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Abstract. When operating a device which is a subject to degradation, we want to
estimate the distribution of the time to failure for maintenance optimization. Our aim
is to describe the dependency of the failure time distribution on applicable regression
variables. Models commonly used in survival analysis, such as the Cox model or
the Accelerated failure time model, need to be adjusted to accommodate repairs and
maintenance. For instance, we may use the number of repairs or maintenance actions
or their cost as time-varying covariates. In this work we describe such models and
demonstrate their application on real data.
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1 Introduction

We study data describing a service record of one ore more devices which degrade
over time. When a device breaks down, it is necessary to perform a repair.
We want to avoid breakdowns by performing preventive maintenance, and to
optimize the maintenance costs, it is desirable to estimate the time to failure
distribution with the help of available information. In this work we focus
on methods of modeling the life time of the device with available regression
models of survival analysis with suitable covariates. The models need to be
adjusted to accommodate recurring repairs and maintenance actions. One such
approach was described by Percy and Kobbacy([8] and Percy and Alkali[6] for
the Cox proportional hazards model with covariates multiplicatively influencing
a parametric baseline hazard. In a similar way, we show the use the Accelerated
failure time model with time-varying covariates (Lin and Ying[4]), which states
that the covariates influence multiplicatively the flow of the internal time of
the device. Further, we show methods of estimating the cumulative baseline
hazard nonparametrically if we have data on more devices, which allows us to
estimate the regression parameters without assumptions on the shape of the
baseline. Finally, we show the application of all described methods on real data
from oil industry.

2 Modeling the life time of one device

Let T1,...,T,, be random variables representing the ordered times of actions
(repair or maintenance). Denote Ay, ..., A, the indicators whether in j-th time
a repair (A; = 1) or a maintenance (A; = 0) was performed and let X (t) be
an explanatory variable, possibly time-varying.
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We work with counting processes denoting the number of repairs and main-
tenance actions up to time t¢:

n n

No(t) =Y I(T; <t A; =1), My(t) =) I(T; <t,4; =0).
j=1 j=1

Denote the hazard function

A(t) = ,{IE}) P(No(t+ h) — No(t) > 1|H(t)) /D

where #H(t) is the history of events up to time t. Further denote the cumulative
hazard function A(t) = fot A(s)ds and S(t) = exp(—A(t)) and f(t) = —5'(¢)
corresponding survival function and density of the time to failure distribution.
We assume that a repair returns the device to working state and that it affects
the hazard function. The aim is to determine whether repairs and maintenance
actions increase or decrease the hazard and by how much. We parametrize
the hazard function and estimate the parameters using maximum likelihood
method. The likelihood can be written as

n (TN ST Y o
L:jE(S(Tj—l)) (S(Tj—1)> = NI - ST

j=1

and the log-likelihood has the form

n T
1= Ajlog\(T;) —/ A(t)dt.
j=1 0

Cox model

In the Cox model the covariates affect the hazard function multiplicatively.
We assume that each repair or maintenance action multiplicatively increases
or decreases the baseline hazard and so do other explanatory variables. We
work with the hazard function in the form (Percy and Alkali[6])

A(t) = )\O(t)eM.(t)ﬂ+N.(t)a+X(t)5 — )\O(t)(ep)M.(t)(ea)No(t)(eﬁ)X(t).
As the explanatory variable X (¢) we can use for instance the cost of the last
repair. If the covariate values change only in the times of observed events

and the baseline hazard A\y(t) is parametric, it is possible to insert the hazard
function into the log-likelihood and maximize.

Accelerated failure time model

We can also assume that each repair or maintenance causes that the internal
time of the device flows faster or slower (Accelerated Failure Time model, AFT).
We use the time transformation (Lin and Ying[4])

t
t—>/ eMe(s)ptNe(s)o+X ()8 1g —. h(t, B),
0
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where 3 = (p, 0, 8)T. The hazard function has the form
)\(t) ( (t ﬁ)) M, (t) p+N.(t)o+X(t)5

If the baseline hazard function is constant (corresponding with the exponential
distribution), both models coincide.

3 Inference when observing more devices

If we have data on n independent devices, we work with joint likelihood. We
can either parametrize the baseline hazard and proceed as above, or estimate
the baseline nonparametrically. This may be desirable, since we do not need to
pose any assumptions on the form of the baseline and focus on the regression
parameters. Let us have \;(t), T;;, Ai;, j = 1,..n; and X;(¢) the hazard
function, times of events, repair indicators and covariate values for the i-th
device respectively. Denote

N;;(t) = A”I(Tij <t),
Mi;(t) = (1= Ai)I(Ti; < 1),
() I(ZJ 1<t<Tw)
We get the log-likelihood in form

Z—Z/ log)\ dN”()—YZ]()A()dt>

The hazard function A; will contain the counts of repairs and maintenance
actions N;, and M,,, where ® means the sum over corresponding index.

Semiparametric Cox model

Denote X7 (t) = (Nia(t), Mo (t), Xi(t)). Then the likelihood and score function
under the Cox model are

= Z/OOO ((log Mo(t7) + XT (£7)B)dN;(t) — Vi (t)exf(f)ﬁAo(t—)dt) :

- [ (xF@ a0 - YiXE ) O Ban).

The score depends on an unknown cumulative baseline hazard Ag(¢). This can
be replaced by the Nelson-Aalen estimate

) o dNeo(s)
Ao(t, B) _/0 > eX?(S_)’G}/ij(S).

Inserting the estimate we get the score function in form
oo X (t exiT(f)ﬁyi, t
:Z/ (Xi(t_)— ZU 1( Xl(t)ﬁ ]( ) dNij(t)
ij 70 doie Yi(t)

and we find the parameter estimates by solving the equations U(3) = 0.
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Semiparametric AFT model

For each device we have the time transformation t — h;(t,3). We work with
time-transformed processes

N (8, 8) = Ay I(hi(Ti;, B) < t),

(ta ) ( Az) ( ( z]vﬂ)<t)

Y, 8) = 1(hi(T;j-1,8) <t < hi(Tij, B)),
X;(t,8) = Xi(h; ' (t, B))-

The exact score has a more complicated form, but it can be replaced by the
approximate score (Lin and Ying[4])

= Z/Ooo X (t™, B) (dN;;(t, B) = Yi3(t, B)dAo(t))

and we can again insert the estimate of the cumulative baseline hazard function

! dN*( B

We get

_ OO % [(1— Zng*(t_vﬂ) *(7:6) *
—EJ:/O (Xi(t .B) - S V05 )dNij(ag).

Because the score is not continuous in 3, we obtain the parameter estimates
by minimizing ||U(3)]|.

4 Modeling lifetime of oil pumps

We explore data on service of oil pumps during several years (Kobbacy et al.[1]
and Percy and Alkali[7]). For one device we have detailed data on n; = 65
times of repairs, maintenance actions and the cost of each action in man-hours.
This data has been studied by Percy and Alkali[6] using the Cox model. We try
to model the lifetime using both the Cox and the AFT model as shown above
with various parametrized baseline hazard functions and compare the results.
In the parametric case, it is possible to directly maximize the likelihood for all
cases and see in which it was largest.

For four other pumps we have only the times of actions at disposal, with
(na,...,n5) = (51,90,30,30). We use both the semiparametric methods and
parametrized baseline hazards with the two described models to estimate the
regression parameters utilizing data of all the five pumps. The likelihood in
semiparametric methods depends on the unknown baseline hazard and there-
fore is not available for comparison of the used methods.
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Parametric modeling of one pump service

We have the times of repairs, maintenance actions and cost of each action for
one pump. Using methods from section 2 we estimate the parameters p, o
and f in both the Cox model and the AFT model. We try to maximize the
likelihood for exponential, Weibull A\o(t) = aA??~!, gamma f(t) o< t¢ e,
truncated Gumbel \o(t) = Aa' and log-normal baseline distributions.

