉 = A2(v2)D2U0 + 〈L2〉c2,0(t, S, v2) (23)
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where A2(v2) is defined as

A2(v2) = −1

4
(〈φ(v1 + v2)〉D2 − 〈φ〉〈(v1 + v2)〉D2) .

The third equation in (12) implies that

L0U3,0 = −L1U2,0 + 〈L1U2,0〉 − L2U1,0 − 〈L1U2,0〉
= −L1U2,0 + 〈L1U2,0〉 − (L2 − 〈L2〉)U1,0

= −L1

(
−1

2
φD2U0 + c2,0(t, S, v2)

)
+

〈
L1

(
−1

2
φD2U0 + c2,0(t, S, v2)

)〉
− 1

2
L0φD2U1,0

= −1

2
ρ13

(
v1φ

∂

∂v1
−
〈
v1φ

∂

∂v1

〉)
D1D2U0 −

1

2
L0φD2U1,0

=
1

2
ρ13L0ψD1D2U0 −

1

2
L0φD2U1,0

where φ and ψ are functions that satisfies

1

2
L0φ(v1, v2)D2 = L2 − 〈L2〉;

L0ψ = v1
∂

∂v1
φ− 〈v1

∂

∂v1
φ〉.

U3,0 =
1

2
ρ13ψD1D2U0 −

1

2
φD2U1,0 + c3,0

where c3,0 is a constant on v1.
Now since we know U3,0, we are ready to compute the average with respect

to the invariant distribution of V1,t for L1U3,0, i.e.

〈L1U3,0〉 =

〈
ρ13D1v1

∂

∂v1

(
1

2
ρ13ψD1D2U0 −

1

2
φD2U1,0 + c3,0

)〉
=

〈
ρ13D1v1

∂

∂v1

(
1

2
ρ13ψD1D2U0 −

1

2
φD2U1,0

)〉
=

1

2
ρ213

〈
v1

∂

∂v1
ψ

〉
D2

1D2U0 −
1

2
ρ13

〈
v1

∂

∂v1
φ

〉
D1D2U1,0.

If we make

A1(v2) =
1

2
ρ213

〈
v1

∂

∂v1
ψ

〉
; (24)

the average of L1U3,0 will be

〈L1U3,0〉 = A1(v2)D2
1D2U0 − BεU1,0. (25)

Combining (25) with (16) gives

〈L2〉c2,0(t, S, v2) = −A1(v2)D2
1D2U0 + BεU1,0 −A2(v2)D2U0.
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Lemma 2.1 from Fouque et al [8] together with the fact that

〈U2,0(T, S, v2)〉 = 0 and 〈φ(·, v2)〉 = 0

implies that

〈L2〉c2,0(t, S, v2) = A3(v2)〈L2〉τUBS + (Bε)2 〈L2〉
τ2

2
UBS

for

A3(v2) = A1(v2)D2
1D2 +A2(v2)D2

and

c2,0(t, S, v2) =

(
τA3(v2) +

τ2

2
(Bε)2

)
UBS . (26)

4.2 Singular perturbation on O(
√
δ)

So far we have determined the first three of the six terms in expansion (10).
We are seeking to find the next three terms with coefficients U0,1, U0,2 and U1,1.
Let us compute first the coefficients U0,1 and U1,1. This is possible by using
the expansion of U1 according to formula (9), i.e

Uε1 = U0,1 +
√
εU1,1 + εU2,1 + · · · . (27)

Applying (27) in the second equation of the system (8) together with formula
(9) gives

Lε
(
U0,1 +

√
εU1,1 + εU2,1 + · · ·

)
+M1

(
U0,1 +

√
εU1,1 + εU2,1 + · · ·

)
= 0.

Collecting all terms with the same power of
√
ε and again, considering the

fact that our fast reverting speed is never zero will imply that, in the obtained

equation, all coefficients of
√
ε
i

with its final conditions, must equal zero; i.e

L0U0,1 = 0, U0,1(T, S, v1, v2) = 0;

L1U0,1 + L0U1,1 = 0, U1,1(T, S, v1, v2) = 0;

L2U0,1 + L1U1,1 + L0U2,1 +M1U0 = 0, U2,1(T, S, v1, v2) = 0;

L2U1,1 + L1U2,1 + L0U3,1 +M1U1,0 = 0, U3,1(T, S, v1, v2) = 0.

(28)

We constructed the above system of partial differential equation only with
the four equations, because the other equations that we could obtain, do not
contain any of the six terms of our expansion (10), i.e, terms with coefficients
Ui,j , 0 ≤ i + j ≤ 2. The values of U0 and U1,0 are already computed and
given in (13) and (21). From the first equation in (28), and the same reasons
presented in the system (12) for U0, the component U0,1 will depend on the
time t, the underlying asset price and the slow changing volatility factor v2,
i.e. U0,1 = U0,1(t, S, v2). The fact that L1 contains derivatives with respect to
the fast changing volatility factor v1 implies that L0U1,1 = 0 which also for
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the convergence reasons imply that U1,1 = U1,1(t, S, v2). These conditions will
transform (28) into

L0U2,1 + L2U0,1 +M1U0 = 0, U2,1(T, S, v1, v2) = 0;

L0U3,1 + L2U1,1 + L1U2,1 +M1U1,0 = 0, U3,1(T, S, v1, v2) = 0.
(29)

We have two Poisson differential equations, respectively for U2,1 and U3,1 with
respect to the invariant distribution of the process V1,t. The solvability condi-
tions of Poisson equation impose that the non-homogeneous part of it must be
in the null complement of operator L0, therefore

〈L2U0,1 +M1U0〉 = 0, (30)

and

〈L2U1,1 + L1U2,1 +M1U1,0〉 = 0. (31)

Since both U0,1 and U0 do not depends on v1 and the averaging procedure 〈·〉
consists of integration only with respect to v1, equation (30) can be written as

〈L2〉Uδ0,1 = −
√
δ〈M1〉U0,

where the right part is

−〈M1〉U0 = −
√
δ

〈
ρ24Sv2

∂2

∂S∂v2

〉
U0

= −
√
δρ24〈v2〉D1

∂

∂v2
U0

= −
√
δρ24〈v2〉D1

∂

∂σ(v2)

∂σ(v2)

∂v2
U0

= −
√
δρ24〈v2〉D1σ

′(v2)
∂

∂σ(v2)
U0

= −2AδUBS

where

Aδ = Θδ1(v2)D1
∂

∂σ(v2)
, Θδ1(v2) =

1

2

√
δρ24〈v2〉

∂σ(v2)

∂v2
. (32)

It follows then

LBSUδ0,1 = −2AδUBS ; U δ0,1(T, s, v2) = 0

which means that

Uδ0,1 = (T − t)AδUBS (33)

Now we want to compute the factor U1,1. From (31) the independence of
U1,0 and U1,1 from v1 allow to re-write it as

〈L2〉U1,1 = −〈L1U2,1〉 − 〈M1〉U1,0. (34)
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Since we do not have interest in U2,1, we will have to express it in terms
of components that are part of our approximation. Going back to the first
equation in system (29) and using (30) yields

L0U2,1 = −L2U0,1 −M1U0

= −L2U0,1 −M1U0 + 〈L2U0,1 +M1U0〉
= −(L2 − 〈L2〉)U0,1 − (M1 − 〈M1〉)U0.

As in (14), we determine the difference between M1 and its average as
follows

M1 − 〈M1〉 = ρ24Sv2
∂2

∂S∂v2
−
〈
ρ24Sv2

∂2

∂S∂v2

〉
= ρ24(v2 − 〈v2〉)D1

∂

∂v2
.

= 0.

On the other hand, the difference between the second-order Black-Scholes op-
erator and its average was defined in (14), therefore

L0U2,1 = −1

2
((v1 + v2)− 〈v1 + v2〉)D2U0,1

= −1

2
L0φD2U0,1

or

U2,1 = −1

2
φD2U0,1 + c2,1(t, S, v2).

Now we calculate

〈L1U2,1〉 =

〈
L1

(
−1

2
φD2U0,1 + c2,1(t, S, v2)

)〉
= −

〈
ρ13Sv1

∂2

∂S∂v1

(
1

2
φD2U0,1 + c2,1(t, S, v2)

)〉
= −BεU0,1

that can be applied in (34)

〈L2〉U1,1 =
1

2
ρ13

〈
v1

∂

∂v1

〉
D1D2U0,1

= BεU0,1.

Since U0,1 is defined in (33) we have

〈L2〉U1,1 = BεU0,1

= BετAδUBS

= −τ
2

3
BεΘδ1(v2)〈L2〉

∂

∂σ
UBS

or

U1,1 = −τ
2

3
BεΘδ1(v2)

∂

∂σ
UBS . (35)
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4.3 Singular perturbation on O(δ)

To complete our approximation we need to do the singular perturbation for the
δ component of the regular perturbation. We already have five coefficients for
the expansion of our solution (10). It remains to calculate the U0,2 component.
We consider the last equation on (8). Expanding Uε2 according to (9) and using
expansion of Uε1 and Uε0 presented in (11) and (27) respectively gives

Lε(U0,2 +
√
εU1,2 + εU2,2 + ε

√
εU3,2 + · · · )+

M1(U0,1 +
√
εU1,1 + εU2,1 + ε

√
εU3,1 + · · · )+

M2(U0 +
√
εU1,0 + εU2,0 + ε

√
εU3,0 + · · · )+

= 0;

Ui,2(T, S, v1, v2) = 0; ∀i = {0, 1, 2, · · · }.

Collecting terms with the same power of
√
ε our system can be written as

1

ε
L0U0,2+

1√
ε

(L1U0,2 + L0U1,2) +

(L2U0,2 + L1U1,2 + L0U2,2 +M1U0,1 +M2U0) +
√
ε (L1U2,2 + L2U0,2 + L0U3,2 +M1U1,1 +M2U1,0) +

ε (L0U4,2 + L1U3,2 + L2U2,2 +M1U2,1 +M2U2,0) +

· · · = 0,

from where we generate the system of partial differential equations

L0U0,2 = 0, U0,2(T, S, v1, v2) = 0;

L1U0,2 + L0U1,2, U1,2(T, F, v1, v2) = 0;

L2U0,2 + L1U1,2 + L0U2,2 +M1U0,1 +M2U0, U2,2(T, S, v1, v2) = 0.
(36)

From the first equation of the above system, choosing U0,2 to be independent
of the fast changing volatility will guarantee the convergence of the equation.
This will imply that also U1,2 is independent of the fast changing volatility
factor and the last equation of our system will be transformed into

L2U0,2 + L0U2,2 +M1U0,1 +M2U0 = 0

which is Poisson equation on U2,2 with respect to variable v1 . The solvability
condition impose that

〈L2U0,2 +M1U0,1 +M2U0〉 = 0
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where M1, M1, U0,1, U0,2 and U0 do not depends on v1. Therefore

〈L2〉U0,2 = −M1U0,1 −M2U0

= −ρ24D1v2
∂

∂v2
U0,1 −

(
(θ2 − v2)

∂

∂v2
+

1

2
v2

∂2

∂v22

)
U0

= −2Θδ1(v2)D1
∂U0,1

∂σ
−
(

(θ2 − v2)σ′∂

∂σ
+

1

2
v2

∂

∂v2

(
σ′∂

∂σ

))
U0

=

[
−2Θδ1(v2)D1

∂

∂σ

(
τAδ

)
−N (v2)

∂

∂σ
− 1

2
v2(σ′)2

∂2

∂σ2

]
UBS

for

N (v2) = (θ2 − v2)σ′ +
1

2
v2σ
′′.

The use of Lemma 2.1 from Fouque et al [8] gives

U0,2 =
[
2
3τ

2AδA′3(v2) ∂
∂σ + τ2

2 A
2
3(v2)

(
∂2

∂σ2 + 1
3σ

∂
∂σ

)]
UBS

+
[
τ
2N (v2) ∂

∂σ + τ
6 v2(σ′)2

(
∂2

∂σ2 + 1
2σ

∂
∂σ

)]
UBS .

(37)

5 Pricing Formula For European Options

We now summarize the asymptotical results obtained in the previous sections
into the following main theorem.

Theorem 1. Consider an asset whose price evolves according to (1) and (2)
where V1,t and V2,t are stochastic variance processes of mean reversion type.
Consider also that the rates of reversion of the two variance processes are given
by 1/ε and δ respectively where 0 < ε << 1 and 0 < δ << 1. If h(ST ) is the
payoff of an European option on this asset with maturity time T , then the price
of this option can be approximated by Uε,δ given below.

Uε,δ = UBS −
√
ετBεUBS+

ε
[
− 1

2φD2 +
(
τA3(v2) + τ2

2 (Bε)
)]
UBS+

√
δτAδUBS −

√
εδ τ

2

3 B
ε ∂
∂σUBS+

δ
[
2
3τ

2AδA′3(v2) ∂
∂σ + τ2

2 A
2
3(v2)

(
∂2

∂σ2 + 1
3σ

∂
∂σ

)]
UBS+

δ
[
τ
2N (v2) ∂

∂σ + τ
6 v2(σ′)2

(
∂2

∂σ2 + 1
2σ

∂
∂σ

)]
UBS

which is the same as Uε,δ ∼= U0 +
√
εU1,0 + εU2,0 +

√
δU0,1 +

√
εδU1,1 + δU0,2

for Ui,j given in (13), (21), (22), (33), (35) and (37). The approximated option
price converges to the Black-Scholes price when ε→ 0 and δ → 0.
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Abstract. Multiscale stochastic volatilities models relax the constant volatility as-
sumption from Black-Scholes option pricing model. Such model can capture the smile
and skew of volatilities and therefore describe more accurately the movements of the
trading prices. Christoffersen et al. [3] presented a model where the underlying price
is governed by two volatility components, one changing fast and another changing
slowly. Chiarella and Ziveyi [2] transformed Christoffersen’s model and computed an
approximate formula for pricing American options. They used Duhamel’s principle
to derive an integral form solution of the boundary value problem associated to the
option price. Using method of characteristics, Fourier and Laplace transforms, they
obtained with good accuracy the American options prices. In a previous research
of the authors (Canhanga et al. [1]), a particular case of Chiarella and Ziveyi [2]
model is used for pricing of European options. The novelty of this earlier work is to
present an asymptotic expansion for the option price. The present paper provides
experimental and numerical studies on investigating the accuracy of the approxi-
mation formulae given by this asymptotic expansion. We present also a procedure
for calibrating the parameters produced by our first-order asymptotic approximation
formulae. Our approximated option prices will be compared to the approximation
obtained by Chiarella and Ziveyi [2].

Keywords: Financial market, Mean reversion volatility, asymptotic expansion, Sto-
chastic Volatilities, Regular perturbation, Singular perturbation, European option.
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1 Introduction

Consider an asset process given by St whose dynamic when 0 ≤ t ≤ T is
described by the following system of stochastic differential equations

dSt = µStdt+
√
V1,tSt dW1 +

√
V2,tSt dW2,

dV1,t =
1

ε
(θ1 − V1,t)dt+ ρ13

√
1

ε
V1,t dW1 +

√
1

ε
(1− ρ213)V1,t dW3,

dV2,t = δ(θ2 − V2,t)dt+ ρ24
√
δV2,t dW2 +

√
δ(1− ρ224)V2,t dW4,

(1)

where Wi, i = {1, 2, 3, 4} are independent Wiener processes; µ is the expected
return of the asset. θ1, θ2 are reverting means and 1

ε , δ refer to the rates or
speeds of mean-reversions. ρ13 and ρ24 are the constant instantaneous correla-
tion coefficients between St and the finite uncorrelated variances rates V1,t and
V2,t respectively. Assume that 0 < ε << 1, 0 < δ << 1, |ρ13| < 1, |ρ24| < 1,
and that the variance rates V1,t changes fast around its long run mean θ1, with
speed 1

ε while the variance rate V2,t changes slowly around its long run mean
θ2 with speed δ. We hereafter call V1,t the fast volatility factor and V2,t the
slow volatility factor.

The assumption |ρ13| < 1 and |ρ24| < 1 makes the system to fulfill the con-
ditions proposed in Feller [6], which guarantees that the stochastic differential
equation for the underlying asset has a solution under the real-world probabil-
ity measure and also guarantees that there exists an equivalent solution to the
underlying asset price equation under risk neutral probability measure. In the
authors earlier research, Canhanga et al. [1] considered an European option on
an underlying asset governed by system (1) with maturity T, and a given pay-
off function h(ST ) when ST is the underlying price at maturity. Let us denote
U(t, St, v1, v2) as the options price at time t < T when the underlying has spot
price St, the spot fast and slow volatility factors are v1 and v2 respectively,
Canhanga et al. [1] used Girsanov and Feynman-Kac theorems (presented for
example in Kijima [9]) to express the European option price as the solution of
the following partial differential equation(

1

ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2

)
U = 0 (2)

for

L0 = (θ1 − V1,t)
∂

∂V1,t
+

1

2
V1,t

∂2

∂V 2
1,t

, (3)

L1 = ρ13StV1,t
∂2

∂St∂V1,t
,

L2 =
∂

∂t
+(r− q)St

∂

∂St
+

1

2
(V1,t+V2,t)S

2
t

∂2

∂S2
t

−r−λ1V1,t
∂

∂V1,t
−λ2V2,t

∂

∂V2,t
,

M1 = ρ24StV2,t
∂2

∂St∂V2,t
,
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M2 = (θ2 − V2,t)
∂

∂V2,t
+

1

2
V2,t

∂2

∂V 2
2,t

.

Here r and q refer to the constant risk free interest rate and the continuous
compounded dividend yield respectively. The market prices of risk λ1 and λ2
are given by

λ1 =
µ− (r − q)

2
√
V1,t

; λ2 =
µ− (r − q)

2
√
V2,t

.

Assumption that the solution U = Uε,δ can be expressed in the following form

Uε,δ = U0,0 +
√
δU0,1 +

√
εU1,0 + δU0,2 + εU2,0 + · · · (4)

leads to the asymptotic expansion method. Such method was described in
Fouque et al [7] for a similar but simpler model of asset price process. After
putting the expansion (4) into the partial differential equation (2), we obtain
systems of differential equations solutions to which yield the unknown coeffi-
cients Ui,j for expansion (4).

The first order approximation presented with details by Canhanga et al. [1]
gives the European option price by

Ũε,δ = U0,0 + Uε1,0 + U δ0,1

= UBS + (T − t)
(
Θδ(v2)D1

∂
∂σ(v2)

+ Υ ε(v2)D1D2

)
UBS

(5)

where U0,0 = UBS . The notation UBS stands for the approximate solution
presented by Conze et al. [4] of the corresponding two dimensional Black-
Scholes model and

U1,0 =
√
ε(T − t)Υ ε(v2)D1D2UBS ,

U0,1 =
√
δ(T − t)Θδ(v2)D1

∂σ(v2)
∂v2

UBS ,
(6)

for

Θδ(v2) =
1

2
ρ24〈v2〉

∂σ(v2)

∂v2
; Υ ε(v2) =

1

2
ρ13〈v1

∂φ

∂v1
〉; Di = xi

∂i

∂xi
.

Here the brackets 〈·〉 denotes the averaging over the invariant distribution Π
of the process V1,t, i.e.

〈f(·, v2)〉 =

∫
f(·, v2)Π(dv1).

Using the above definition, the average effective volatility is represented by

σ2(v2) =

∫
(v1 + v2)Π(dv1).

The function φ which depend on v1 and v2 is a smooth function that solves the
following equation

L0φ(v1, v2) = f2(v1, v2)− σ2(v2).
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To obtain UBS we need to have σ(v2) which is estimated from the spot
market data. To obtain Uδ0,1 and Uε1,0 we need to have parameters Θδ(v2)
and Υ ε(v2) which depends on the slow volatility v2. These parameters must be
calibrated to the observed implied volatility surface. The term UBS contribute
to the approximation independently of the two volatilities components. The
influence of the fast time scale is expressed by Υ ε(v2). On the other hand, the
slow time scale comes on the parameter Θδ(v2). The parameter Υ ε(v2) also
express the influence of correlation between Wiener process W1 and W3 while
Θδ(v2) does the same for Wiener processes W2 and W4.

In this paper we study the accuracy of the approximation formula (5). We
start with calibrating the parameters needed for our first order approximation
formula (5) using a procedure well explained by Fouque et al. [7]. Then we
compute European option prices using our model and compare our results to
the approximated European options prices obtained by Chiarella and Ziveyi
[2].

2 Accuracy of first order approximation

Procedure on studying the accuracy

1. Construct the residual;
2. Represent probabilistically the residual using Feynman-Kac formula and

therefore obtain boundaries;
3. Study the influence on the asset price St, of the fast volatility factor V1,t

and the slow volatility factor V2,t for 0 < δ << 1 and 0 < ε << 1 and fixed
(tSt, v1, v2).

Lemma 1. Assume that the process V1,t with infinitesimal generator given by
equation (3) admits moments of any order uniformly in t; i.e

sup
t
E∗{|V1,t|k} ≤ C(k).

Assume also that the process V2,t admits moments of any order uniformly in
t ≤ T ; i.e

sup
t≤T

E∗{|V2,t|k} ≤ C(T, k)

then, if J(v1, v2) is polynomially growing for any v1 and v2 and t ≤ T there
exists a constant C such that for ε ≤ 1 and δ ≤ 1

E∗St, v1, v2 |J(V1,t, V2,t)| ≤ C.

The proof of this lemma can be found in Fouque et al. [7].
Let us impose the following assumptions:

1. Processes St, V1,t, V2,t exist and are unique for fixed (ε, δ) and are solutions
of the system under risk neutral probability measure which is equivalent to
solution of the system described in equations (1).

2. The market prices of risk are bounded and the conditions of Lemma 1 hold.
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3. The process V1,t is mean reverting and has a unique invariant distribution.
4. Function f(v1, v2) is smooth such that φ (the solution of Poisson equation)

is polynomially growing.
5. The payoff function h(x) and its derivatives are smooth and bounded.
6. The family J must include functions

φ,
√
V1,t, θ1 − V1,t,

√
V2,t, θ2 − V2,t.

Theorem 1. Under the above assumptions, for small enough ε and δ there is
a constant C such that ∣∣∣Uε,δ − Ũε,δ∣∣∣ ≤ C(ε+ δ)

for fixed (t, St, v1, v2) where Uε,δ and Ũε,δ are respectively the exact and the
approximate solution of problem (1).

Proof Before we prove the theorem, let us consider a higher-order approxima-
tion for the solution of problem (1)

Ûε,δ = Ũε,δ + εU2,0 + ε
√
εU3,0 +

√
δ(
√
εU1,1 + εU2,1)

= U0,0 +
√
εU1,0 + εU2,0 + ε

√
εU3,0 +

√
δ(U0,1 +

√
εU1,1 + εU2,1)

where U0,0 = UBS , U1,0 and U0,1 are defined in equation (6). The other Ui,j
coefficients of the above approximation are defined by

U2,0 = − 1
2φD2UBS + C2,0(t, St, v2)

U1,1 = (T−t)
3
√
εδ
D1D2Υ

ε(v2)Θδ(v2) ∂UBS

∂σ(v2)

U2,1 = − 1
2φD2U0,1 + C2,1(t, St, v2)

U3,0 = 1
2ρ13ψD1D2UBS − 1

2φD2U1,0 + C3,0(t, St, v2).

Here the function ψ is the solution of the following partial differential equation

L2ψ = v1
∂

∂v1
ψ − 〈v1 −

∂ψ

∂v1
〉

and C2,0, C2,1, C3,0 are integration constants obtained from the integration of
U2,0, U2,1 and U3,0 respectively.

Now we define the residual

Rε,δ = Uε,δ − Ûε,δ

and we apply the operator

Lε,δ =
1

ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2
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on both sides of the residual, and considering that from the Feynman- Kac
theorem

Lε,δUε,δ = 0.

We then obtain

Lε,δRε,δ + Lε,δÛε,δ = 0.

The above can be written as

Lε,δRε,δ + εRε1 +
√
εδRε2 + δ(Rε3 +Rδ4) = 0

where

Rε1 =
(
L1U3,0 + L2U2,0 +

√
εL2U3,0

)
,

Rε2 =
(
M1U1,0 + L1U2,1 + L2U1,1 + εM1U3,0 +

√
εL2U2,1

)
,

Rε3 =
[
M1U0,1 +M2U0,0 +

√
ε (M1U1,1 +M2U1,0)

]
,

Rδ4 = δ
√
ε
(
εM2U3,0 +

√
δM2U1,1

)
+ δ
√
δ (M2U0,1 + εM2U2,1) .

Using terminal conditions for U0,0, U0,1, U1,0 at maturity T the residual will
be

Rε,δ(T, St, v1, v2) = −ε(U2,0+
√
εU3,0)(T, St, v1, v2)−

√
εδ(U1,1+

√
εU2,1)(T, St, v1, v2)

that can be expressed as

Rε,δ(T, St, v1, v2) = εGε1(St, v1, v2) +
√
εδGε2(St, v1, v2)

for

Gε1(St, v1, v2) = −(U2,0 +
√
εU3,0)(T, St, v1, v2)

and

Gε2(St, v1, v2) = −(U1,1 +
√
εU2,1)(T, St, v1, v2).

If we use Feynman-Kac probability representation formula we can express
the residual in terms of the expected values of discounting time t ofGε1(St, v1, v2)
and Gε2(St, v1, v2) functions given St, V1,t, V2,t under risk neutral probability
measure, i.e.

Rε,δ = εE∗e−r(T−t)Gε1(ST , V1,T , V2,T )+

εE∗
T∫
t

e−r(x−t)Rε1(x, Sx, V1,x, V2,x)dx|St, V1,t, V2,t+
√
εδE∗e−r(T−t)Gε2(ST , V1,T , V2,T )+
√
εδE∗

T∫
t

e−r(x−t)Rε2(x, Sx, V1,x, V2,x)dx|St, V1,t, V2,t+

δ

(
T∫
t

e−r(x−t)Rε3(x, Sx, V1,x, V2,x)dx|St, V1,t, V2,t

)
+

T∫
t

e−r(x−t)Rδ4(x, Sx, V1,x, V2,x)dx|St, V1,t, V2,t.
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Since Ri are sums of Ui,j they are smooth functions of time, asset price and
the two volatility components. For 0 < δ << 1 and 0 < ε << 1 the functions
Ri are bounded by smooth functions of time, asset price and the two volatility
components. Such functions are independent of ε and δ; uniformly bounded in
t, St, v2 and at most linearly growing in v1.

From the assumptions in our model, the residuals Ri and the functions
Gε1(St, v1, v2), Gε2(St, v1, v2) are bounded in St and at most polynomially grow-
ing in v1, v2. Therefore they satisfy conditions from Lemma 1 and hence∣∣∣Uε,δ − Ũε,δ∣∣∣ =

∣∣∣Uε,δ − Ûε,δ + Ûε,δ − Ũε,δ
∣∣∣

≤
∣∣Rε,δ∣∣+

∣∣∣Ûε,δ − Ũε,δ∣∣∣
≤ ε |Rε1|+

√
εδ |Rε2|+ δ |Rε3|+

∣∣Rδ4∣∣
≤ C1ε+ C2

√
εδ + C3δ + C4

≤ (ε+ δ)C5.

3 Adjustment to volatilities and calibration

In this section we calibrate our model parameters in our first order approxima-
tion formula (5) to real market data obtained from Nasdaq Nordic Exchange
website on ABB stock call options. For illustrative proposes in Table 1 we
present part of the used data. The notation Eij j = 1, · · · ,m stands for the
jth exercise price for an option with time-to-maturity τi = Ti− t, i = 1 · · · , n,
where m and n are positive integers. We consider only call options with time
to maturity less than two years and exercise price varying from 130 to 150 SEK
(Swedish Kronor). The initial ABB stock price is S0 = 148.3 and the risk-free
interest rates is constant and we assume to be equal 5%.

Since we relaxed the Black-Scholes assumptions of constant volatility by
introducing stochastic volatility, we will adjust the observed option price to the
volatility by converting the option price into its implied volatility (the value of
volatility for an underlying asset that in an option pricing model returns the
current market price of the option).

3.1 The calibration procedure

From Table 1 at a certain time to maturity τi we have exercise prices Eij ,
j = 1 · · · ,m. For a fixed τi, the implied volatility for exercise price Ei,j is
denoted by I(τi, Ei,j).

Holding the time to maturity constant, different exercise prices result into
different market option prices. Same applies if we hold exercise price constant
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Option
Nr.

i j τi Ei,j Market Price Cij

1 1 1 0.13 132.5 16.75

2 1 2 0.13 135 14.5

3 1 3 0.13 137.5 12.0

4 1 4 0.13 140 9.25

5 2 1 0.27 135 12.5

6 2 2 0.27 137.5 10.25

7 2 3 0.27 140 8.25

8 2 4 0.27 142.5 6.25

9 3 1 0.43 135 12.75

10 3 2 0.43 137.5 11.5

· · · · · · · · · · · · · · · · · ·
104 26 4 0.89 147.5 7.5

Table 1. A part of the used data on ABB call options prices, S0 = 148.3

but let the time to maturity vary. Therefore we compute the matrix of log-
moneyness to maturity ratio LMMRij for option with time to maturity τi and
exercise price Eij

LMMRij =
1

τi
ln

(
Eij
St

)
(7)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m and usually n < m since the changes are less
influenced by time comparing with respect to price. For the set of points

{I(τ1, E1,j), I(τ2, E2,j), · · · , I(τn, En,j)}

we can apply the log-moneyness to maturity ratio matrix given by (7) and
obtain an equation for the implied volatility and solve it using the least squares
method.