Model Ao |log - lik| e ¢* €7 A a
Exp. | -213.8 [1.407 0.980 1.0066 0.0015  —

Cox  Weibull | -213.5 [1.266 0.924 1.0064 0.0017 1.672
Gamma| -213.8 {1.405 0.918 1.0066 0.0016 1.027
Gumbel|-210.2(0.701 0.745 1.0063 0.0006 1.010
LN -214.8 |1.541 0.913 1.0069 =6.3 6=1.66

AFT Weibull| -212.7 [1.278 0.918 1.0061 0.0014 1.639
Gamma/| -213.8 |1.418 0.916 1.0066 0.0014 0.918
Gumbel|-210.2|1.318 0.877 1.0050 0.0005 1.001
LN -218.1 |1.300 1.050 1.0070 4=5.25 6=0.89

Table 1. The log-likelihood and parameter estimates from parametric models of the
lifetime of one oil pump.

Comparing the likelihood values in Table 1 we find that it is highest for
both the Cox and AFT model with the truncated Gumbel distribution. Further
we see that the more each action did cost, the more it increased the hazard
function or accelerated the internal time, because e® > 1. Each man-hour
of the action means an increase of hazard or acceleration of time by about
0.5—0.7%. A repair itself has a positive influence (e < 1), with the exception
of the AFT model with log-normal baseline distribution, but that is the case
with the lowest likelihood value. It is interesting that according to all cases
except the Gumbel distribution in Cox model, the maintenance actions tend to
have a negative influence (e? > 1). This could be due to repairs often taking
much more man-hours than maintenances, resulting in negative influence of
both.

Semiparametric modeling of the lifetime of five pumps

For five devices we have only the times of repairs and maintenances available.
The data on the cost of the actions was not available for all pumps, therefore
we estimate only the regression parameters p and o. We tried the Cox and the
AFT models, both parametric with the same baseline distributions as above
and semiparametric. In the parametric cases we maximize the log-likelihood
whereas in the semiparametric approach we insert the estimate of the cumula-
tive baseline hazard into the score function and solve the equations U(3) = 0
for the Cox model and minimize |U(3)|| for the AFT model.
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Model Ao log - lik| e € A a
Exp. -880.3 [0.985 1.016 0.016 —
Cox  Weibull -880.2 |0.976 1.016 0.014 1.063
Gamma -880.1 |0.988 1.016 0.015 0.811
Gumbel -880.3 |0.994 1.016 0.016 0.999
LN -894.4 11.090 1.016 4=3.22 6=0.89
AFT Weibull -880.2 |0.980 1.015 0.014 1.038
Gamma -880.1 |0.988 1.016 0.015 0.812
Gumbel |-875.1(1.022 1.036 0.013 0.999
LN -879.5 [1.284 1.158 1=2.67 6=1.56
Cox nonparam.| — [1.0431.020 — —
AFT nonparam.| — 1.028 1.084 — -

Table 2. The log-likelihood and parameter estimates from modeling the lifetime of

five pumps.

In Table 2 we see that in all cases a repair increases the hazard or acceler-
ates the internal time (¢ > 1). Among the parametric models, the Gumbel
distribution with AFT model has the highest likelihood. In that case and also
in the cases with log-normal baseline hazard and the semiparametric models,
the maintenance actions have also a negative influence, whereas in the other
cases it is positive. In Figure 1 we see the estimates of the cumulative baseline
hazard for both Cox and AFT models. The time in the AFT model is on the

transformed scale t — h(t, B).
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Fig. 1. Estimates of the cumulative baseline hazard in semiparametric Cox and AFT

models.
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Possible model selection and validation methods

When comparing two models, it is possible to perform a x? test based on scaled
deviance D = 2-(I; —l3) to see for instance whether an added covariate signifi-
cantly improves a model. For the one pump data using Cox model with Gumbel
baseline, no significant improvement was found when adding the influence of
the cost of the action (3) to a model containing only the regression parameters
p and o (Percy and Alkali[6]), while it can be argued that the covariate still
adds some relevant information.

Aside from the likelihood value, we do not have a direct means to determine
which model fits the data best, especially when comparing the parametric and
semiparametric approaches. For classic survival regression data, goodness-of-
fit tests have been developed for parametric versions of both models by Lin
and Spiekerman[2], for the semiparametric Cox model by Lin et al.[3] and for
the semiparametric AFT model by Novék[5]. This methods could be adapted
to accommodate repairs and maintenance actions. They are however, based
on resampling approach and asymptotic convergence of certain martingale pro-
cesses, and therefore it remains to be seen how well they would perform in such
cases as with above data representing only a few independent devices.

5 Conclusion

We explored methods for modeling the influence of maintenance and repairs
on the lifetime of the observed device. In the Cox model the covariates rep-
resenting the count and size of repairs and maintenance actions influence the
hazard function multiplicatively, whereas in the AFT model they accelerate or
decelerate the flow of the internal time of the device. When we parametrize the
baseline hazard function, the service record of one device is enough to obtain
the estimates of the regression parameters. If we have data on more devices, it
is possible to estimate the cumulative baseline hazard function nonparametri-
cally. Further research could concern developing goodness-of-fit tests or testing
whether a nonparametric estimate may be replaced by a suitable parametrized
baseline hazard. It would be also possible to explore other transformations in
the accelerated failure time model.
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Introduction. The problems of calculating hydraulic operating parameters are the basic problems in the
analysis of operating conditions of pipeline systems when designed, operated, and controlled. These problems are
traditionally solved using models and methods, which, however, do not allow us to quantitatively assess the
satisfiability of operating conditions when consumption is random, which is typical of many practical situations.
This is explained by high complexity and dimensionality of pipeline systems (heat-, water-, gas supply systems, etc.)
as modeling objects, excessive efforts necessary to apply general methods of stochastic modeling (such as the
Monte-Carlo method), and difficulties in obtaining initial statistical data.

The paper presents an approach, a set of mathematical models and methods for modeling the operating
parameters of pipeline systems that were developed in terms of stochastics and dynamics of consumption processes and
the established rules of their control, which make it possible to rationally combine the adequacy of modeling and its
high computational efforts [1, 2].

Problem statement of the probabilistic calculation of hydraulic operating parameters.
Probabilistic description of definite hydraulic operating parameters is reduced to the probability density function,
which is denoted here by p(R,d,), where R — the value of a random vector of operating parameters (pressure, flow

rate, etc.); @, — distribution parameters. Most of the practical cases allow us to use the hypothesis about normal
distribution of R . Then ¢, = (R, C,} and the probabilistic description of hydraulic operating parameters can be

reduced to the specification of values of mathematical expectation ( R ) and covariance matrix ( C ) for value R.

Not every combination of R components is acceptable, since they should satisfy the equations of flow
distribution model U(R) =0 (where U — non-linear vector function). These equations result from general physical

conservation laws, and hence should be solved deterministically.
The traditional deterministic model of steady hydraulic operating parameters in a pipeline system as a
hydraulic circuit with lumped parameters can be represented as [3]

M

[ Ax-Q ]
UR)=UX,Y)=Ux,0,P,a) = =0.