3.2 Calibration of the first order approximation

Let us define the implied volatility as the solution for I in the following equation

UBS(I) = Ci,j , (8)

where UBS(I) is the option price given by Black-Scholes two-dimensional for-
mula at volatility level I and Ci,j is the market call option price with time to
maturity τi and exercise price Ei,j . Under the assumption that the system of
stochastic differential equations (1) is a realistic model of asset price dynamic,
the market price Cij should be equal to the price given by system (1). To
adjust the model results to the traded values we need to study the difference
I−σ between the implied volatility and the volatility used to compute the two
dimensional Black-Scholes prices,

I − σ =
√
εI1,0 +

√
δI0,1 + · · · . (9)
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For simplicity hereafter we write τ, LMMR, σ, E, as shortened form for τi,
LMMRij , σ(v2), Eij , respectively. Therefore

UBS(I) = UBS(σ) + (
√
εI1,0 +

√
δI0,1)

∂UBS(σ)

∂σ
+ · · · .

Considering that the prices given by the above equation must be the same
obtained by equation (5) we will have

UBS(I) = UBS +

(
τΘδD1 +

1

σ
Υ εD1

)
∂UBS
∂σ

+ · · · .

The previous equation is true only if

√
εI1,0

∂UBS(σ)

∂σ
=

1

σ
Υ εD1

∂UBS
∂σ

(10)

and √
δI0,1

∂UBS(σ)

∂σ
= τΘδD1

∂UBS
∂σ

. (11)

The two equations above can also be expressed with the uses of Vega - Gamma
relations; i.e.

∂UBS(σ)

∂σ
= τσS2

t

∂2UBS(σ)

∂S2
t

as

√
εI1,0 =

Υ ε

2σ

(
1− 2r

(σ)
2

)
+

Υ ε

(σ)
3

ln
(
E
St

)
τ

(12)

and
√
δI0,1 = τ

Θδ

2

(
1− 2r

(σ)
2

)
+ τ

Θδ

(σ)
2

ln
(
E
s

)
τ

(13)

hold. The difference between the implied volatility and the volatility on the
approximation given in equation (9) and the representations of I0,1 and I1,0
presented in equations (12) and (13) allow as to express the implied volatility
as

I = aε1 + τaδ0 +
(
τaδ2 + aε3

)
LMMR (14)

where

aε1 = σ +
Υ ε

2σ

(
1− 2r

(σ)
2

)
; aδ0 =

Θδ

2

(
1− 2r

(σ)
2

)
; aδ2 =

Θδ

(σ)
2 ; aε3 =

Υ ε

(σ)
3 .

Since there is a correlation between the underlying asset price and the volatility
factors, aε1 will correct σ in order to incorporate the effects of the fast volatility
factor while aδ0 does the same for the effects of the slow volatility factor.

The definition of aε1 and the fact that the considered terms have orders up
to
√
ε and

√
δ gives

aε1 = σ +O(
√
ε)
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or

σ = aε1 + aε3

(
(aε1)

2

2
− r

)
. (15)

On the other hand the fact that

Υ ε

(σ)
3 = aε3

implies that
Υ ε(v2) = aε3 (σ)

3
= aε3 (aε1)

3
, (16)

and
Θδ(v2) = aδ2 (σ)

2
. (17)

Using the matrix defined by equation (7) into equation (14) it remains to
estimate the slope aδ0 + aδ2LMMR and the intercept aε1 + aε3LMMR.

From equation (14) it is obvious that I(τi, Eij) depends on LMMRij . Using
the least squares method we can find a line that will fit the set of points
(I(τi, Eij), LMMRij) . We start by searching for αi and βi such that

Q(αi, βi) =

m∑
j

(
I(τi, Eij)− αiLMMRij − βi

)2
.

The αimin and βimin which minimize Q(αi, βi) are given by

βimin = I(τi, Eij)− αiminLMMRij

and

αimin =

m∑
j=1

LMMRij
(
I(τi, Eij)− I(τi, Eij)

)
m∑
j=1

LMMRij
(
LMMRij − LMMRij

) .
where LMMRij and I(τi, Eij) are respectively the averages of LMMR and
implied volatilities for a given i. For each τi there is one αimin, therefore we can
construct with least squares method an linear estimator for such relation; i.e,
we can determine the intercept

aεmin = αimin − a
δ
2τ i

and the slope

aδmin =

m∑
j=1

τiα
i
min − αimin

m∑
j=1

τi(τi − τ i)
.

which minimizes

R(aδ, aε) =

m∑
j=1

(
αimin − (aδτi + aε)

)2
.
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The same approach for βimin gives

bεmin = βimin − b
δ
minτ i

and

bδmin =

m∑
j=1

τiβ
i
min − βimin

m∑
j=1

τi(τi − τ i)
.

In equations (16) and (17) parameters aε1, a
δ
2, a

ε
3 are replaced by bεmin, a

δ
min, a

ε
min

respectively and are used to express Θδ and Υ ε that are used to construct our
approximate solution.

3.3 Numerical Analysis

We consider S0 = 148.3, r = 0.05 and exercise prices changing from 130 SEK
to 150 SEK. In Figure 1(a) we show the dependence of the implied volatility
on the time to maturity and the exercise prices. As expected, the volatility
changes very smoothly while far from the maturity time, and when approxi-
mating the maturity time, it can be seen that the implied volatility changes are
more significant. Although we are using different data set and different option
pricing model, the behaviour of the implied volatility that we obtain is very
similar to the volatility behaviour obtained by Fouque et al. [7].

We check the pattern between the implied volatilities and the option prices.
Since the values of implied volatility are too small comparing to those of the
options price, to be able to obtain them on the same plot and observe their
patterns, in Figure 1(b), instead of options prices and volatilities we consider
normalized options prices and volatilities. As expected, these two components
are changing inversely, this can be seen in the Figure 1(b).

The validation of our model is done by comparing the results obtained
from the asymptotic expansion approximation and those obtained by Chiarella
and Ziveyi [2]. From the setup of our model, the values of ε and δ must be
considered to be small. If we make ε smaller than δ then it becomes more clear
that the speed of reversion of V1,t will be much faster than the reverting speed
for the process V2,t. We observe that when we fix δ but make ε smaller the
option price approximation becomes closer to those obtained by Chiarella and
Ziveyi. Figure 2(a) depicts such situation. A similar scenario is observed when
ε is fixed and δ is decreasing. We also observe that ε has more influence than
δ on fitting our results to those presented by Chiarella and Ziveyi. That is,
even for small values of δ as shown in Figure 2(b), so long as the parameter ε
is not sufficiently small, our model produces results that are not converging to
Chiarella and Ziveyi results.

We define the relative difference of our approximation and Chiarella and
Ziveyi method by

error(ε, δ) =

∣∣∣∣∣∣ Ũε,δ − UCZ
max

(
Ũε,δ, UCZ

)
∣∣∣∣∣∣
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where UCZ gives the option price obtained by using Chiarella and Ziveyi [2]
approach. The relative difference in the options prices between both approaches
for various pairs of ε and δ are presented in Table 2. Each column lists out the
error(ε, δ) for options under consideration for a particular pair of (ε, δ).

From Table 2 we can see that for small values of ε and δ the options prices
given by asymptotic expansion approximation formula are very close to those
presented when we consider Chiarella and Ziveyi model. This fact confirm that
our asymptotic expansion approximation gives plausible results.
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ε = 0.008
δ = 0.2

ε =
0.000008
δ = 0.2

ε = 0.00008
δ = 0.0002

0.01712 0.0015 0.0009

0.0118 0.0001 0.0011

0.0245 0.0022 0.0000

0.0021 0.0014 0.0007

0.0460 0.0010 0.0017

0.0111 0.0017 0.0004

0.0514 0.0056 0.0001

0.0167 0.0002 0.0002

0.0221 0.0001 0.0081

0.0030 0.0037 0.0013

Table 2. Illustration of the error obtained for different values of ε and δ

4 Conclusions and future work

The calibration procedure for our first-order asymptotic expansion approxi-
mation formula has shown to be convenient. The accuracy of the obtained
approximation results is also plausible. With small margin of errors our ap-
proximation formula price is fitting the European option price calculated by
the Chiarella and Ziveyi approach. We recommend that more extensive studies
should be done, by considering a wider selection of stocks and options, in order
to confirm the efficiency and accuracy of our method. Further numerical stud-
ies can be carried out to analyze how the parameters affect the approximation
accuracy and also to study how much improvement one can get by using a
second-order asymptotic expansion.
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Abstract. The estimation of Lévy process has received a lot of attention in recent years. 

Evidence of this is the extensive amount of literature concerning this problem which can 

be classified in three categories: the nonparametric approach, the semi-parametric 

approach and the parametric approach.  In this paper, we shall concentrate on the latter, 

and in particular the parameters will be estimated within a stochastic programming 

framework. To be more specific, the first derivative of the characteristic function and its 

empirical counterpart shall be used in objective function.  Furthermore, the parameter 

estimates are recursively estimated by making use of a modified extended Kalman filter 

(MEKF). Some properties of the parameter estimates are studied. Finally, a number of 

simulations will be carried out and the results are presented and discussed.  

 

Keywords: Lévy Processes, Kalman filter, Stochastic Programming, Characteristic 

Function 
 

1  Introduction 
 

It is a known fact that Lévy processes are capable of modeling process which 

are not only continuous but which may also contain jumps. This feature has 

made it possible for a great deal of reaserchers to apply Lévy processes 

successfully in many areas, most prominently in finance. 

As a result, the problem concerning the statistical inference of Lévy processes 

has received considerable attention. The literature pertaining to this area is 

divided into two major categories: the parametric techniques and the non-

parametric methods. The latter have a long history, in fact, some early works 

were published as of the late 1950’s. Furthermore, in recent years several 

distinguished athors have contributed to this field. As stated in Comte and 

Genon-Catalot[3], these methods are particularly useful because in many cases 

the distribution of the independent incremens of the Lévy process is unkown, or 

has no known formula. In such cases the Lévy process is specified by its Lévy 

Triple (drift, Gaussian component and Lévy measure). On the other hand the 

parametric techniques are particularly useful when the distribution (or the 

corresponding characteristic function) of the increments of a Lévy process is 

known and has a closed form expression. A number of these Lévy processes 

have been proposed over the years and have been successfully applied to 
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financial data. These include the CGMY, Meixner, NIG and stable processes. In 

such cases, Figueroa-Lopez[4] argues that parametric methods would amongst 

other things, give estimates that enjoy a smaller standard error or a greater 

power.  

A good percentage of the parametric methods of estimation make use of the 

characteristic function (CF) and its empirical counterpart (ECF). As discussed in 

Sant and Caruana[9], the use of the EFC causes a number of computational 

issues which are primarily caused by oscillatory integrands. To counteract this 

issue, the said authors reformulate the parameter estimation problem into the 

stochastic programming framework, and together with the use of weight 

functions, the problems caused by the oscillatory integrands are reduced.  

In this paper the stochastic programming framework is retained, however the 

objective function will be totally reformulated and will make use of the first 

derivative of the characteristic function and its empirical counterpart. This 

alteration will allow the use of a modified extended kalman filter, in this way 

the parameters can be estimated recursively as more data points become 

available. 

The rest of this paper is organised as follows: in the next section the stochastic 

programming framework is discussed and the objective function clearly defined. 

Moreover, a number of results pertaining to the parameter estimates will be 

presented. In section 3 the modified extended kalman filter is discussed and 

applied to the objective function to solve the stochastic programming problem. 

In section 4, a number of simulation results are presented and discussed. Finally, 

the last section contains a number of concluding remarks. 

 

2  The Stochastic Programming Framework 
 

We shall commence this section by defining a Lévy process, its increments and the 

characteristic function together with it first derivative. Afterwards we shall move a step 

forward by expressing the parameter estimation problem as a stochastic programming 

problem. Given a Lévy process ,  with independent and identically 

distributed increments , , we define the corresponding characteristic 

function by  where is the vector of parameters for 

each time point s. The derivative of the characteristic function with respect to t is defined 

by .  

From this point onwards we shall work with , where  is a constant time 

increment separating the previously defined  whose characteristic function will 

now be denoted for simplicity by  and the corresponding derivative by .  

We will assume throughout this text that ϕ and ¢ϕ  are continuous with respect to β  on 

some compact subset .  
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Next, the parameter estimation problem will be written as a stochastic program 

that involves the derivative of the characteristic function and its empirical 

counterpart.   

In general a stochastic program may be expressed as follows: 

   (1.1) 

were the expectation is done with respect to the random variable X, and (1.1) is 

used to find the true parameter  . 

For ,  we define the following random function : 

   (1.2) 

where . By setting 

the weight function  we expand (1.2) to obtain: 

   (1.3) 

where  and . Furthermore the 

specific choice of weight function gives the following results: 

      and        

Taking the expectation of (1.3) we obtain: 

   (1.4) 

where while . It is 

evident that  and  are finite. The expectation in (1.4) can be 

approximated by making use of the set of previously defined increments  as 

follows: 

   (1.5) 

where  is as defined above.  
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The continuity assumption of ϕ  and ¢ϕ  with respect to β  implies that the 

functions  and  will also satisfy this assumption. This means that these 

functions are elements of , the space of continuous functions on . This 

set can be considered as a separable Banach space under the supermom norm, 

which we denote by  such that .  

We now state and prove a result which determines the asymptotic behavior of 

(1.5). 

 

Theorem 1.  

(i) The sequence  converges  to .   

(ii) If there exist constants  such that   

 

the  converges in distribution to a 

Gaussian random element. 

 

Proof. 
We start by proving (i): 

The following inequality: 

 

ensures that  , , . 

Hence by using the Strong Law of Large numbers for iid random variables in 

Banach spaces we can say that  converges  to . 

Proof of (ii): 

 

It can be easily shown that the random function  is always less 

than or equal to some constant. Furthermore the said function can be proven to 

be Lipchitz continuous as shown below: 
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which means that .  

The result allows us to use the CLT in Banach spaces as proposed in Jain and 

Marcus[5], from which it follows that  converges in 

distribution to a Gaussian random element found in . 

� 
 

From the above theorem we know that  converges  a.s. to 

 which means that it makes sense to solve the following: 

 

   (1.6) 

instead of .  

Although we have shown that  converges  a.s.  to , we 

still have to prove that as the number of increments increases 

 will approach the true value  . 

To prove this result we shall adapt a result found in Sant and Caruana[9].  

However, before stating this result it is important to note that the link between 

 and (1.6) is given by the functional:  

 .  (1.7) 

 

Although not linear, (1.7) still shares some properties with the norm. In fact 

(1.7) is the minimum of the linear functionals all of whom are in the dual space 

of , which contains all the Radon measures on M. Furthermore, from standard 

theory it is known that Λ  is concave and therefore is Hadamard differentiable. 
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Theorem 2 

The sequence of random variables  converges in probability to 

. Furthermore  and 

. 

 

Proof: 

For some fixed ω , the function  is quadratic in terms of 

 and , thus having a minimum value 

when the former and latter take the values of and 

 respectively. 

Furthermore it is evident that  is also quadratic in terms of 

 and , hence attaining a minimum when 

. Furthermore uniqueness of the characteristic function assures the 

uniqueness of the said minimum. 

Next, we consider the subdifferential ∂Λ , which when evaluated at any 

 i.e. , is a set of elements contained in the dual space of . 

In particular this set contains all positive Radon measures of total mass 1 

concentrated on the points where g attains its minima. Evaluated at 

the said subdifferential is, 

 

This means that  operating on h returns the minimum of h 

restricted to the points where  achieves its minimum, i.e. at  . 

Finally applying the Delta method discussed in van der Vaart[10] with the 

Hadamard differentiability property of Λ  operating on the series   we 

obtain convergence in probability. Finally  follows 

from the fact that the minimum is unique. 

� 
 

Levin and Khramtsov[7] study the bias of estimators that are based on the 

minimization of a distance function involving the characteristic function and its 

empirical counterpart. Following in their footsteps, the next step in this section 
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will be that of examining the bias of the proposed estimator and in particular 

show that it is of order .   

For simplicity in the following theorem we shall assume that we only have one 

parameter β  to estimate. However, the following theorem can be easily adapted 

to the case when β  is a vector of parameters. 

 

Theorem 3 

Given a set of iid increments  having a characteristic function . If 

 is an estimator of , then  and 

 converges to a normal distribution. 

 

 

Proof 

We focus on the objective function in (1.6) and call it . The first and 

second partial derivatives of  w.r.t. β  are given below: 

 

and 

 

where   and   . 

  

It is easy to see that  and  when . In fact, 

. This means that with probability one, 

. 

Furthermore,  satisfies the equation whose first order 

approximation is: 

   (1.8) 

 

From (1.8) it is evident that the ratio (1/N) which features in both  and 

 can be removed from the equation. Hence we will work with 

   (1.9) 
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where  and similarly for  . 

Next we let , , ,  

and .  

Replacing V  by its expectation and substituting these formulas into (1.9) we 

obtain: 

   and   . 

It can be proven that ρ < ∞  and that ρ  is of order N when . 

To obtain a more refined estimate we replace (1.9) by the second order 

approximation: 

   (1.10) 

Taking expectations of (1.10) we obtain: 

 

   (1.11) 

Where 

 ,  

 

In (1.10) we also use the  which is defined as follows: 

 

 

For simplicity we denote  by  . 

 

It is important to note that  and  are all of order N when  .  

It can also be proven that  is  . 

Thus substituting these results into (1.11) we obtain: 

 

   (1.12) 

rearranging (1.12)  and letting  we obtain the following result: 
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which is of order  . 

 

Finally, we prove convergence in distribution as follows: 

It is easy to see that  

 

equal to: 

   (1.13) 

and can be shown to be finite. For simplicity we shall denote (1.13) as . 

Using the Central Limit Theorem, we can say that at the true value , 

 .Using this fact, Taylor’s expansion, and the fact that 

  we have that  

 

� 
 

In the next section we shall briefly describe a method by which the stochastic 

program can be solved recursively as the sample size grows. 

 

 

3  Solving the Stochastic Program using Kalman Filtering 
 

Over the years, a number of methods have been devised to solve stochastic 

programs. Most of these algorithms assume that the objective function is 

convex. When this assumption fails, some algorithms exist which that still allow 

the user to solve the stochastic program. Sant and Caruana[9] used the Feasible 

Direction Interior Point Method (FDIPM) proposed by Karmsita, et al.[6] to 

solve a specific stochastic program. In this section we briefly discuss an 

algorithm which was proposed by Bertzekas[2] and is also discussed in 

Moriyama et al.[8] and Alessandri et al.[1] This algorithm is designed to solve 

(1.6) recursively. This clearly means that if additional data point had to be added 

to the original data set then the current estimate can be used together with the 

newly added data point to compute the new estimate. This property was 

completely absent in Sant and Caruana[9]. In fact, in the latter, if new data 

points are added to the data set, the new parameter estimates would not take 
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advantage of the current parameter estimates and would use the new data points 

together with the rest of the data set to estimate the parameters from scratch.  

 

Bertzekas’ method is designed to solve mathematical programs of the form: 

   (1.14) 

where  for  and are continuously differentiable 

functions. Here  denotes the Euclidian norm of a vector. Furthermore it is 

evident that (1.6) can easily be re-written in the form of (1.14). 

Bertzekas argues that (1.14) can be solved either by using Batch-Type 

algorithms (BTA) or the Incremental Type Algorithms (ITA). The former 

estimates β  by using the whole data set, while the latter cycles through the data 

in sequence and updates the estimate of β  after each data point is processes. 

Back Propagation Algorithms (BPA) are an example of ITA. Bertzekas outlines 

the fact that BPA are notoriously slow to converge. Other incremental methods 

are based on the Gauss-Newton method and have been proposed to increase the 

convergence speed. The Extended Kalman Filter (EKF) is one of these methods 

and was originally conceived as an iterative procedure to solve nonlinear least 

squares problems. In his paper, Bertzekas combines the advantages of the BPA 

for large data sets with the convergence rates of the Gauss-Newton method. 

Thus the algorithm in question cycles repeatedly through the data set. For this 

reason it, is sometimes called the Iterated Extended Kalman Filter. The author 

also studies the rates of convergence of this algorithm. 

 

 

 4  Results 

The increments of two distinct Lévy processes were simulated using two 

different infinitely divisible distributions: the first being a Meixner distribution 

with location, scale, skew and shape parameters equal to 5, 2, 1 and 2 

respectively. The second is a mixture of two exponential distributions one with 

parameter 4, the other with parameter 2. Moreover, each exponential 

distribution has equal weight, thus . Afterwards, the estimator discussed 

in section two together with the relative IEKF algorithm discussed in section 

three were implemented and the results are illustrated below. It must be said that 

the quality of the results obtained are comparable the to method proposed by 

Sant and Caruana [9]. 

The limits of integration which are present in (1.6) are taken from 0 to some 

constant T, and results are displayed below for different values of T.  

In each case, 200 simulations were performed; each simulation contained 1000 

data points. 

The results obtained for the exponential mixture are displayed Table 1 below: 
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T       

10 3.9880 2.0277 0.5008 0.1629 0.0177 0.0002 

20 4.0201 2.0087 0.5001 0.1068 0.0150 0.0001 
Table 1: estimates of exponential mixture 

 
The results obtained for the Meixner distribution are displayed Table 2. The said 

table also contains simulation results obtained from the method of maximum 

likelihood (ML) and method of moments (MM). The results appear to be 

comparable. 

 

T           

10 2.00 1.002 4.981 2.016 0.005 0.001 0.021 0.019 

20 1.99 1.001 4.999 1.998 0.004 0.001 0.009 0.002 

ML 1.99 1.001 4.986 2.011 0.003 0.001 0.018 0.008 

MM 1.98 1.003 5.004 1.996 0.004 0.001 0.023 0.014 
Table2: estimates of Meixner distribution 

 
Apart from the above results, the histograms illustrated below give a rough 

indication of the distribution of the difference between the parameter estimate 

and its actual value. From theorem 3 we know that this converges to a normal 

distribution. Figures 1 to 3 are related to the parameters of the exponential 

mixture, while Figures 4 to 7 are related to the parameters of the Meixner 

distribution. 

                      
  Fig.1. Simulated Distribution of                Fig.2. Simulated Distribution of  

      

                             

  Fig.3. Simulated Distribution of                 Fig.4. Simulated Distribution of  
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  Fig.5. Simulated Distribution of                      Fig.6. Simulated Distribution of  

 

 
    Fig.7. Simulated Distribution of  

 
Finally, tests for normality were run using the simulation results. These tests 

were conducted to substantiate the asymptotic normality result of theorem 3. 

The p-values shown in table 3 below are all greater than 0.05, this means that 

the simulation results corroborate the asymptotic normality result. 

 

Shapiro-Wilk Test 

 Statistic df Sig. 

 .996 200 .826 

 .984 200 .210 

 .996 200 .859 

 .990 200 .203 

 .991 200 .264 

 .993 200 .425 

 .997 200 .977 

Table 3. Test for Normality 
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Conclusions 

 

The estimation technique discussed in this paper combines the field of stochastic 

programming with the parameter estimation problem of Lévy process.  It was 

shown that the proposed estimator enjoys some nice statistical properties that 

were discussed in theorem 3, these include, asymptotic unbiasedness and 

asymptotic normality. The latter was evidenced in the simulation results. 

Furthermore, the algorithm proposed by Bertzekas[2] allows the parameter 

estimation technique to be performed recursively. Moreover, as opposed to the 

method of maximum likelihood or the method of moments, the estimation 

technique presented in this paper does not require the user to know the 

functional form of the distribution function of the Lévy increments as it uses the 

characteristic function. Finally, the simulation results revealed that the 

estimators for the Meixner distribution were comparable to the estimators 

obtained from the method of maximum likelihood and the method of moments. 
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Abstract. Bowel cancer is a major contributor to the burden of disease and in-
jury in Australia. The purpose of this paper is to demonstrate the application
of the cumulative rate to Australian bowel cancer statistics. In particular we will
investigate the effects of sex, location and time of incidence and mortality of bowel
cancer. A feature of this paper is that it uses the cumulative rate rather than the
usual age-standardised rates as a basis for comparing incidence and mortality be-
tween populations. The cumulative rate gives the same sort of information as the
age-standardised rate without the need to introduce a standard population. The
results of this paper enhance our understanding of the impact of bowel cancer on
Australia, and add to the methodology of descriptive epidemiology of cancer.
Keywords: Epidemiology, Demography, Cancer, Bowel, Colorectal, Cumulative
rate, Incidence, Mortality, Australia.

1 Introduction

In this paper we will study the impact of bowel cancer on various sub-
populations in Australia. We are interested in how the impact of the dis-
ease varies with sex, age, location and how the impact changes over time.
Investigations such as this have many applications. They give us a better
understanding of the effects of the disease on the population at large; they
measure progress in dealing with the disease; and they can inform government
on policies and priorities for screening, treatment, prevention, supportive care
and research.

A key feature of this work is that our methods for assessing the impact of
the disease are based on cumulative rates rather than age standardised rates.

1.1 Definitions

Diseases are classified according to The International Statistical Classification
of Diseases and Related Health Problems (ICD-10-AM) [10]. Bowel cancer
(also known as colorectal cancer) refers to a group of diseases in this classi-
fication system. For the purposes of this paper, we define bowel cancer as
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those diseases classified as C18-C20 in [10]; this is in line with the definition
of Australian Institute of Health and Welfare (AIHW) [1].

The incidence of a disease is the number of new cases reported in a given
population in a given period of time, usually one year. In this paper the
population of interest is the population of Australia. The incidence rate is
the incidence per 100,000 head of population. The age-specific incidence rate
is the incidence rate for a given age group. The age-standardised incidence
rate is the incidence rate calculated when we assume that the age profile of
the population matches some chosen standard population and the age-specific
incidence rates match that of the original population.

The mortality is the number of deaths attributed to the disease as the
underlying cause of death, in a given population, and a given period of time,
usually one year. Again, the population of interest is the population of Aus-
tralia. The mortality rate is the mortality per 100,000 head of population.
The age-specific mortality rate is the mortality rate for a given age group.
The age-standardised mortality rate is the mortality rate calculated when we
assume that the age profile of the population matches some chosen standard
population and the age-specific mortality rates match that of the original
population.

1.2 Incidence and mortality statistics

In Australia, cancer is a notifiable disease. Hence Australia has high quality
data on the incidence and mortality of cancer over many years.

The incidence of bowel cancer in Australia has increased from 6,960 new
cases in 1982 to 14,860 in 2010 as illustrated by the graph in figure 1.

Fig. 1. Incidence of bowel cancer in Australia, 1982–2010

Bowel cancer is one of the leading causes of death attributed to cancer.
However, over time, the pattern in mortality from bowel cancer in Australia
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is dramatically different from the pattern in incidence. In 1968, bowel cancer
was the cause of death for 2,500 Australians; in 2011, bowel cancer was the
cause of death for 3,999 Australians [1]; the interesting graph in figure 2 raises
many questions.

Fig. 2. Mortality from bowel cancer in Australia, 1968–2011

1.3 The cumulative rate

Because age is a major risk factor associated with cancer, one cannot simply
compare the incidence or mortality rates of cancer between two populations
without taking into account the age profiles of these populations. The tradi-
tional way in which one accounts for differences in age distributions is to use
age-standardised incidence rates which involve selecting some standard pop-
ulation. In its summary of bowel cancer data, AIHW [1] gives the reader a
choice of three standard populations. Yule [13, p.4] regards the introduction
of a standard population as “superfluous”.

In 1976, Nicholas Day [3] introduced the cumulative rate in the cancer
literature as an alternative to the age-standardised rate. As its name suggests,
the “cumulative rate” is the sum of age-specific rates for each 1-year age group
up to a given age. The principal use of the cumulative rate is for comparing
the impact of a disease on independent populations. The cumulative rate
has many advantages [2, chapter 2]; it is easy to calculate from incidence (or
mortality) data and population data; it does not rely on choosing, arbitrarily,
some standard population; it is directly connected to the cumulative risk;
its interpretation does not require knowledge of the choice of the standard
population; when seen as a sum of age-specific rates, it is easy to interpret.
Lancaster [5, p.79–80] states that the cumulative rate (which he calls the
equivalent average rate) is “simpler” than the the usual age-standardised
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rate; Lancaster reiterates this view in [6, p.34]. Despite these attractive
features, the cumulative rate has not been as popular as one might expect.

There is an important link between cumulative rates and risks. The cu-
mulative rate of being diagnosed with bowel cancer by age 75 is related to
the risk of being diagnosed with the disease by age 75 [3]. Indeed there is a
1-1 transformation from one measure to the other. We eschew the use of risk
as a measure because it is easily misunderstood, as we have explained else-
where [7], [8]. An exposition of the theory on which the cumulative rate and
risk are based can be found in [8]. The method for calculating cumulative
rates, and testing for differences in two populations was outlined in [9] using
hypothetical data.

In this paper we examine how the cumulative rate performs when applied
to data on bowel cancer in Australia.

1.4 Research questions

We will address the following questions. How does the incidence of bowel
cancer in Australia among men compare with the incidence among women?
How has the incidence of the disease changed over time? How has the inci-
dence among younger Australians changed over time? How does incidence
in the state of Victoria compare with the incidence in the rest of Australia?
We will address the same questions about mortality rather than incidence.