A'P- f(x,a)

Here the first subsystem of equations represents the conditions of material balance at the nodes of hydraulic
circuit (equations of the first Kirchhoff law); the second subsystem — the equations of the second Kirchhoff law; X —
boundary conditions; Y — unknown operating parameters; T — transposition sign; 4 — m xn - incidence matrix with
elements a; =1(-1), if node ; is the initial (end) node for branch i, a, =0, if branch i is not incident to node ; ;

m, n — number of nodes and branches of the hydraulic circuit; x — n-dimensional vector of flow rate in branches,
0,P — m-dimensional vectors of nodal pressures and flow rates, f(x,a) — n-dimensional vector-function with

components f,(x,,a,), reflecting the laws of hydraulic flow for the branches; o — n, -dimensional vector of
parameters of these characteristics. For instance, if f,(x,,c,)=s,x,|x,|-H, , then o, ={s,,H,}, where x, — flow
rate in the i-th branch; s, — hydraulic resistance of the branch; H, > 0 — increase in pressure in the case of an active
branch (e.g. a branch representing a pumping station); H, =0 in the case of a passive branch (e.g. a branch
representing a pipeline section). If in (1) all parameters s, H,, i= L_n are set deterministically, then
R=(x",0",P")" Thus, the probabilistic model of steady flow distribution can be represented as
UR)=0, R~N, (E ,C,), where N, —r —dimensional normal probability distribution; » — dimensional of vector
R. In the case of normal distribution of X, if we neglect the non-linear distortion of distribution p[Y(X), ¢, ]
(where Y(X) — implicit function given by the flow distribution equations), the problem can be reduced to the
determination of ¢, = {R,C,} with the given function ¢, = {X,C,} and under condition U(R)=U(X,Y)=0.
Moreover, the composition of X should provide solvability of equations U(X,Y)=0 with respect to Y, i.e.
dim(Y) = dim(U) = rank(0U / 0Y) , where U /0Y — Jacobian matrix (of partial derivatives) under fixed boundary
conditions X~ in the neighborhood of the solution point ¥", dim(-) — vector dimensional, rank(-) — matrix rank.
Methodological approach. Let &, = (X - X) be a random deviation of possible realization of boundary

conditions from its mathematical expectation X . After linearizing function Y(X) in the neighborhood of X , we
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obtain Y = Y()?)+(8Y/8X)§X , where @Y /08X is derivative matrix at point X . Since E(Y)= Y and E(,)=0,
where E is the operation of mathematical expectation, then Y=Y (}) Thus, the mathematical expectation of

unknown operating parameters (Y ) is the function of flow distribution equations under boundary conditions X .

Correspondingly,
B X) (X @
Y )y
& \(Ex Cy | ~ o _oy  (orY
and Cr :E[(fy ][ ] ]_|:E~;;T~‘“:| where ¢ _E[§Y§Y]~E|: gxé\’(an :l_acx (&) )

Cyy =Cly = E(E,E]) = E(fxfx(gj]—c [‘;] £ (-1,

Thus, the general scheme for solving the problem of probabilistic calculation of hydraulic parameters is
reduced to the following: 1) to obtain vector ¥ by traditional methods for calculating the flow distribution with the
given X ; 2) to determine matrix C »» whose individual blocks are determined using the known matrix C, and
derivative matrix 8Y /3X at point X .

Here two main questions arise: 1) based on what do we set the distribution parameters of boundary
conditions (¢, = (X, C,}); 2) what is the final form of relationships for the resultant covariance matrices in
different variants of the division of R into X and Y, since in the traditional methods for the flow distribution
calculation the derivatives 0Y /0X are not calculated in explicit form, which represents a separate problem.

Probabilistic description of consumer loads. A typical example of pipeline systems operating under
the conditions of stochastic consumer loads is water supply systems. The approach applied to the probabilistic

description of these stochastic conditions is based on the use of the queuing theory methods and on results of the
studies [4, 5, etc.], which found their reflection in the regulatory documents [6]. According to these results, the

probability of using plumbing units ( p,. ) can be described by Erlang formulas, which demonstrate a discrete limit
distribution of used channels, depending on the characteristics of the flow of requests and the performance of the
queuing system.
The suggested technique for calculating the mathematical expectation of consumer flow rates (g, ) and
their variances ( 0'5, » ) consist in the following:
1. Knowing the number of plumbing units at the consumption node ( N ) and the probability of using them
p,, [6], we can calculate m =m,, such that maximum value ( p,___ (m) ) acquires the probability

N p . m
p@ﬂ:g—ilf Z,m=01,..,N, 3)
m!
k
Vo) . o
where Z = ZT , m is the number of simultaneously used plumbing units; Np,, is their usage rate.

2. We should determine the average hourly flow rate g,. =m,, q,,, where ¢, , =¢q,, /1000 —hourly water
flow rate by one device, m’/h; g, — can be interpreted as the mathematical expectation of flow rate at the
consumption node; ¢, ,. — standardized value, I/h.

3. When approximating the discrete Erlang distribution by the continuous normal distribution, we should

calculate the equivalent variance by formula o, =1/27zp. (m).

4. The variance of the average hourly flow rate will be determined as 0';’ e =on Cop -
Figure 1 presents a diagram of function (3), where N =270 and p, =0.023. The diagram shows that the
maximum probability density function corresponds to m,, , whose average hourly flow rate is ¢, .

General scheme of obtaining the covariance matrix consists of three stages: 1) to linearize system

(1) at point X ; 2) to reduce linearized system g—géR =0 to &, :2—;;& > 3) to obtain covariance matrix of the

T
vector of unknown operating parameters C, using the operation E [(fx j(?j ] .
Y
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Fig. 1. Continuous approximation of Erlang distribution for the probability of simultaneously used devices for the case
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where N =270 and p, =0.023.

X ou
Thus, for the case, where X=0Q, Y:(Pj’ P =const, a=const: —=

4
orR | f
AN
&) | M ¢’

C, 1Cp | Cpo c, C,M ALY C,M™
CR — CXQ Cx Cxp — (f;cl)flATM%CQ (f;cl)flATM%CQMflA(fxr)fl (f;cl)fl ATMflCQMfl ,
Cop | Cp | Gy M7C, M C,MT AN M C,M™!

where f] — diagonal matrix with elements of;(x;,,)/0x,; C, —known covariance matrix of nodal flow rate; C,,

i

C, - covariance matrix of nodal pressure and covariance matrix of flow rate in branches; C, = CIQ — covariance
matrix of nodal flow rate and flow rate in branches; C,, = Cg,, — covariance matrix of nodal pressure and flow rate;

C, =C}

. = C, — covariance matrix of nodal pressure and flow rate in branches. Thus, knowing C, =C,, we can

Q b
calculate C,. No special requirements are imposed on matrix C,, however, in practice it is usually taken as a

diagonal matrix from considerations of statistical independence of consumer loads. This means that
COV(Q/.,Q,)ZO'; for j=t,and cov(Q,,0,)=0 for j=t.
J

Covariance matrix for the general case of setting boundary conditions X =(Qy,P;,ay)",
where at each node we can set either the flow rate or the pressure, and each branch is characterized by n, -
dimensional vector (e.g. a, ={s,,H,}, n,; =2) of hydraulic parameters, which is specified in the probabilistic form
in full or partially [1, 2].