There are two distinctive statistical features of this paper. First, and
foremost, our method for answering these questions will be based on the
cumulative rate (rather than risk, or age-standardised rate). Second, we
will use the methods of Dobson et al. [4] to calculate confidence intervals
for cumulative rates. Hence we are interested in two statistical questions.
How does the cumulative rate perform in terms of measuring inequalities
between populations? How does the method of Dobson et al. for calculating
confidence intervals perform in the context of cumulative rates?

2 Data and methods

2.1 Data

Data for Australia in this project were obtained from AIHW [1]. The analysis
is based on three data sets: the incidence of bowel cancer in Australia for
the years 1982–2010 classified by age, the mortality from bowel cancer for
1968–2011 classified by age, and the population of Australia for these years;
all data are classified in five year age groups. These data were the most
recent that were available when we started this project. Data for Victoria
were obtained separately from Victorian Cancer Registry.

For the purposes of this research, only data for the age groups 0–4, 5–9,
. . . , 70–74 were used because we will calculate cumulative rates to age 75.
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2.2 Calculations

Although the methods for calculating cumulative rates were outlined in [9],
we present them here in the context of incidence data for the sake of com-
pleteness. The calculations for mortality data are similar.

Group (i) Age Population Observed incidence

1 0–4 n1 x1

2 5–9 n2 x2

...
...

...
15 70–74 n15 x15

Table 1. Data in five-year age groups

Cumulative rate and standard deviation. Suppose that the incidence
and population data are as in table 1. For each age group i (= 1, 2, . . . , 15),
assume that the incidence of the disease is a random variable Xi with a
Poisson distribution with mean value θi, and that X1, X2, . . . , X15 are inde-
pendent random variables. (In table 1, xi is an observed value of Xi.) Then
E(Xi) = Var Xi = θi. Define the random variable

A(75) := 5

(
15∑
i=1

Xi

ni

)
.

The expected value of A(75) is

E(A(75)) = 5

(
15∑
i=1

θi
ni

)
and the variance of A(75) is

Var A(75) = 25

(
15∑
i=1

θi
n2i

)
.

We can estimate E(A(75)) by

Cumulative incidence rate by age 75 = a(75) := 5

(
15∑
i=1

xi
ni

)
.

We can estimate the standard deviation of A(75) by

s(75) := 5

√√√√ 15∑
i=1

xi
n2i

.
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We note, in passing, that the estimated risk of being diagnosed with bowel
cancer by age 75 is given by 1− exp(−a(75)). But we are not concerned with
this measure for reasons mentioned above.

Normal approximation for confidence interval. One calculates an ap-
proximate 100(1−α)% confidence interval for the theoretical cumulative rate,
E(A(75)), using a Normal approximation by

a(75)± zα/2 s(75)

where, if Z has a standard Normal distribution, then P (|Z| > zα/2) = α. In
section 3 below, we refer to this method of calculating the CI as the Normal
approximation.

Dobson approximation for confidence interval. In a delightful paper,
Dobson et al. [4] noted that the above Normal approximation “may be poor”
especially if the xi are small—as will be the case in bowel cancer statistics.
Dobson et al. propose an alternative approach based on the observation that
E(A(75)) is a linear combination of Poisson parameters. Their approach
can be applied to find approximate 100(1− α)% confidence intervals for the
theoretical cumulative rates as follows.

Let χ2(m,α/2) satisfy P (X < χ2(m,α/2)) = α/2 where X is a random
variable with a χ2-distribution with m degrees of freedom. Let

T :=

15∑
i=1

xi ,

XL :=
1

2
χ2(2T, α/2) ,

XU :=
1

2
χ2(2T + 2, 1− α/2) ,

TL := a(75)−
√
s(75)2

T
(T −XL) ,

TU := a(75) +

√
s(75)2

T
(XU − T ) .

Then the interval (TL, TU ) is an approximate 100(1−α)% confidence interval
for the theoretical cumulative rate. We will refer to this method of calculating
the CI as the Dobson method for brevity without wishing to disregard the
contributions of Dobson’s co-authors.

Hypothesis testing. When comparing two populations, let us denote the
cumulative rates by a1(75), a2(75) respectively, and the standard deviations
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by s1(75), s2(75) respectively. Under the null hypothesis that the mean cumu-
lative incidence rates in the two populations are equal, then the distribution
of

z :=
a1(75)− a2(75)√
s1(75)2 + s2(75)2

is, approximately, a standard Normal distribution. This allows us to test the
null hypothesis.

3 Results

We now summarise the results of our analyses of incidence and mortality
data.

3.1 Incidence

Incidence and sex. In this subsection, we report the results from comparing
the incidence of bowel cancer among men in Australia with the incidence of
bowel cancer among women in the year 2010, which is the most recent data
for incidence. The results are summarised in table 2.

Male Female

Cum. rate by age 75 0.0551 0.0367
Est. s.d. of cum. rate by age 75 0.0008 0.0006
95% CI for cum. rate (Normal) [0.0536, 0.0566] [0.0355, 0.0379]
95% CI for cum. rate (Dobson) [0.0536, 0.0567] [0.0355, 0.0380]
z (Normal approx.) 17.75
p = P (|Z| > z) < .001

Table 2. Incidence of bowel cancer, Australia, 2010

The graph in figure 3 summarises the results from comparing incidence
rates of bowel cancer among men in Australia with the incidence rates among
women, for 1982–2010, using the cumulative incidence rate by age 75.

Incidence and location. In this subsection, we report the results from
comparing the incidence of bowel cancer in Victoria with the incidence of
bowel cancer in the rest of Australia in the year 2010. Data for Victoria was
obtained from Thursfield and Farrugia [11]. The results are summarised in
table 3.
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Fig. 3. Cumulative incidence rates to age 75 of bowel cancer in Australia, 1982–
2010

Victoria Rest of Australia

Cum. rate by age 75 0.0442 0.0464
Est. s.d. of cum. rate by age 75 9.343E-07 3.298E-07
95% CI for cum. rate (Normal) [0.0423, 0.0462] [0.0453, 0.0475]
95% CI for cum. rate (Dobson) [0.0442,0.0443] [0.0452, 0.0475]
z (Normal approx.) -1.89
p = P (|Z| > z) 0.0581

Table 3. Incidence of bowel cancer, Australia, 2010

Incidence among Australians under 40. Although bowel cancer is pri-
marily a disease that affects older people, sadly it also affects younger people
too, but not to the same extent. Young et al. [12] have recently published a
review of the incidence of colorectal cancer among younger Australians. One
of their conclusions is that incidence rates “are increasing in patients diag-
nosed under 40 years in Australia in contrast to stable or declining rates in
older patients”. This point is not widely appreciated. Hence, we investigated
this matter using the cumulative rate up to age 40.

The graph in figure 4 summarises the results from comparing incidence
rates of bowel cancer among men in Australia with the incidence rates among
women, for 1982–2010, using the cumulative incidence rate by age 40.

We investigated the cumulative incidence rate to various ages, not only
75 and 40. The graphs in figure 5 represent the cumulative incidence rates
for all persons across a wide range of ages for selected years.

3.2 Mortality

Mortality and sex. In this subsection, we report the results from comparing
the mortality from bowel cancer among men in Australia with the mortality
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Fig. 4. Cumulative incidence rates to age 40 of bowel cancer in Australia, 1982–
2010

Fig. 5. Cumulative incidence rates for various ages of bowel cancer in Australia for
selected years

from bowel cancer among women in the year 2011, which is the most recent
data for mortality. The results are summarised in table 4.

Male Female

Cum. rate by age 75 0.0122 0.0068
Est. s.d. of cum. rate by age 75 0.0004 0.0003
95% CI for cum. rate (Normal) [0.0115, 0.0130] [0.0062, 0.0073]
95% CI for cum. rate (Dobson) [0.0115, 0.0126] [0.0063, 0.0073]
z (Normal approx.) 11.69
p = P (|Z| > z) < .001

Table 4. Mortality from bowel cancer, Australia, 2011

89



Mortality over time. The graph in figure 6 summarises the results from
comparing mortality rates of bowel cancer among men in Australia with the
mortality rates among women, for 1968–2011, using the cumulative incidence
rate by age 75.

Fig. 6. Cumulative mortality rates to age 75 for bowel cancer in Australia, 1968–
2011

Mortality among Australians under 40. The graph in figure 7 sum-
marises the results from comparing mortality rates of bowel cancer among
men in Australia with the mortality rates among women, for 1968–2011, using
the cumulative incidence rate by age 40.

Fig. 7. Cumulative mortality rates to age 40 for bowel cancer in Australia, 1968–
2011
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We investigated the cumulative mortality rates to various ages, not only
75 and 40. The graphs in figure 8 represent the cumulative mortality rates
for all persons across a wide range of ages for selected years.

Fig. 8. Cumulative mortality rates for various ages of bowel cancer in Australia for
selected years.

Mortality and location. In this subsection, we report the results from com-
paring the mortality from bowel cancer in Victoria with the mortality from
bowel cancer in the rest of Australia in the year 2010. Data for Victoria was
kindly provided by Victorian Cancer Registry. The results are summarised
in table 5,

Victoria Rest of Australia

Cum. rate by age 75 0.0122 0.0089
Est. s.d. of cum. rate by age 75 0.0005 0.0003
95% CI for cum. rate (Normal) [0.0111, 0.0132] [0.0084, 0.0094]
95% CI for cum. rate (Dobson) [0.0112, 0.0132] [0.0084, 0.0094]
z (Normal approx.) 5.6382
p = P (|Z| > z) < 0.001

Table 5. Mortality from bowel cancer, Australia, 2010

4 Discussion

We now discuss the results presented in the previous section.
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4.1 Bowel cancer in Australia

Bowel cancer has a bigger impact on men than on women. From table 2 and
figure 3, it is clear that the cumulative incidence rate to age 75 has been
higher among men than among women in Australia since 1982.

The graphs in figure 1 and figure 3 illustrate a key point about the cu-
mulative rate. Although the incidence of bowel cancer has been steadily
increasing over time, the graph of the cumulative incidence rate is similar
to the graph of the age-standardised incidence rate reported by AIHW [1]
which uses the Australian 2001 standard population. Thus the cumulative
rate gives the same sort of information as the age standardised rate without
the need to introduce a standard population.

From table 4, it is clear that the cumulative mortality rate of bowel is
higher among men than among women in Australia (p<.001). Figure 6 makes
it clear that this inequality has been evident for a long time. The decrease
in mortality rates for men and women in recent years is a notable feature of
these graphs.

From table 3, we see that the cumulative incidence rate of bowel cancer in
Victoria is slightly lower than in the rest of Australia but not significantly so
(p=0.0581). By contrast, from table 5, we see that the cumulative mortality
rate of bowel cancer in Victoria is significantly higher than in the rest of
Australia (p<.001). This is a surprising discovery. It would be interesting to
us to compare incidence and mortality across all the states of Australia.

The graphs in figure 5 and figure 8 raise several questions that deserve
further consideration. For example, at what ages do the differences in inci-
dence and mortality between males and females appear to emerge? And then
there is the harder question: why?

4.2 Statistical issues

A limitation of this study is that we have used many 95% confidence intervals.
Thus the probability that some of our intervals do not contain the parameter
of interest will be much larger than 5%.

Overall, in the context of our study, the Normal approximation for calcu-
lating confidence intervals seemed to be as effective as the method proposed
by Dobson et al. [4] in nearly every case. (The results in table 3 are excep-
tional.)

4.3 Measuring inequality

Cancer can affect anyone. Yet, the impact is not uniform with respect to
age, sex, geographical location, and year of diagnosis. These inequalities raise
serious questions about setting priorities and allocating resources to deal with
the disease. There are many ways in which the cumulative rate can be used
to identify inequalities in the impact of cancer on different populations.
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Abstract. Purpose: To investigate the dimensionality and psychometric properties of the Schwartz Human Values 
Scale Short Form included in the European Social Survey (ESS) questionnaire. 

Method:  Greek and Slovenian ESS data of 2002 were used. Each sample was split randomly into two halves and 

Exploratory Factor Analysis (EFA) was performed on one half-sample in order to assess the construct validity of 

the scales. The structure was validated by carrying out Confirmatory Factor Analysis (CFA) on the second half.   
Results: In both countries, EFA resulted in a three-factor solution but the third subscale was found not to be 

reliable. In the case of Greece, CFA showed acceptable fit for a 16-item model defined by two first-order 

correlated factors, Openness to change and Self-transcendence. In the case of Slovenia, CFA showed best fit for a 

13-item model defined by three first-order correlated factors, Openness to change, Self-transcendence and Self-
enhancement. 

Conclusions: Although our analysis did not confirm the dimensionality of the Schwartz Human Values Scale as 

proposed in the literature, it did produce two subscales for Greece and three subscales for Slovenia that were 

reliable and valid. Our results suggest that further research is necessary in each country in order to provide 
subscales suitable for use in analyses.   

Keywords: Schwartz’s human values scale (PVQ-21); Reliability; Construct validity; Exploratory Factor 

Analysis; Confirmatory Factor Analysis 
 

                                                     

1 Introduction 

 
The European Social Survey aims to measure attitudes, beliefs and behaviour patterns of 

populations across Europe. It has been conducted every two years since 2002 and 36 countries have 

taken part in one or more rounds. One component that has been present in every round is Schwartz’s 

Human Values Scale, which is designed to classify respondents according to their value orientation. As 

with any scale, it is important to carry out detailed analysis of its psychometric properties and, in the 

case of a scale to be used in cross-national research, to establish that these are the same in each country. 

The present paper contributes to this investigation of the structure and properties of the Human Values 

Scale. 
In 1992, Schwartz developed his theory of basic human values which has been widely used by 

social and cross-cultural psychologists in order to study differences in values among individuals [8]. 

This theory includes the following ten motivationally distinct basic values which encompass the major 

value orientations recognized cross-culturally: Self-direction (SD), universalism (UN), benevolence 

(BE), tradition (TR), conformity (CO), security (SEC), power (PO), achievement (AC), hedonism (HE) 

and stimulation (ST) [6-7]. Schwartz derived these values from three universal requirements of the 

human condition: needs of individuals as biological organisms, requisites of coordinated social 

interaction and requirement for the survival and welfare needs of group [6-7, 12]. 

Schwartz presented the ten basic values defined as sub-dimensions in a circular structure 

based on the relations of conflict and congruity among the types of values [7]. More similar value types 

are close to each other in either direction around the circle and consequently share more similar 

underlying motivations. On the other hand, conflicting value types appear on opposite sides of the 

circle and have more antagonistic underlying motivations [7-8]. Moreover, the circular structure also 

summarizes two dimensions of relations between these values: the self-enhancement versus self-

transcendence dimension opposes power and achievement values to universalism and benevolence 

values, and the openness to change versus conservation dimension opposes self-direction and 
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stimulation values to security, conformity and traditional values; hedonism shares elements of both 

openness to change and self-enhancement [7-8]. 