Divide the set of nodes in the design scheme into subsets of nodes with the given flow rate (J,, ) and pressure
(J; ), and the set of branches into subsets of branches with hydraulic parameters given in the probabilistic ( /, ) and
deterministic (/,,) forms. We omit the conclusion and give the finite expressions for the covariance matrix of

unknown operating parameters:
1) Covariance matrix of unknown nodal pressure

T T T
C,, =E[ Eor) ff;y] _ o Ay oxy, c, ox, ASV OP, N OP, Cor OP, N OP, Cor OP, :
00y day day 00y 00y 00y oPy OPy

2) Covariance matrix of flow rate in the branches with deterministically specified characteristics
T T
Ox ox ox ox
C =E ) T = D C —b + —Db C —Db 5
x,D |:§X,D gx,D:| 6PY PY (6PY 6PX PX aPX
3) Covariance matrix of flow rate in the branches with probabilistically specified characteristics
T T T
Ox Ox Ox Ox Ox ox
Co =E|&xyséxy | = Cpy | 22~ | +=C |l +—C s
o =[x | op, " (GPY op, "\op, ) oa, “\oa, )’
4) Covariance matrix of unknown nodal flow rates
Cor = E|:§QY7§—QFY:| = AppCop App + Apy Cyp Apy
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where A4,, — (m,xn,)-dimensional incidence matrix with elements a,, jeJ,, iel,; 4, — (m,xn,)-
dimensional incidence matrix with elements a,, jeJ,,i€l,; Ay, — (m,xny)-dimensional incidence matrix

with elements a,, jeJ,, i€l,; A, — (m,xn,)-dimensional incidence matrix with elements a,, jeJ,,

-1 -1 -1 -1
: . xp [ T Ox o) T & [ T oy U T
felys 5{5— Yoo ) P Tl ) e )
Y Xp X XD Y Xy X Xy
o, (of, ) @
Y _ Jar o _ matrices of partial derivatives of the corresponding combinations of parameters, which
ooy ox, ) Oay,

, whose structure is determined by the type of

. . 0 0 0
implicitly depend on three matrices only: Jip , Vv and Vv
X, Oxp oa,
branch characteristics. Moreover, the first two of them are diagonal, and therefore, easily invertible.
Thus, based on the given relations, we can sequentially calculate the covariance matrices of all the operating

parameters, if we know the covariance matrices of nodal flow rate set in the probabilistic form (C,y ), nodal
pressure ( Cpy ), and hydraulic characteristics of branches (C,, ).

Probabilistic calculation of dynamics of hydraulic operating parameters. Stochastic boundary
conditions initiate the change in hydraulic operating parameters with time. As a result we face the problem of
probabilistic modeling and analysis of operating parameter dynamics R(¢), 0<¢<T as a random process for the
calculation period T .

Figure 2 presents the graphs of realization-frequency distribution of two hydraulic operating parameters (the
nodal flow rate and the nodal pressure). The first parameter can be considered as a disturbance, the second — as a
response. Figure 2a shows the graph of water flow rate frequencies for an individual residential building in the water
supply system that is constructed based on the experimental data. Figure 2b shows the graph of pressure frequencies
at the connection node of the reservoir in the water supply system in one of the Irkutsk districts that is obtained by
processing the data of the dispatching department for 490 days.

a) b)

Time, h

Frequeng Frequency, %

L2
".:0’ Pressure, w.c.m
Flow rate, m’/h .

Fig. 2. Daily change in the frequency distribution of hydraulic operating parameters

a) For the nodal flow rate, b) For the nodal pressure

Analysis of both processes in Fig. 2 indicates that: 1) the frequency distribution at any cross-section of both
processes is approximated by the normal (Gaussian) distribution satisfactorily enough; 2) the variance of every

process (o) is practically invariable. The root-mean-square deviation (o) for daily water flow rate changes

negligibly, i.e. within 10 per cent (Table 1), for pressure — within 7 per cent; 3) the mathematical expectation for
both processes changes during a day (Fig. 3a); 4) the autocorrelation function stabilizes at the zero value (for the
nodal value in Fig. 3b) fast enough.
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Fig. 3. Statistical characteristics of change in the nodal pressure as a random process
a) Dynamics of mathematical expectation;
b) Graph of the autocorrelation function of pressure in the reservoir

Table 1. Values of mathematical expectations and root-mean-square deviations of the nodal flow rate during day
hours for the conditions in Fig. 2a.

Dayhour | O, m’h o %100% Dayhour | O, m’h o %100%
1 4.60 2.14 3.11 13 11.97 225 8,41,
2 232 1.94 6.52 14 11.77 22 6.00
3 1.88 1.99 4.12 15 11.28 2.15 3.59
4 1.66 1.94 6.52 16 11.16 2.07 0.26
5 1.87 1.84 7.97 17 11.53 2.0 3.63
6 3.28 22 6.00 18 12.32 2.09 0.70
7 7.88 2.02 2.67 19 12.35 2.17 4.56
8 10.80 2.08 0.22 20 13.34 2.05 1.22
9 10.88 1.96 5.56 21 13.68 2.04 1.71
10 12.40 226 8.89 22 14.34 2.02 2.67
1 12.48 2.02 2.67 23 12.51 1.85 10.86
12 12.13 228 9.86 24 9.10 2.18 5.04

The hydraulic operating parameters vary in time in response to three main disturbing actions (boundary
conditions): 1) random actions of regular character (consumer loads); 2) deterministic actions of regular character
(control actions); 3) random actions of irregular character (fires, accidents). The second type of disturbances is
taken into account algorithmically on the basis of the specified control rules. Analysis of the consequences of
relatively rare disturbances of the third type is the subject of the reliability theory of pipeline systems and is not
carried out here.

Dynamics of hydraulic operating parameters R(¢), 0 <¢ <7 may be considered as a random process with the

discrete time (a quasidynamic approach). At each time instant of the process the operating parameters obey the
normal distribution. Variation of the operating parameters at the adjacent instants may be considered as insignificant
and the flow distribution — as steady. Thus, the problem of probabilistic calculation of hydraulic operating parameter

dynamics is reduced to the determination of R =[R(0)",R()",...,R(T)']" and C, :E[éng] based on the
specified parameters X =[X(0)",X(D)",..X(T)']", Cy and the conditions  A(t)x(¢) = O(t,P),
AW P (t)=y(t), y(t)=f(x(®),a(t)), t=0,..,T . Inthis case the suggested analytical probabilistic models and

the calculation methods can be applied to each calculation instant, which will sharply decrease computational
efforts. The computing experiments in Table 1 have shown the decrease in running time by tens of times.

Table 2. Time required for probabilistic calculation by the Monte Carlo and analytical methods [7]

Number of scheme nodes and branches Time for method . / ¢
analytical Monte Carlo bR Taiaees
6 nodes and 8 branches 32s 3 min 56.25
12 nodes and 19 branches 48s 28.5 min 356.25
12 nodes and 29 branches 16.2s 1.25h 277.77
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In some cases such as availability of reservoirs it is important to take account of the lagging factor of internal
responses of pipeline systems, when the successive operating condition depends on the prehistory of conditions.
Availability of reservoirs can be taken into account by wusing the additional dynamic relation
P,=P, +pg(At/F,)Q, ;, where At — duration of the k -th condition; F, —liquid surface area in the reservoir;
J — index of the node with a reservoir; g — gravitational acceleration; p — liquid density. The reservoir operation
can be modeled by insertion of a dummy branch connected to a dummy node with zero (or air) pressure. The

hydraulic characteristic of such a branch has the form: y,, =s,,x,, —H,,, where H,, =P, ,, s, =pgAt/F;.
Let H/ " be a vector of dummy pressure rises in the branches that represent all the reservoirs. The covariance matrix
of vector H/ that is used at the k-th calculation step will have the form: Cy, (1) = Cpy(t,,), where Ch (t, ) —

block of covariance matrix Cp, that was calculated at the previous step and is attributed to the pressures at the
nodes with reservoirs.

Calculation of probabilistic operating parameters of pipeline systems. The suggested
approach to the calculation of statistical parameters of pipeline system operation offers an opportunity to obtain
probabilistic estimates of virtually any operating parameters of pipeline systems depending on their operating
conditions by the known formulas of the probability theory. For example the probability that any “nondegenerate”
subset of operating parameters belongs to a given range at the time ¢, will be determined by the formula

et ol

where R, — n-dimensional vector (subvector) of operating parameter values at the time instant ¢, ; Ri — n-

dimensional vector of mathematical expectation R, ; C,, — (nxn)-dimensional covariance matrix for R,; p, -
probability that R, belongs to a specified range [v, v ]; V =[¥,,...,v,]" and v =[v,..,,]" — vectors of upper and

lower boundaries of the studied range, whose components can take infinite values to take account of one-sided
intervals or their absence.

The assessment of probability that R, belongs to a specified range [v, , v

T —)

] during period T will be
determined by the formula

K K K
Prr 22 kaAt z 22 PriAt, )/T, (5)
k=1 k=1

k=1

=~

where K — the number of calculated periods over period T = ZAtk ; At, — duration of the k -th condition.
k=1

Equations (4) and (5) can be applied to estimate the operation of pipeline system, its fragments or
individual components in a definite operating condition or over the period of time, for example in terms of the extent
to which they are loaded, consumer demand is satisfied, or process constraints are met, etc.

Numerical example

Let us consider a numerical example of calculating the stochastics of the hydraulic operating parameters for
the network presented in Fig.4. The network consists of 7 nodes and 11 branches of which: one node has a fixed
pressure; two nodes have lumped loads; two nodes are nonfixed loads depending on pressure; one branch represents
a pumping station with an increasing head H;=21 m; one dummy branch simulates a reservoir (water level in the
reservoir H/=16.4 m); two dummy branches simulate nonfixed loads, their resistances are random values. Thus, this
example illustrates the possibilities of the suggested approach in terms of the random composition of boundary
conditions.

The input information specified in the probabilistic form is: X =(Q},P;,a;)" = (Q,QS,E,Eg,Em) = (5.2,
1.8,0,0.30359, 1.2407); C, — a diagonal matrix with nonzero elements (1.065, 0.3969, 0.0001, 0,059, 0.51564).

Resistances in the dummy branches 9 and 10, that simulate nonfixed flow rates at consumers are determined
by the formula [1, 2] 5, = P’ /(Q})’, and variances — o7, = (4(Pj’)2 nQ; )6)0'2,,’ ;»where P/, Q' — design (required)
pressures and flow rates for this consumer, j — index of the initial node of the i-th branch. Correspondingly in the
example Q) =7.7, o; =9.61, P/ =18, Q! =7.11, o; =0.81, P/ =12.

Resistances in the branches that were specified deterministically are: s, =0.00257, s, =0.8996,
s, =0.00408, s, =0.095, s, =0.67, s, =0.067, s, =0.0957, 5, = 0.00646, s,, =0.014.

The calculation results for nodes are presented in Table 3 and for branches — in Table 4.
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Fig.4. Example of the calculated scheme of the pipeline system for the general case of boundary conditions

—p Real section; = = = $ dummy branch simulating nonfixed consumer loads;
....;?':2...; dummy branch simulating reservoir; Qurnmy branch simulating pumping station;
e X8 -

@/ node with the specified nodal loads; : node with the specified pressure.

Table 3. Calculation results for nodes Table 4. Calculation results for branches
Parameters i Pgl/r}ellmeters 5

Il B o, O | gy, e m i
Mwe m’/h 1 20.75 3.29

1| 18.22 0.89 - - 2 1.54 0.02
21 17.11 1.25 9.19 4.03 3 10.01 0.03
3| 14.96 1.21 6.48 1.08 4 -3.32 0.59
41 16.70 1.25 — - 5 -1.61 0.02
5| 16.01 0.83 — - 6 3.20 0.98
6| 16.37 0.02 — - 7 -1.92 2.21
7 - - 22.67 9.07 8 20.75 3.29
9 9.19 4.03

10 6.48 1.08

11 1.82 0.66

Figure 5 presents a graphical interpretation of the calculated probability of providing consumers with a
required flow rate. For example for the consumer at the second node p(0< Qz <Q;)=03442 or

p(Q) < Q, < +0) = 0.64446, and at the third node p(0<Q, <Q;)~0.71914 or p(Q; <O, < +o) ~0.28083,

where Q" is the required flow rate.

P @ p b)

0.1
0.08+
0.06-
0.044

0.02q

B &0 i 3 8 E

3 a0 5 7
00 Q ¢
Figure 5. Illustration to the calculation of probability of providing consumer with a required flow rate:
a) at node 2, b) at node 3.
Q — Calculated value of mathematical expectation of consumer flow rate considering its dependence on nodal

pressure, O'— required value of consumer flow rate.
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Conclusions.

1.

The paper presents:

-a technique for apriori calculation of statistical characteristics of a probabilistic process of the
transported medium consumption as a queuing process;

-a general scheme for probabilistic calculation of pipeline system hydraulic operating parameters.
The calculation suggests determining statistical characteristics of the operating parameters by
specified characteristics of boundary conditions and flow distribution model. It is shown that
such a calculation is reduced to solving a traditional problem of flow distribution at the point of
mathematical expectation of boundary conditions in combination with an additional procedure
for calculating covariance matrices of operating parameters;

-a technique for obtaining the analytical expressions for covariance matrices of operating
parameters as well as the expressions for the general case of specifying boundary conditions;

- a technique for probabilistic modeling of changes in the hydraulic operating parameters on the
basis of developed analytical probabilistic flow distribution models. This technique provides a
considerable reduction in computational efforts against the known methods of simulation
modeling.

The suggested technique for modeling pipeline systems provides the possibility of obtaining

probabilistic estimates of practically any pipeline system operating parameters that depend on

operating conditions.

A numerical example of probabilistic calculation of the steady flow distribution in the pipeline

system is given for the general case of boundary conditions. The example illustrates the suggested

probabilistic approach.
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Abstract. This paper aims to describe and characterize student allocation in the
Portuguese public higher education system, namely in the academic engineering
programs. The application of multivariate methodologies for the evaluation of the
students' satisfaction index detects natural clusters of academic programs and identifies
some determinants of students' choices concerning higher education. These determinants
may be used as explanatory variables of a model for the access to higher education
engineering programs. The data used in this paper concerns the academic year of
2010/2011 and was provided by the Portuguese Ministry of Education.

Keywords: Students' index satisfaction, higher education, education policy, clusters
analysis;

1 Introduction

The implementation of the Bologna Process in Portugal was led by the
Portuguese Ministry of Science Technology and Higher Education (MSTHE),
and it was a part of a process of reorganization and rationalization of the higher
education system, OCDE[1]. The Bologna Declaration of June 19, 1999 - Joint
Declaration of European Ministers of Education had, among its many
objectives, the standardization of degrees conferred in the European space based
on three cycles: Bachelor, Master, PhD. This process also intended the
recognition and comparability of degrees, the promotion of students, teachers
and researchers' mobility, in order to ensure teaching quality and the
incorporation of the European dimension in higher education[2].

675



AS/M DA BREEEEEHE 15™ Applied Stochastic Models and Data Analysis (ASMDA2013)

ternationsi International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

The MSTHE instructed the higher education institutions that they could
restructure their study programs according to the Bologna principles, beginning
in 2006/2007 and with a deadline extended to 2008/2009. This implementation
brought about profound modifications in the Higher Education system,
European Ministers of Education[3].This study aims to describe and
characterize students’ allocation in the academic engineering programs in the
Portuguese public higher education system through the analysis of the
satisfaction index of the academic programs offered by the Portuguese higher
education institutions.