Lilleoja and Saris [14] pointed out that Schwartz first used a 57-item questionnaire in his 

survey (Schwartz’s value survey, SVS), which was later replaced by the 40-item Portrait Value 

Questionnaire (PVQ). The European Social Survey (ESS) Human Values Scale was derived from the 

earlier 40-item PVQ, but because of space limitations, the number of items was reduced to 21 (PVQ-

21) [7]. According to Knoppen and Saris [12], ESS selected Schwartz’s value scale because it was 

considered to be one of the most comprehensive models and also had been widely validated across 

cultures. 

The ESS PVQ-21 questionnaire is administered as a self-completion questionnaire after the 

end of the interview. Each item presents a verbal portrait of a different person, worded according to the 

respondent’s gender, describing that person’s goals, aspirations or wishes showing implicitly the 

importance of a value [7]. Each of the ten values listed above is represented by two items, apart from 

the universalism value, which is expressed by three items. There are six possible responses to each item 

as follows: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like 

me) and 6 (not like me at all). The score for each respondent is calculated by averaging his or her 

responses on the items defining each value, i.e. ten subscale scores are constructed by computing the 

mean of items that measure each one [7].  

Davidov, Schmidt and Schwartz [7: 440-441] showed that “the scale failed to exhibit scalar 

invariance across the 20 countries. Hence, one should not compare the mean importance of the values 

across all 20 countries simultaneously. However, as illustrated for Denmark and Spain, one can 

compare means for values across subsets of countries where scalar invariance or partial scalar 

invariance are found.” In each country, they found that there were at least two pairs of values which 

were dependent on each other that could not be separated. In order to solve the problem of non-positive 

definite covariance matrices of the constructs, Davidov, Schmidt and Schwartz [7] unified in pairs the 

strongly associated values. Their results showed that there were between five and eight distinct values 

in the different countries. They found that 69 out of 71 pairs of unified values across the 20 countries 

were adjacent in the circular structure of the Schwartz theory of values. Their analyses for Greece and 

Slovenia resulted in a similar structure containing the following five unified values: PO/AC, CO/TR, 

UN/BE, HE/ST and ST/SD. The purpose of the present paper is to investigate the dimensionality of the 

Schwartz scale for these two countries by applying both Exploratory and Confirmatory Factor Analysis 

and to indicate how the values should be treated in country-level analyses. 

 

 

2 Method 
 

The items comprising Schwartz’s scale of human values are Likert-type with six response 

categories and, therefore their level of measurement is ordinal. In applications where the number of 

response categories used for each item is at least five, ordinal categories can be understood as being 

interval and one may perform statistical analyses using these pseudo-interval variables [2].  

In the first step of the analysis, the sample in each country was randomly split into two halves. 

For the data of the first split-half sample, item analysis was carried out to examine their distributional 

properties and decide on the items to be included in the analysis. For the construct validity of the scale, 

Exploratory Factor Analysis was performed using IBM SPSS Statistics Version 20. 

In the second step of analysis, the structure was validated by carrying out Confirmatory Factor 

Analysis on the second split-half sample using IBM SPSS AMOS Version 21. 

 

2.1 Exploratory Factor Analysis (EFA) 

 

The size of the first split-half samples for Greece (N = 1,283) and Slovenia (N = 759) was 

considered adequate for factor analysis (KMO = 0.901 for Greece and KMO=0.831 for Slovenia; see 

also Tabachnick and Fidell [23]). First, Principal Axis Factoring (PAF) was performed to define factors 

as subscales and factor loadings were reported [9]. In performing PAF, the following sequence of 

decisions was required [4, 23-24]:  

1. Initially, univariate statistics were computed for each item and their distributional properties 

were inspected (testing for normality) to decide on the appropriateness of the methods to be used. Also, 

corrected item-total correlations were computed and items meeting the criteria of correlations greater 

than .30 and extraction communalities greater than .40 were included in the analysis [15, 22].  

2. Missing data was replaced by the mean values (which for most items coincided with the 

median). Data screening for unengaged responses (standard deviation = .000) in the Greek and 

Slovenian data sets identified only three and five cases, respectively, and it was decided not to reject 

them from analysis. Data screening for outliers was based on the following background variables: 

gender (dichotomy), age (ratio), education (pseudo-interval). In the case of Greece, only four outlying 
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cases with Higher Education degree were detected and it was decided not to reject them from analysis. 

In the case of Slovenia, outliers were not detected. 

3. The decision on the number of factors to be extracted was based on the eigenvalue greater 

than 1.0 rule, scree test, parallel analysis and interpretability [11, 22]. Parallel analysis [13, 16, 19] was 

performed using the parallel analysis engine provided by Patil, Singh, Mishra and Donavan [17-18]. 

4. Factor rotation method: Promax (oblique) rotation was applied [9]. Items with loadings 

greater than .30 on one factor and greater than .22 on another factor [1, 21] were considered as “cross-

loading” items, i.e. items that loaded on multiple factors. 

5. Subscales were constructed. Descriptive statistics, Cronbach’s alpha and split-half 

reliability coefficients of the subscales were computed. A subscale was considered reliable if the 

coefficients were ≥.70 [15]. Average inter-item correlations in the recommended range of .15-.5 that 

clustered near their mean value were used as an indication of the unidimensionality of the subscales 

[5]. To determine whether or not subscales were warranted, the condition of average correlation 

between subscale items “significantly greater than zero but substantially less than the average within-

subscale values (say, .20)” [5: 318] was used for justifying subscales.  As Clark and Watson [5: 318] 

pointed out, “if this condition cannot be met, then the subscales should be abandoned in favor of a 

single overall score”.  

 

 

2.2 Confirmatory Factor Analysis (CFA) 

 
The size of the second split-half samples for Greece (N = 1,283) and Slovenia (N = 760) was 

considered adequate for factor analysis [23]. In performing CFA, the following sequence of decisions 

was required [3, 4, 10, 24]:  

1. The decision on the items to be included in the analysis was based on the item analysis 

results carried out before performing EFA. Missing data was replaced by the mean or median values as 

in the case of EFA. Data screening for unengaged responses in the Greek and Slovenian data sets 

resulted in only eleven and one cases-respondents, respectively, and it was decided not to reject them 

from analysis. In the case of Greece, only four outlying cases with Higher Education degree were 

detected and it was decided not to reject them from analysis. In the case of Slovenia, outliers were not 

detected. 

2. CFA was performed using the covariance matrix of associations and using maximum 

likelihood for estimation. 

3. Rival models: It was decided to consider the following models: one first-order factor (model 

1); two first-order correlated factors employing all items (model 2a); two first-order correlated factors 

employing all items (model 2b) with cross-loadings; two first-order correlated factors based on the 

solution obtained from EFA with consideration of the subscales’ reliability (model 2c); two first-order 

correlated factors based on the solution obtained from EFA with consideration of the subscales’ 

reliability (model 2d) with cross-loadings; three first-order correlated factors based on the EFA results 

(model 3a); three first-order correlated factors based on the EFA results (model 3b) with cross-loadings 

and the five first-order correlated factors model based on Davidov and Schwartz’s [4] results (model 

4).  

Lilleoja and Saris [14: 157] pointed out that “Schwartz has criticized CFA approach, because 

it contradicts the view of values as arrayed on a continuum, as it seeks to confirm relatively pure 

factors and each item ideally loads on only one factor [20]. The latter remark is not true because cross-

loadings are in principle allowed in CFA, but in that case they have to be specified in the model. If they 

are ignored, the misspecification leads to improper estimates, like correlations larger than 1.0.” 

Therefore, the presentation of cross-loadings in CFA is required and models 2, 3 and 4 were run again 

by considering the respective cross-loadings resulting from EFA. Where necessary, error variances 

were correlated. 

4. Model Fit statistics: In CFA, model fit was considered adequate when χ
2
/df was smaller 

than 3; Standardized Root Mean Square Residual (SRMR) was lower than 0.05; the Comparative Fit 

Index (CFI) and the Adjusted Goodness-of-Fit Index (AGFI) were greater than 0.95, the Normed Fit 

Index (NNFI) was greater than 0.95 and the Root-Mean-Square Error Approximation (RMSEA) was 

lower than 0.06 [3, 19, 24]. 

5. Model misspecification searches: searches for modification indices [3, 24]. 

 

2.3 Subscale construction and reliability assessment 

 

Subscales were constructed and assessed for the total sample as in step 5 of the EFA sequence 

of decisions.  
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3 Results 

3.1 Results of EFA 

3.1.1 Greece. ESS Round 1 (2002) 

 
The majority of the responses were clustered at the lower end of the scale in the first two 

response categories (Table 1). Low mean responses were found for items defining Security (SEC5, 

SEC14), Tradition (TR20), Universalism (UN3, UN19) and Benevolence (BE12, BE18). Relatively 

high mean responses were found for items defining Stimulation (ST15), Power (PO2), Achievement 

(AC4, AC13) and Hedonism (HE10).  

As shown in Table 1, the proportion of missing values for all the items was negligible, ranging 

from 0.2 to 0.6%. Testing for randomness indicated that the data was probably missing completely at 

random (Little’s MCAR test: χ² = 146.5, df = 132, p = 0.18). Non-normality was not severe for any 

item (skewness>2; kurtosis>7). Based on the criteria of corrected item-total correlations and extraction 

communalities, the following three items were rejected from analysis: TR9 (“It is important to him to 

be humble and modest. He tries not to draw attention to himself”); TR20 (“Tradition is important to 

him. He tries to follow the customs handed down by his religion or his family”); CO7 (“He believes 

that people should do what they are told. He thinks people should follow rules at all time, even when 

no-one is watching”). 

 

 

Table 1. Item analysis of Schwartz scale values for ESS – 2002: Greece (n=1,283) 
  

   Frequency percent of response categories    

Item Mean (SD) 95% CI 

for mean 

1 2 3 4 5 6 NA Skew Kurt. CC 

SD1 2.34 (1.10) 2.27-2.40 22.1 41.7 23.1 6.9 5.1 0.9 0.3 0.92 0.69 0.47 

SD11 2.04 (0.98) 1.99-2.10 31.0 44.5 16.5 4.8 2.1 0.7 0.4 1.19 1.88 0.52 

UN3 1.79 (0.89) 1.74-1.84 42.8 42.2 10.5 2.5 1.5 0.4 0.2 1.50 3.20 0.37 
UN8 2.11 (0.96) 2.06-2.16 26.0 47.5 18.8 4.5 1.9 0.9 0.4 1.18 2.12 0.48 

UN19 1.81 (0.85) 1.77-1.86 40.8 41.5 13.8 2.7 0.6 0.3 0.3 1.17 2.10 0.47 

BE12 2.00 (0.91) 1.95-2.05 30.2 46.6 17.7 3.4 1.0 0.7 0.4 1.17 2.43 0.40 
BE18 1.81 (0.85) 1.76-1.85 39.8 44.6 11.9 2.0 0.7 0.6 0.4 1.46 3.76 0.41 

TR9 2.27 (1.08) 2.21-2.33 24.9 40.7 22.1 8.0 3.3 1.0 0.2 0.93 0.80 0.11 

TR20 1.73 (0.89) 1.68-1.78 49.2 34.9 11.0 3.5 0.8 0.4 0.2 1.45 2.57 0.22 

CO7 2.52 (1.28) 2.45-2.59 20.7 38.9 20.4 10.0 6.8 3.0 0.3 0.90 0.24 0.23 
CO16 2.13 (1.02) 2.07-2.18 26.8 46.5 17.6 4.9 2.6 1.1 0.5 1.24 2.05 0.38 

SEC5 1.71 (0.89) 1.66-1.76 49.6 35.6 9.2 3.7 1.0 0.3 0.5 1.52 2.75 0.37 

SEC14 1.71 (0.92) 1.66-1.76 50.4 35.5 8.6 2.9 1.9 0.4 0.3 1.69 3.44 0.43 

PO2 3.58 (1.39) 3.50-3.66 6.4 13.4 36.1 15.4 16.9 11.6 0.2 0.17 -0.75 0.33 
PO17 2.47 (1.25) 2.40-2.54 23.9 33.8 24.2 8.7 7.2 1.8 0.3 0.79 0.08 0.40 

AC4 2.75 (1.33) 2.68-2.82 17.8 30.6 26.0 13.2 8.7 3.6 0.3 0.60 -0.30 0.51 

AC13 2.84 (1.28) 2.77-2.91 13.9 31.2 27.0 14.8 9.7 2.8 0.6 0.51 -0.39 0.55 

HE10 2.92 (1.38) 2.84-2.99 14.1 29.3 29.0 10.9 10.7 5.6 0.4 0.59 -0.38 0.47 
HE21 2.53 (1.32) 2.46-2.60 22.9 34.1 23.8 8.9 5.6 4.4 0.3 0.91 0.33 0.52 

ST6 2.68 (1.33) 2.61-2.76 19.5 31.7 24.4 12.9 7.6 3.7 0.3 0.67 -0.20 0.53 

ST15 3.76 (1.59) 3.68-3.85 9.1 16.5 19.1 17.4 19.6 18.1 0.2 -0.13 -1.14 0.34 

  

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-

total correlation. The values were defined as follows: SD=self-direction; UN=universalism; BE=benevolence; TR=tradition; 

CO=conformity; SEC=security; PO=power; AC=achievement; HE=hedonism; ST=stimulation. Item number indicates order as 

presented in questionnaire. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat 

like me), 4 (a little like me),  5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.068 and 

0.137, respectively. 

 
The eigenvalue rule >1 and scree test suggested the retention of a three-factor solution that 

best explained the variance when eigenvalues from the target data set were compared to the average 

and the 95
th

 percentile of the random data sets. Parallel analysis confirmed this result as actual 

eigenvalues (7.472, 2.969, 1.980) were greater than the randomly generated ones for both the average 

(1.210, 1.172, 1.141) and the 95
th
 percentile (1.248, 1.199, 1.166) eigenvalue criteria.  

Table 2 presents the structure of the three-factor solution obtained by Principal axis factoring. 

The first factor refers mostly to Openness to change, the second factor expresses Self-transcendence 

and the third factor is defined by Self-enhancement. These three factors explain 31.595, 12.556 and 

8.372% of the variance, respectively. Almost all of the 18 items possessed strong factor loadings ≥0.45 

on at least one factor. 

98



Subscales were constructed by averaging the defining items of each factor. As shown in Table 

3, Cronbach’s alpha reliability coefficients for the subscales Openness to change, Self-transcendence 

and Self-enhancement were 0.819, 0.806 and 0.467, respectively, indicating that the third factor was 

not reliable. Split-half reliabilities were 0.821, 0.792 and 0.467, respectively. Average inter-item 

correlations were 0.368, 0.344 and 0.306 within subscales and 0.239, 0.334 and 0.271 between 

subscales, indicating that the values were within the recommended range. 