This document is organized as follows: in section 2 we give a description of the
Portuguese higher education system with regard to organization and admission
procedure; in section 3 we present the data set in consideration and the main
results that characterize the available data. Section 4 concerns the statistics
techniques used and the results; and finally in Section 5 are presented the
conclusions and future work.

2 Portuguese higher education system

This section presents, in brief, the Higher Education system in Portugal, as well
as the description of the application process to higher education.

Portugal has a binary higher education system, consisting of university and
polytechnic education, each with distinct purposes that translate into specific
curricular concepts, http://www.dges.mctes.pt '[4].

University education, guided by a constant perspective of promoting research
and knowledge creation, aims at ensuring a solid scientific and cultural
preparation, at providing a technical training that qualifies for the exercise of
professional and cultural activities and at promoting the development of design
capabilities, innovation and critical analysis.

Polytechnic education, guided by a constant perspective of applied research and
development aims at understanding and solving concrete problems, at providing
a solid cultural and technical level, at developing the capacity for innovation,
critical analysis scientific theoretical and practical in nature and its applications
for the pursuit of professional activities.

As to their nature, higher education institutions may be public or private.

This study focuses on the publicly funded higher education system offering
engineering study programs, since these programs include the majority of the
candidates and they are also representative in terms of supply of the land area.
The MSTHE (presently the MEC-Ministry of Education and Science), and more
specifically the Department of Higher Education (Dire¢do Geral do Ensino
Superior-DGES), is in charge of the higher education sector and regulates
access to the higher education system. Currently, the access to higher education

! As well as the military and police institutions, integrated in the National Network of Public Higher
Education Institutions

2
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is conditioned by system of numerus clausus, which defines the maximum
number of students for each study program in both the public and the private
sectors. This number is defined by each institution, in fixed dates, and is subject
to approval of the MSTHE. Numerus clausus works as a restriction on the
supply side of the system, affecting the size and composition of the tertiary
education sector, Oliveira et al[5].

Access to higher education, for the public sector, is done through a national
contest. The national competition is based on the students' revealed preferences
in the application. Each student ranks a maximum of six study
program/institution pairs, from the most preferred (the first one) to the least
preferred (the last one) alternative. The ensuing nationwide competition
allocates the candidates based on their grade point average and the stated
ranking of preferences, Oliveira et al[5].

3 Methodology

The used data is available online, on a web site of the DGES[6] designed to
disseminate the results of the candidates allocation in the national competition.
The data was collected for the academic year of 2010/11, and the following
variables are available: overall demand for each program (total number of
students listing the pair institution/program among their preferences,
irrespective of their ranking), as well as the number of students who have
selected each program as their first choice, second choice and so forth (up to a
maximum of six choices); number of vacancies available at each program in the
first stage of the application process; classification of the classification of the
last student allocated, number of applicants allocated in the six choices, program
size (first cycle or integrated master), and the index satisfaction (ratio of the
number of students allocated in the first choice and the number of vacancies
available at each program).

This data set comprises 14 universities (U) and 20 polytechnics institutes (PI),
from the public education sector, offering 275 academic engineering programs
of which 58 are integrated masters and 217 are first cycles.

4 Data analysis and results

The used data set comprises 34 Institutions of Higher Education (IHE),
universities and polytechnics institutes. The engineering courses were organized
according to the National Classification of Areas of Education and Training
(Classificagio Nacional de Areas de Educagio e Formagio-CNAEF)[7], as is
shown in Figure 1.

Figure 2 displays the satisfaction index considering de type of institution.
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Fig. 1. Areas of Education and Training Fig. 2. Satisfaction index by type of

institution

Taking into account the distribution of satisfaction index by the Areas of
Education and Training of the academic engineering programs, was considered
the satisfaction index mean, the results obtained are shown in Figure 3.

1,50+

1,00

345421 441 443481521 522523 524 525529541 542543 544 581 582621 623851
Fig. 3. Distribution of satisfaction index mean by Areas of Education and Training

A few Mann-Whitney and Kruskal-Wallis tests were performed in order to
analyze if the satisfaction index depends on the type of institution, on the

% The Areas of Education and Training are the following: Management and Administration (345),
Biology and Biochemistry (421), Physics (441), Earth Sciences (443), Computer Science (481),
Metallurgy and Metalworking (521), Power and Energy (522), Electronics and Automation (523),
Chemical Process Technology (524), Construction and Repair of Motor Vehicles (525), Engineering
and Similar Techniques (529), Food Industries (541), Industries of the Textile, Clothing, Footwear
and Leather (542), Materials (Manufacturing of Wood, Cork, Paper, Plastic, Glass and others) (543),
Extractive Industries (544), Architecture and Urbanism (581), Construction and Civil Engineering
(582), Agricultural and Animal Production (621), Forestry and Hunting (623), Technology of
Environmental Protection (851).

4
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program size (first cycle or integrated master) or on the Areas of Education and
Training, Conover[8].

The results of the Mann-Whitney test indicates that the satisfaction index
depends on the type of the HIS (test statistics= -8.367; p-value=0.00) and on the
program size (test statistics= -8.069; p-value=0.00). A similar situation happens
when comparing the Areas of Education and Training. Kruskal-Wallis results
show that the satisfaction index also depends on the Areas of Education and
Training (test statistics= 34.852; p-value=0.015).

These analyses emphasize the idea that the index of allocation satisfaction is
highly related with all variables considered.

A hierarchical agglomerative cluster analysis was performed on the data
satisfaction index by using the variables Areas of Education and Training and
academic engineering programs, Gore[9]. Euclidean distance was used. The
final result of the obtained groups was discussed according to the Ward linkage
method, Barnet[10].

The obtained dendrogram and the clusters representation are shown in Figure 4.

@
8

Fig. 4. Dendrogram according to Ward Method

According to the dendrogram analysis, was decided to form the clusters at a cut
distance of d=4.7, thus obtaining five well-differenced clusters defined in Table
1. The resulting dendrogram has a cophenetic correlation coefficient of 0.87
(correlation coefficient between the distance matrix and the “cophenetic
matrix”’), which validates the clustering procedure.
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Tablel. Cluster identification’
Clusterl 27,28,28,30,31
Cluster2 32
Cluster3 2,3,4,5,6
Clusterd 22,23,24,25,26
Cluster5 1,7.8,9,10,11,12,13,14,15,16,17,18,19,20,21

Taking into consideration the index satisfaction averages within each cluster,
they are ranked in this order: Cluster 2, Cluster 5, Cluster 1, Cluster 3 and
Cluster 4. The results confirm previous knowledge about the ratio existent
between the number of vacancies and the number of students allocated in the
first choice — satisfaction index, i.e. the cluster better classified is the one
corresponding to the academic programs with fewer candidates.

Conclusions and future work

This document contributes to a better understanding of student allocation and
the respective satisfaction index in the Portuguese undergraduate engineering
courses. This empirical study confirms that index satisfaction is an important
indicator of the determinants of students' choices concerning higher education.
Although, this issue deserves a much more detailed and careful analysis and

3Management and Industrial Engineering (1), Biological Engineering (2), Physics Engineering (3),
Geographic Engineering (4), Geological Engineering (5), Systems Engineering (6), Mechanical
Engineering (7), Metallurgical and Materials Engineering (8), Industrial Engineering (9),
Electromechanical Engineering/Energy Engineering/Renewable Energy Engineering/Energy and
Environment Engineering (10), Electrical Engineering/Electrical and Electronics Engineering (11),
Computer Engineering/Network Engineering and Systems/Electronics Maritime Systems
Engineering (12), Electronics and Telecommunications Engineering/Electrical Engineering and
Telecommunications/Electrical and Computer Engineering/Electrical Engineering/Electronics and
Computers  (13), Telematics and Computer Engineering/Computer  Science and
Telecommunications/Telecommunications Engineering and Computer/Network Engineering
Communications/Communications Engineering (14), Mechatronics Engineering/Macro and
Nanotechnologies Engineering/Computer Engineering and Medical Instrumentation (15), Metrology
and Instrumentation Engineering/Automation, Control and Instrumentation Engineering (16),
Chemical Engineering/Chemistry and Biochemistry/Chemistry and Biological (17), Biomedical
Engineering/Bioengineering/Biotechnology (18), Aeronautical Engineering/Aerospace
Engineering/Automotive Engineering/Automotive Mechanics Engineering (19), Engineering and
Naval Architecture (20), Engineering and Industrial Management/Engineering Sciences/Civil Eng +
Eng Electr Eng Informatics and Telec + Design + Interactive Media (21), Food Engineering
/Biological and Food (22), Textile Engineering (23), Materials Engineering (24), Polymer
Engineering (25), Mining and Geological Engineering/Science Engineering/Mining and
Geoenvironment Engineering/Geotechnical and Geoenvironment Engineering (26), Topographic
engineering (27), Civil Engineering/Civil Engineering Sciences (28), Agronomic
Engineering/Engineering and Agro-Livestock (29), Zootechnical Engineering/Production Animal
Engineering  (30), Forestry and Natural Resources/Forestry (31), Environmental
Engineering/Environmental Engineering and Management (32)
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should be the subject of further research, namely extend the study applying
other multivariate methodologies with more variables available.
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Abstract. This paper presents a multistate model with recurrent events that are
modeled by a discrete-time pure birth process. The probability distribution of the
multistate model is based on random sums with support on N and with geometric
summands. Exact distributions are given in Belzunce et al. (2009) for independent
inter-arrival times. These models are analyzed by stochastic orderings in the case of
independent geometric, arbitrarily distributed, and positively correlated inter-arrival
times. Some multivariate extensions are described. Motivations are provided in
reliability, economics, biology and demography, in particular, the discrete-time pure
birth shock model by Belzunce et al. (2009), where the lifetime of a system subjected
to shocks (failures) arriving randomly is analyzed. Also, we provide results for some
qualitative properties of the kind 'new better than used’ of the multistate model
assuming independent and identically distributed summands, that are illustrated.
60E15, 62P05.

Keywords: multistate models, discrete-time pure birth process, recurrent events,
unobserved heterogeneity, stochastic orderings, demography.

1 Introduction and preliminaries

The multistate models have become a central tool in population biology, medicine
and demography for estimating some parameters under incomplete observation
or imperfect detection of individuals. Frequentist probability theory, counting
processes, maximum likelihood estimation, bayesian methods, Markov chain
Monte Carlo simulation are several of the approaches that have been used in
the literature to study movements between states that determine the lifetime
(age) of an individual, the population size of microorganisms growing or the
migration transitions (see Courgeau and Lelivre (1992), Commenges (1999),
Rondeau et al. (2003), among others). A multistate model is defined as a
stochastic process, which at any time point remains in one of a set of discrete
states. The illness-death model is the most commonly applied multistate model
in population biology. For such kind of models, there are three states: healthy,
illness and death. The individuals start out healthy and from this state the
transitions may be to the illness or to the death. Ill individuals may die or
become healthy again. Similarly, most of multistate models have three types of
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states, which are determined by environmental conditions: the initial state (or

the state where the individuals may enter the experimental study), the states
where the individuals are studied from their transitions to move to other states,
and the states where the individuals are not interesting for the experimental
study since such condition is reached. Many multistate modeling concepts are
connected with the Markov chain theory, where the previous states can be inter-
preted as initial, transient and absorbing. Theoretically, the multistate models
extend the univariate survival model in two ways: parallel events (where one
individual may experience multiple simultaneous events, or where several indi-
viduals that may experience an event are grouped in a cluster), and recurrent
events (where a single individual may experience the same event several times).
In this paper we are interested in multistate models for recurrent events data
(see a review in Cook and Lawless (2007)), for instance, the fertility histories
of women where the state corresponds to the number of children that a woman
has given birth to at any time (or age), and from each birth she moves to the
next state. There are three classical event history models: the independent in-
crement model of Andersen and Gill (1982), the marginal model by Wei et al.
(1989) and the conditional model of Prentice et al. (1981). For the marginal
and conditional models, each occurrence of the event is modeled as a separate
event, but for the independent increment model all the events of one individual
are identical. For such event history models, a matter of interest is the choice
of the time scale, as well as the risk-interval.

Some of the classical and the recent literature deals with incorporation of
unobserved heterogeneity in the models for recurrent events, that arises, for
example, when not all the individuals have an event before they are lost to
follow-up or the study ends. Some authors have incorporated the unobserved
heterogeneity by frailty modeling (see Vaupel et al. (1979), Nielsen et al.
(1992), Oakes (1992) and Hougaard (2000), among others). On the other hand,
modeling and analyzing the number of occurrences of the events by a stochastic
process constitutes a matter of interest. For the Markov models, the transition
rate only depends on the state where an individual is in, but neither on the
time that an individual has been in that state nor on any other events that
occurred before entering that state. Several extensions have addressed how
to extend Markov models to let the transition rates depend on some features
on the events occurred before entering the state, the order or occurrence of
the particular state, recurrent events effects, by introducing specific duration
distributions, or specific covariate effects (see e.g., Nielsen et al. (1992)).

In this paper, we introduce the discrete-time pure birth process for describ-
ing the number of recurrent events, that does not assume the Markov property,
and allows that if the event occurred j times, then the probability that the
recurrent event will occur depends on j. The main objective of the paper is
to analyze a multistate model with recurrent events that are modeled by a
discrete-time pure birth process. Its probability distribution is based on ran-
dom sums with support N and with geometric summands. Specifically, let
{U,|j > 1} be a sequence of independent random variables, that have the ge-
ometric distribution, with parameter a;, with 0 < a;; < 1, for all j € N U {0}
(that is, Pr[Uj41 = k] = o 8¥, for k € N U {0}, where 8; = 1 — o, for any
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j € N), and let {M;|j > 1} be a sequence of positive integer-valued random

variables defined on the same probability space, and furthermore, assume that
the random variables M, 7 > 1 are independent of all the independent random
variables U;, j > 1. The random sums defined by Ty, = Z;\/i”l Ujforn=1,..,
and Tp = 0, have been investigated in applied probability for a long time (see
e.g, Feller (1971)), with special applications in reliability theory to model the
duration of systems with defective components. For instance, the sum of n geo-
metric random variables represents the number of good items inspected before
the n-th defective is observed, when the inspection is performed on an assembly
line and the chance of a defective item is given initially by §; = 1 — aq, and
subsequently (after adjustments) by §; =1 — ¢, j = 2,3,.... Other applica-
tions of random sums and convolutions of geometric random variables can be
found in queueing theory, biology, medicine, insurance and finance (see e.g.,
Rolski et al. (1999) and Cook and Lawless (2007)).