 

  
Table 2. Factor loadings from Exploratory Factor Analysis 

(Principal axis factoring) with promax rotation (3 factors): Greece 

2002 (n=1,283) 
 
 Factor I Factor II Factor II  Unique 

Item  Openness Self- Self-  variance   
 to change transcendence enhancement  
       
      
SD1 .598 .140 -.099 .621  

SD11 .479 .263 .025 .616  

UN3 -.014 .589 -.062 .671  
UN8 .280 .507 -.073 .612  

UN19 .124 .650 -.099 .547  

BE12 .031 .592 .003 .637  

BE18 -.003 .567 .070 .656  
CO16 -.188 .478 .356 .637  

SEC5 -.129 .564 .167 .653 

SEC14 -.055 .620 .089 .602  

PO2 .422 -.124 .289 .671  

PO17 -.068 .132 .595 .626  

AC4 .407 .046 .361 .561  

AC13 .408 .022 .396 .532  

HE10 .396 -.089 .411 .567  
HE21 .659 .043 -.006 .552  

ST6 .794 .066 -.161 .421  

ST15 .678 -.224 .046 .553  
      
 Correlations between factors  
Factor I ─    

Factor II .285 ─   

Factor III .418 .233 ─  
     
 
Notes: Factor loadings >.22 are in boldface. 

 

 

 

 

 

Table 3. Descriptive statistics, reliability coefficients and internal consistencies of the 

subscales: Greece 2002 (n=1,283) 

 
  Subscale 

 Openness to 

change 

Self-

transcendence 

Self-

enhancement 

Range (number of items) 8 8 2 

Mean (standard error) 2.81 (0.024) 1.88 (0.017) 2.69 (0.030) 

95%  Confidence interval 2.77-2.86 1.85-1.92 2.63-2.75 

Standard deviation 0.865 0.594 1.060 
Skewness (standard error) 0.528 (0.068) 1.311 (0.068) 0.573 (0.068) 

Kurtosis (standard error) 0.018 (0.137) 4.079 (0.137) 0.010 (0.137) 

Cronbach’s alpha reliability coefficient 0.819 0.806 0.467 
Split-half reliability coefficient 0.821 0.792 0.467 

Average inter-item correlations 0.368 0.344 0.306 

Minimum-maximum correlations 0.178-0.497 0.243-0.476 0.306-0.306 

Range of correlations 0.319 0.233 0.000 

 Average inter-item correlations between 

subscales 
Openness to change ―   

Self-transcendence 0.239 ―  

Self-enhancement 0.334 0.271 ― 
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3.1.2 Slovenia. ESS Round 1 (2002) 

 
The majority of the responses were clustered at the lower end of the scale in the first two 

response categories (Table 4). Low mean responses were found for items defining Universalism (UN3, 

UN19), Self-Direction (SD11) and Security (SEC5, SEC14) and high mean responses for items 

defining Stimulation (ST15), Power (PO2) and Conformity (CO7).  

As shown in Table 4, the proportion of missing values for all the items was greater in Slovenia 

than in Greece, ranging from 2.4 to 3.2%. Testing for randomness indicated that the data was probably 

not missing completely at random (Little’s MCAR test: χ² = 472.7, df = 305, p < 0.001). Non-normality 

was not severe for any item (skewness>2; kurtosis>7). Based on the criteria of corrected item-total 

correlations and extraction communalities, the following five items were rejected from analysis: TR9 

(“It is important to him to be humble and modest. He tries not to draw attention to himself”); TR20 

(“Tradition is important to him. He tries to follow the customs handed down by his religion or his 

family”); CO7 (“He believes that people should do what they are told. He thinks people should follow 

rules at all time, even when no-one is watching”); PO2 (“It is important to him to be rich. He wants to 

have a lot of money and expensive things”); ST15 (“He looks for adventure and likes to take risks. He 

wants to have an exciting life”). 

 

 

Table 4. Item analysis of Schwartz scale values for ESS – 2002: Slovenia (n=759) 
  

   Frequency percent of response categories    

Item Mean (SD) 95% CI 

for mean 

1 2 3 4 5 6 NA Skew Kurt. CC 

SD1 2.52 (1.12) 2.44-2.60 14.8 40.7 25.8 8.0 7.0 1.1 2.6 0.86 0.46 0.38 

SD11 2.06 (1.03) 1.99-2.13 30.6 44.1 13.4 5.3 3.3 0.7 2.6 1.28 1.82 0.45 
UN3 2.01 (0.95) 1.95-2.08 28.6 50.1 11.5 3.6 2.9 0.7 2.8 1.48 3.00 0.30 

UN8 2.44 (1.07) 2.37-2.52 13.3 48.7 21.1 7.9 5.0 1.4 2.5 1.12 1.24 0.35 

UN19 2.09 (0.94) 2.02-2.16 26.7 44.8 18.4 5.4 1.3 0.7 2.6 1.07 1.76 0.39 

BE12 2.30 (0.96) 2.23-2.37 18.1 44.8 24.8 7.1 2.5 0.4 2.4 0.83 0.92 0.46 
BE18 2.35 (1.04) 2.28-2.43 16.7 46.5 22.1 7.2 2.9 1.7 2.8 1.16 1.74 0.45 

TR9 2.28 (1.04) 2.21-2.36 19.6 47.8 17.1 8.2 4.0 0.7 2.6 1.06 1.08 0.28 

TR20 2.62 (1.21) 2.53-2.70 14.8 39.0 22.0 12.0 7.4 2.1 2.8 0.80 0.10 0.27 

CO7 3.11 (1.39) 3.01-3.21 9.4 31.6 21.7 13.8 15.3 5.5 2.6 0.44 -0.78 0.25 
CO16 2.52 (1.17) 2.43-2.60 15.2 43.6 20.7 8.6 7.9 1.3 2.8 0.94 0.38 0.41 

SEC5 2.21 (1.06) 2.13-2.28 23.3 47.0 15.8 6.1 4.2 0.9 2.6 1.21 1.54 0.35 

SEC14 2.21 (1.08) 2.14-2.29 24.2 46.2 15.5 5.5 5.3 0.8 2.4 1.20 1.33 0.40 

PO2 4.08 (1.30) 3.99-4.18 2.0 11.3 20.0 17.3 34.3 12.6 2.5 -0.34 -0.85 0.23 
PO17 2.84 (1.21) 2.75-2.93 9.4 35.2 26.9 12.9 10.9 2.0 2.8 0.63 -0.30 0.46 

AC4 2.82 (1.28) 2.73-2.91 12.1 33.5 26.5 10.4 12.4 2.4 2.8 0.63 -0.38 0.48 

AC13 2.69 (1.18) 2.61-2.78 12.3 39.4 24.9 10.8 8.4 1.8 2.4 0.74 0.07 0.55 
HE10 2.90 (1.30) 2.80-2.99 10.3 34.4 24.5 12.0 13.3 2.9 2.6 0.59 -0.51 0.40 

HE21 2.64 (1.35) 2.54-2.73 20.4 33.9 18.2 11.6 10.9 2.5 2.5 0.69 -0.44 0.44 

ST6 2.51 (1.20) 2.42-2.59 17.8 41.4 18.2 10.9 8.3 0.9 2.5 0.81 -0.04 0.48 

ST15 3.81 (1.46) 3.71-3.91 6.5 15.3 18.6 14.8 31.0 10.8 3.2 -0.26 -1.02 0.26 
  

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-

total correlation. Standard errors for skewness and kurtosis were 0.068 and 0.137, respectively. 

 
The eigenvalue rule >1 and scree test suggested the retention of a three-factor solution that 

best explained the variance when eigenvalues from the target data set were compared to the average 

and the 95
th

 percentile of the random data sets. Parallel analysis confirmed this result as the actual 

eigenvalues (5.775, 2.466, 1.603) were greater than randomly generated ones for both the average 

(1.254, 1.202, 1.162) and the 95
th
 percentile (1.308, 1.239, 1.193) eigenvalue criteria.  
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Table 5. Factor loadings of Exploratory Factor Analysis (Principal axis 

factoring) with Promax rotation (3 factors): Slovenia 2002 (n=759) 

 
 

Item 

Factor I 

Openness  
to change 

Factor II 

Self-
transcendence 

Factor III 

Self- 
enhancement 

 

Unique 
variance 

SD1 .479 .117 -.035 .729 
SD11 .452 .207 .003 .683 

UN3 .233 .442 -.246 .726 

UN8 .221 .359 -.108 .794 

UN19 .085 .538 -.077 .695 
BE12 .027 .606 .031 .607 

BE18 .239 .383 .020 .721 

CO16 -.230 .572 .257 .600 

SEC5 -.145 .501 .176 .713 
SEC14 -.075 .496 .180 .697 

PO17 .055 .089 .540 .641 

AC4 .380 -.028 .417 .581 

AC13 .383 .013 .501 .455 
HE10 .561 -.140 .162 .646 

HE21 .708 -.145 .073 .517 

ST6 .556 .123 .015 .618 

 Correlations between factors  

Factor I      ―   

Factor II  .367                     ―   
Factor III  .364                    .318              ―  

Note: Factor loadings >.22 are in boldface. 

 
Table 5 presents the structure of the three-factor solution obtained by Principal axis factoring. 

The first factor refers mostly to Openness to change, the second factor expresses Self-transcendence 

and the third factor is defined by Self-enhancement. These three factors explain 28.367, 12.115 and 

7.873% of the variance, respectively. 

Almost all of the 16 items demonstrated strong factor loadings ≥0.45 on at least one factor. 

 
Table 6. Descriptive statistics, reliability coefficients and internal consistencies of the 

subscales: Slovenia 2002 (n=759) 
 

  Subscale 

 Openness to 
change 

Self-
transcendence 

Self-
enhancement 

Number of items 5 8 3 

Mean (standard error) 2.53 (0.030) 2.27 (0.022) 2.78 (0.035) 
95%  Confidence interval 2.47-2.58 2.22-2.31 2.72-2.85 

Standard deviation 0.822 0.615 0.958 

Skewness (standard error) 0.623 (0.089) 0.671 (0.089) 0.577 (0.089) 

Kurtosis (standard error) 0.301 (0.177) 1.222 (0.177) 0.035 (0.177) 
Cronbach’s alpha reliability coefficient 0.742 0.737 0.682 

Split-half reliability coefficient 0.860 0.716 0.651 

Average inter-item correlations 0.333 0.261 0.418 

Minimum-maximum correlations 0.198-0.501 0.140-0.391 0.345-0.521 
Range of correlations 0.304 0.250 0.176 

 Average inter-item correlations between 
subscales 

Openness to change ―   

Self-transcendence 0.216 ―  

Self-enhancement 0.318 0.230 ― 
 

Subscales were constructed by averaging the defining items of each factor. As shown in Table 

6, Cronbach’s alpha reliability coefficients for the subscales Openness to change, Self-transcendence 

and Self-enhancement were 0.742, 0.737 and 0.682, respectively, indicating that the third factor was 

not reliable. Split-half reliabilities were 0.860, 0.716 and 0.651, respectively. Average inter-item 

correlations were 0.333, 0.261 and 0.418 within subscales and 0.216, 0.318 and 0.230 between 

subscales; these values lie within the recommended range. 
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3. 2 Results of CFA 

 

3.2.1 Greece. ESS Round 1 (2002) 

 
Using CFA, eight different models were tested: one first-order uncorrelated factor based on 

the 18 observed variables (model 1); two first-order correlated factors based on the 18 observed 

variables (model 2a); two first-order correlated factors based on the 18 observed variables with cross-

loadings (model 2b); two first-order correlated factors based on the 16 observed variables as indicated 

by the subscale reliability analysis results (model 2c); two first-order correlated factors based on the 16 

observed variables with cross-loadings (model 2d); three first-order correlated factors based on the 

EFA results (model 3a); three first-order correlated factors with cross-loadings (model 3b); and five 

first-order correlated factors of unified values (model 4) as proposed by Davidov et al. [7]. 

For the justification of the models 2b and 2d, PAF was performed (Table 7). The two factors 

of model 2b explained 31.595 and 12.556% of the variance, respectively. Parallel analysis confirmed 

this result as the actual eigenvalues (7.472, 2.969) were greater than randomly generated ones for both 

the average (1.210, 1.172) and the 95
th
 percentile (1.248, 1.199) eigenvalue criteria. The two factors of 

model 2d explained 32.637 and 14.284% of the variance, respectively.  This also was confirmed by 

parallel analysis, as the actual eigenvalues (6.594, 2.886) were greater than the randomly generated 

ones for both the average (1.194, 1.154) and the 95
th
 percentile (1.232, 1.182) eigenvalue criteria. 

 

 

 

Table 7. Factor loadings of Exploratory Factor Analysis (Principal axis 

factoring) with Promax rotation (2 factors): Greece 2002 (n=1,283) 
 

 
Item 

 Factor I 
Openness to 

change 

Factor II 
Self-transcendence 

 
Unique variance 

SD1 .547 .107 .647 

SD11 .473 .253 .625 

UN3 -.089 .592 .679 
UN8 .214 .494 .634 

UN19 .048 .632 .576 

BE12 .005 .601 .637 

BE18 -.002 .584 .660 
CO16 -.020 .507 .750 

SEC5 -.086 .616 .652 

SEC14 -.049 .661 .585 

PO2 .545 -.164 .741 
AC4 .577 .084 .625 

AC13 .602 .058 .609 

HE21 .647 .022 .570 

ST6 .695 .017 .508 
ST15 .743 -.266 .521 

              Correlations between factors  

Factor I              ―  

Factor II              .362 ―  

 
Note: Factor loadings >.22 are in boldface. 

 

 

As shown in Table 8, the fit of model 1 was not adequate; model 2a also had poor fit to the 

data and using all cross-loadings indicated by EFA (model 2b) improved model fit; model 2c presented 

inadequate fit to the data and using all cross-loadings indicated by EFA (model 2d) improved model fit; 

model 3a had also a poor fit to the data and using all cross-loadings indicated by EFA (model 3b) 

improved model fit; model 4 resulted in a non-positive definite matrix. Therefore, model 2d (Figure 1) 

provided a better fit to the data than all other models. 
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Table 8. Confirmatory Factor Analysis (maximum likelihood), goodness-of-fit indices of eight models: 

Greece 2002 (n=1,283) 

 

 

Notes: df = degrees of freedom; SRMR = standardized root mean square residual; CI = confidence interval; NFI = normed fit index; CFI  

= comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation. The covariance matrix of the 5 

first-order correlated factors of unified values was not positive definite. 

a Higher values indicate better model fit 

b Lower values indicate better model fit 

 

 

 

Figure 1. Standardized solution for the 2 first-order correlated factors 

(model 2d; 16 items) with cross-loadings based on CFA analysis (n = 

1,283). Observed variables are represented by rectangles and latent 

variables are enclosed in ellipses: Greece 2002. 

 
 

 

Models 
tested 

Factor structure χ2/df SRMRb NFIa CFIa TLIa RMSEAb (95 % CI) 

1 1 first-order uncorrelated factor 10.83 0.089 0.826 0.839 0.793 0.088 (0.083-0.092) 
2a 2 first-order correlated factors 

(18 items) 

 

6.70 

 

0.065 

 

0.888 

 

0.903 

 

0.880 

 

0.067 (0.062-0.071) 

2b 2 first-order correlated factors 

(18 items) with cross-loadings 

 

5.55 

 

0.054 

 

0.909 

 

0.924 

 

0.904 

 

0.060 (0.055-0.064) 
2c 2 first-order correlated factors 

(16 items) 

 

6.39 

 

0.066 

 

0.903 

 

0.917 

 

0.897 

 

0.065 (0.060-0.070) 

2d 2 first-order correlated factors 

(16 items) with cross-loadings 

 

4.87 

 

0.052 

 

0.927 

 

0.941 

 

0.926 

 

0.055 (0.050-0.060) 
3a 3 first-order correlated factors 8.05 0.071 0.864 0.879 0.852 0.074 (0.070-0.078) 

3b 3 first-order correlated factors 

with cross-loadings 

 

5.28 

 

0.047 

 

0.916 

 

0.931 

 

0.910 

 

0.058 (0.053-0.062) 

4 5 first-order correlated factors 
of unified values 

 
― 

 
0.066 

 
0.863 

 
0.880 

 
0.855 

 
0.068 (0.064-0.072) 
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3.2.2 Slovenia, ESS Round 1 (2002) 

 
Using CFA, eight different models were tested: one first-order uncorrelated factor based on 

the 16 observed variables (model 1); two first-order correlated factors based on the 16 observed 

variables (model 2a); two first-order correlated factors based on the 16 observed variables with cross-

loadings (model 2b); two first-order correlated factors based on the 13 observed variables as indicated 

by the subscale reliability analysis results (model 2c); two first-order correlated factors based on the 13 

observed variables with cross-loadings (model 2d); three first-order correlated factors based on the 

EFA results (model 3a); five first-order correlated factors with cross-loadings (model 3b); and five-

order correlated factors of unified values (model 4) as proposed by Davidov et al. [7]. 

For the justification of the models 2b and 2d PAF was performed. The two factors of model 2b 

explained 28.367 and 12.115% of the variance, respectively. Parallel analysis confirmed this result as 

the actual eigenvalues (5.775, 2.466) were greater than randomly generated ones for both the average 

(1.254, 1.202) and the 95
th
 percentile (1.308, 1.239) eigenvalue criteria. The two factors of model 2d 

explained 28.002 and 15.245% of the variance, respectively.  Parallel analysis again confirmed this 

result, as the actual eigenvalues (4.438, 2.416) were greater than the randomly generated ones for both 

the average (1.219, 1.168) and the 95
th
 percentile (1.266, 1.205) eigenvalue criteria. 

As shown in Table 9, the fit of model 1 was not adequate; model 2a had also a poor fit to the 

data and using all cross-loadings indicated by EFA (model 2b) improved model fit; model 2c presented 

inadequate fit and using all cross-loadings indicated by EFA (model 2d) improved model fit; model 3a 

had also a poor fit to the data  and using all cross-loadings indicated by EFA (model 3b) improved 

model fit; model 4 also resulted in poor fit. Therefore, model 3b (Figure 2) provided a better fit to the 

data than all other models. 

 
 

 

Table 9. Confirmatory Factor Analysis (maximum likelihood), goodness-of-fit indices of eight models: 

Slovenia 2002 (n=760) 
 

 

Notes: df = degrees of freedom; SRMR = standardized root mean square residual; CI = confidence interval; NFI = normed fit index; 

CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation. 

a Higher values indicate better model fit 

b Lower values indicate better model fit 

Models 
tested 

Factor structure χ2/df SRMRb NFIa CFIa TLIa RMSEAb (95 % CI) 

1 1 first-order uncorrelated factor 5.12 0.063 0.832 0.859 0.810 0.074 (0.067-0.080) 
2a 2 first-order correlated factors 

(16  items) 

 

4.84 

 

0.059 

 

0.829 

 

0.858 

 

0.822 

 

0.071 (0.065-0.078) 

2b 2 first-order correlated factors 

(16 items) with cross-loadings 

 

4.78 

 

0.057 

 

0.833 

 

0.862 

 

0.825 

 

0.071 (0.064-0.077) 
2c 2 first-order correlated factors 

(13 items) 

 

4.74 

 

0.057 

 

0.845 

 

0.873 

 

0.837 

 

0.070 (0.062-0.078) 

2d 2 first-order correlated factors 

(13 items) with cross-loadings 

 

4.62 

 

0.055 

 

0.851 

 

0.878 

 

0.842 

 

0.069 (0.061-0.077) 
3a 3 first-order correlated factors 5.54 0.066 0.796 0.825 0.790 0.077 (0.071-0.084) 

3b 3 first-order correlated factors 

with cross-loadings 

 

4.48 

 

0.051 

 

0.847 

 

0.876 

 

0.839 

 

0.068 (0.061-0.074) 

4 5 first-order correlated factors 
of unified values 

 
5.45 

 
0.072 

 
0.777 

 
0.808 

 
0.769 

 
0.077 (0.071-0.082) 
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Figure 2. Standardized solution for the 3 first-order correlated factors (model 

3b) with cross-loadings based on CFA analysis (n = 760). Observed variables 

are represented by rectangles and latent variables are enclosed in ellipses: 

Slovenia 2002. 
 

 

3.3 Descriptive statistics, reliability coefficients and internal consistencies of the subscales for 

Greece and Slovenia 

 
In Table 10, descriptive statistics, reliability coefficients and internal consistencies of the 

subscales based on the two-factor solution (16 items) are presented for Greece for the full sample.  
 

Table 10. Descriptive statistics, reliability coefficients and internal 

consistencies of the subscales: Greece 2002 (N = 2,566) 

 
 Subscale 

 Openness  
to change 

Self-
transcendence 

Number of items 8 8 

Mean (standard error) 2.82 (0.017) 1.90 (0.012) 
95%  Confidence interval 2.79-2.85 1.88-1.92 

Standard deviation 0.861 0.601 

Skewness (standard error) 0.521 (0.048) 1.447 (0.048) 

Kurtosis (standard error) 0.077 (0.097) 5.176 (0.097) 

Cronbach’s alpha reliability coefficient 0.825 0.812 

Split-half reliability coefficient 0.828 0.773 

Average inter-item correlations 0.377 0.354 

Minimum-maximum correlations 0.166-0.512 0.279-0.507 
Range of correlations 0.346 0.228 

 Average inter-item correlations between 

subscales 

Openness to change ―  

Self-transcendence 0.251 ― 

 

As shown, Cronbach’s alpha reliability coefficients for the subscales Openness to change and 

Self-transcendence were 0.825 and 0.812, respectively (Table 10). Split-half reliabilities were 0.828 
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and 0.773, respectively. Average inter-item correlations within subscales were 0.377 and 0.354 and 

between subscales 0.251, indicating that the values were within the recommended range.  

In Table 11, descriptive statistics, reliability coefficients and internal consistencies of the 

subscales based on the three-factor solution are presented for Slovenia, this time for the full sample. 

Cronbach’s alpha reliability coefficients for the subscales Openness to change, Self-transcendence and 

Self-enhancement were 0.713, 0.729 and 0.683, respectively. Split-half reliabilities were 0.726, 0.684 

and 0.547, respectively. Average inter-item correlations within subscales were 0.332, 0.255 and 0.419 

and between subscales 0.207, 0.310 and 0.227, indicating that the values were within the recommended 

range.  

 

Table 11. Descriptive statistics, reliability coefficients and internal consistencies of the 

subscales: Slovenia 2002 (N = 1,519) 
 

  Subscale 

 Openness to 

change 

Self-

transcendence 

Self-

enhancement 

Number of items 5 8 3 

Mean (standard error) 2.57 (0.021) 2.27 (0.015) 2.80 (0.024) 

95%  Confidence interval 2.53-2.62 2.24-2.30 2.75-2.84 
Standard deviation 0.821 0.602 0.945 

Skewness (standard error) 0.585 (0.063) 0.485 (0.063) 0.515 (0.063) 

Kurtosis (standard error) 0.330 (0.125) 0.856 (0.125) 0.076 (0.125) 

Cronbach’s alpha reliability coefficient 0.713 0.729 0.683 
Split-half reliability coefficient 0.726 0.684 0.547 

Average inter-item correlations 0.332 0.255 0.419 

Minimum-maximum correlations 0.214-0.467 0.137-0.375 0.356-0.501 

Range of correlations 0.253 0.238 0.145 
    

 Average inter-item correlations between 

subscales 

Openness to change ―   

Self-transcendence 0.207 ―  
Self-enhancement 0.310 0.227 ― 

    

 

Conclusions 

 
In this paper, the investigation of the dimensionality of the ESS Schwartz values scale by 

applying the traditional approaches of EFA and CFA to randomly split half-samples indicated a 

different structure from the five unified values that had been proposed by Davidov et al. [7] for Greece 

and Slovenia in order to solve the problem of non-positive definite matrices of the constructs in single-

country CFAs. In the case of Greece, when the proposed solution was tested on the second split-half 

sample, CFA showed that this problem was still present. In both countries, item analyses carried out on 

the first split-half samples indicated that a number of items had first to be excluded from further 

analysis. Eight models were tested. A model with two first-order correlated factors based on 16 items 

(model 2d) in Greece and one with three first-order correlated factors (model 3b) in Slovenia, provided 

the best fit to the data. The fit was improved by considering cross-loadings as suggested by Lilleoja and 

Saris [14]. In the case of Greece, the resulting two underlying dimensions were defined as Openness to 

change and Self-transcendence values. In the case of Slovenia, the three underlying dimensions were 

defined as Openness to change, Self-transcendence and Self-enhancement. These solutions provided 

reliable subscales for both countries that could be used in further analyses.     

The ESS has included Schwartz’s Short Form of the Human Values Scale in all its rounds and 

therefore this work could be extended to cover all participating countries in every round. In this way, 

researchers would be provided with valid and reliable subscales for their analyses. 

 

 

References 
 
1. F. Anagnostopoulos, J. Yfantopoulos, I. Moustaki and D. Niakas. Psychometric and factor analytic 

evaluation of the 15D health-related quality of life instrument: the case of Greece. Quality of Life 

Research, 22, 1973-1986, 2013. 

2. D. J. Bartholomew, F. Steele, I. Moustaki and J. Galbraith. Analysis of multivariate social science 

data, Chapman & Hall/CRC, London, 2008. 

106



3. T. A. Brown. Confirmatory factor analysis for applied research, The Guilford Press, New York, 

2006. 

4. P. Cabrera-Nguyen. Author guidelines for reporting scale development and validation results. 

Journal of the Society for Social Work and Research, 1, 99-103, 2010. 

5. L. A. Clark and D. Watson. Constructing validity: Basic issues in objective scale development. 

Psychological Assessment, 7, 309-319, 1995. 

6. G. Datler, W. Jagodzinski and P. Schmidt. Two theories on the test bench: Internal and external 

validity of the theories of Ronald Inglehart and Shalom Schwartz. Social Science Research, 42, 

906-925, 2013. 

7. E. Davidov, P. Schmidt and S. H. Schwartz. Bringing values back in: The adequacy of the 

European Social Survey to measure values in 20 countries. Public Opinion Quarterly, 72, 420-445, 

2008. 

8. European Social Survey (n.d.). Core Questionnaire. Retrieved from 

http://www.europeansocialsurvey.org/docs/methodology/core_ess_questionnaire/ESS_core_questio

nnaire_human_ values. pdf 

9. L. R. Fabrigar, D. T. Wegener, R. C. MacCallum and E. J. Strahan. Evaluating the use of 

exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299, 1999. 

10. J. A. Gillapsy Jr., D. L. Jackson and R. Purc-Stephenson. Reporting practices in confirmatory factor 

analysis: An overview and some recommendations. Psychological Methods, 14, 6-23, 2009. 

11. J. C. Hayton, D. G. Allen and V. Scarpello. Factor retention decisions in exploratory factor 

analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205, 2004. 

12. D. Knoppen and W. Saris. Do we have to combine values in the Schwartz’ human values scale? A 

comment on the Davidov studies. Survey Research Methods, 3, 91-103, 2009. 

13. R. D. Ledesman and P. Valero-Mora.  Determining the number of factors to retain in EFA: an easy-

to-use computer program for carrying out parallel analysis. Practical Assessment, Research & 

Evaluation, 12, 1-11, 2007. 

14. L. Lilleoja and W. E. Saris. Testing a new operationalization of the basic values on Estonian-and 

Russian-speaking subpopulations in Estonia. Social Indicators Research, 116, 153-172, 2014. 

15. J. C. Nunnally and I. H. Bernstein. Psychometric theory, McGraw-Hill, New York, 1994. 

16. B. P. O’Connor. SPSS and SAS programs for determing the number of components using parallel 

analysis and Velicer’s MAP test. Behavior Research Methods, Instruments & Computers, 32, 396-

402, 2000. 

17. V. H. Patil, S. N.Singh, S. Mishra and T. Donavan. Parallel analysis engine to aid determining 

number of factors to retain [Computer software], 2007. Available from Instruction and Research 

Server, University of Kansas website: http://ires.ku.edu/~smishra/parallelengine.htm. 

18. V. H. Patil, S. N. Singh, S. Mishra and T. Donavan. Efficient theory development and factor 

retention criteria: A case for abandoning the “eigenvalue greater than one” criterion. Journal of 

Business Research, 61, 162-170, 2008. 

19. T. A. Schmitt. Current methodological considerations in exploratory and confirmatory factor 

analysis. Journal of Psychoeducational Assessment, 29, 304-322, 2011. 

20. S. H. Schwartz. Studying values: Personal adventure, future directions. Journal of Cross-Cultural 

Psychology, 42, 307-319, 2011. 

21. J. Stevens. Applied multivariate statistics for the social sciences, Lawrence Erlbaum Associates, 

New Jersey, 2002. 

22. M. Symeonaki, C. Michalopoulou and A. Kazani. A fuzzy set theory solution to combining Likert 

items into a single overall scale (or subscales). Quality & Quantity, 49, 739-762, 2015. 

23. B. G. Tabachnick and L. S. Fidell. Using multivariate statistics, Pearson International Edition, 

2007. 

24. B. Thompson. Exploratory and confirmatory factor analysis: Understanding concepts and 

applications, American Psychological Association, Washington DC, 2005. 

 

 

107

http://www.europeansocialsurvey.org/
http://ires.ku.edu/~smishra/parallelengine.htm


108