In the general multistate model, the random sum 77, represents the num-
ber of transitions made by an individual along his/her life. Some extensions
of the model are described for incorporating unobserved heterogeneity by ran-
dom event probabilities. Some motivations are provided in demography. The
origin model is based on the discrete-time pure birth shock model by Belzunce,
Ortega and Ruiz (2009) Ageing properties of a discrete-time failure and repair
model. IEEE Transactions Reliability, 58, 161-171, to study the lifetime of
a system (measured by the number of tasks executed by a system) which is
submitted to shocks (failures) arriving randomly, and the lifetime is a random
sum with geometric summands, describing the inter-arrival times of the shock
arrival process. The multistate model aforementioned is analyzed by stochastic
orderings in the case of independent inter-arrival times. Some of these results
can be generalized in three directions: to inter-arrival times having arbitrary
distribution (not necessarily geometric), to correlated inter-arrival times and to
multivariate populations. The results in the case of independent inter-arrival
times can be found with alternative proofs in Belzunce, Ortega and Ruiz (2001).
A note on stochastic comparisons in the discrete pure birth shock model. Tech-
nical Report, N. I-2001-17. The results in the case of correlated inter-arrival
times via random environments can be found with alternative proofs in Fs-
cudero, Ortega and Alonso (2010). Variability comparisons for some mizture
models with stochastic environments in biosciences and engineering. Stochastic
Environmental Research and Risk Assessment 24, 199-209. Some similar re-
sults to those in the case of arbitrarily distributed number of recurrent events
can be found in Ortega, Alonso, Ortega (2013). Stochastic comparisons of
parametric families in stochastic epidemics. Mathematical Biosciences, doi:
10.1016/5.mbs.2012.12.006. Several exact and numerical bounds of transfor-
mations of the probability distributions of the multistate model can be derived
from the earlier stochastic comparisons. These bounds provide a statistical
knowledge to select a better scenario via variations of the recurrent event dis-
tribution. In addition, we provide results for some qualitative properties of
the kind 'new better than used’ of the multistate model assuming independent
and identically distributed summands. The organization of the paper is as fol-
lows. In Section 2 we introduce the multistate model with discrete-time pure
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birth process for recurrent events. Several extensions of the origin model and

some motivations in demography are provided. In Section 3 we study stochas-
tic ordering of the multistate model with discrete-time pure birth process for
recurrent events, based on results for random sums with geometric summands,
and some ageing notions of the multistate model in a particular case. From
now on, X ~ G(a) denotes a geometric random variable, with parameter «,
with 0 < a < 1; and 4id is used as a shorthand for independent and iden-
tically distributed, ‘increasing’ and ‘decreasing’ stand for non-decreasing and
non-increasing, respectively, and we will assume that the expectation is finite,
whenever it is used. In general, we will consider a non-negative integer-valued
random variable X, with survival function P, = Pr[X > k], for k € N U {0},
and probability mass function p = Py — Pr11, k € N, with pg = 0 and notice
that the previous definition for the discrete survival function follows the general
lines for probability distributions in Roy (1997). For the definitions on stochas-
tic ordering concepts, their implications, as well as, their main properties we
will refer to Shaked and Shanthikumar (2007), and for the ageing notions we
will refer to Barlow and Proschan (1981) and Lai and Xie (2006).

2 A multistate model with recurrent events

In this section, we introduce the multistate model with a discrete-time pure
birth process for recurrent events, which is motivated by Belzunce et al. (2009).

2.1 Mathematical description

Consider an individual that makes sequentially transitions between the states
labelled by 1,2,...,w, and is subjected to recurrent events, which influence on
the stochastic process that describes the movement of the individual. Assume
that the events occur randomly in time, according to a discrete-time process
R = {R(m),m = 1,2,...}, where R(m) represents the number of events until
the m — th transition, for m € N. We notice that the number of transitions
made by the individual is considered here as the timescale. The occurrence of
the recurrent events has influence time on the transitions that is negligible. The
events arrival process R can be described in terms of a sequence of independent
geometric interarrival times U;, Us, ..., where U;;; is a geometric random
variable, with parameter o, with 0 < a; < 1. This means that if j events have
occurred, then the following recurrent event will occur with probability «;,
for j = 1,2,.... Let now Pj denote the probability that the individual makes
another transition having experienced the first k events, for k € N U {0}.
Assuming that 1 = Py > P; > Py > ... then P, can be considered as
the survival function at k € N U {0} of an integer-valued positive random
variable M, involved with making another transition when the individual has
experienced a number of recurrent events M. Then, the random variable X =
ijvil Uj;, describes the number of transitions made by the individual along
his/her lifetime. Assuming that Uy, Us, ... and M are independent, and if
we denote by T,, = Z?:l Uj, for any n € N, then X = T}y, is a mixture of
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the family {7}, |n € N} with mixing distribution given by M. Throughout this

paper, we call T the multistate model with a discrete-time pure birth process
for recurrent events.

2.2 Some examples of multistate models in demography

The fertility histories of women are processes that the demographers have dealt
with for a long time. Consider the life course of a woman through her fertility
age A = {15, 16, ...,w} and the multistate model for which each state is defined
by her age and each birth is a recurrent event such that from each birth she
moves to the next state. If we model the births according to a discrete-time
pure birth process R = {R(m),m = 1,2, ...}, where R(m) represents the num-
ber of children that a woman has given birth to at age m, for m € A, having
geometric inter-arrival times Ui (ag), Uz(a1), ..., where 0 < a;j < 1 represents
the probability of a birth given that the woman had j children. If P; denotes
the probability that the woman had k live children, for k¥ € N U {0}, for an
integer-valued positive random variable M, then X = Zj\il U;, describes the
age of the woman. Conditioning on a given number of children, X is a convolu-
tion of geometric random variables. The bounds for the age of the woman can
be calculated by straighforward calculation. Migration and changes in marital
status are other transitions that can be studied by using the multistate models
above.

2.3 Probabilistic properties of the model

The properties of the probability distribution of Th; are studied in Belzunce et
al. (2009) assuming that Ths has support on N and that M and Uy, Us,..., are
independent random variables. This representation will be used in the results.
We recall some distributional properties. For M = k, then T = Zle U;,
k € N, and {R(m) < k} if and only if {T)4+1 > m}. We will use the notation

z(m) =Pr[R(m) =k| =Pr [T <m < Tpq4].

The function zx(m) is a totally positive in (k,m) € N x N U {0} (see Karlin
(1968)), and a recursive equation for computing zx(m) is given in Lemma 6 in
Belzunce et al. (2009). Assuming that Ty, has support on N and that M and
Uy, Us,..., are independent random variables, an exact distribution in terms of
zr(m) can be stated, for m € N, the survival function for Ty, is given by

H(m) =Pr[Ty >m] =Y z(m)Pj. (1)
k=0

Some extensions of the earlier multistate model can be derived in several
ways. To introduce the heterogeneity, first we consider that the parameters
a; are random for any j € N (see Escudero et al. (2010)). Then the random
variable that describes the number of transitions made by the individual along
his/her lifetime is a random sum by X = Tps(aq, ..., Gy ...) = Zj\il G(aj), and
conditioning on M = m it is a mixture of {Tp, = 7", G(ay)|(a1, ..., am) €
(0,1)™} with mixing distribution given by (ay, ..., @, ). Extensions of the mul-
tistate model in the multivariate case will be discussed in Section 3.
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3 The results

In this section we provide results on stochastic comparisons of multistate mod-
els with discrete-time process for recurrent events. In the following results let
M, N be positive integer-valued random variables and Uj (1), Usz(as),... be
a sequence of independent or positively correlated random variables, that are
independent of M and of N. Consider the random sums Ty; = Z]M:1 Uj (e )
and Ty = Zjvzl U, () to describe multistate models with a counting process
for recurrent events, under two scenarios determined by the distribution of the
number of recurrent events M and N, respectively, experienced before making
a new transition.

3.1 Some theoretical results

As a starting point, we give a discrete version of a classical result for absolutely
continuous random variables.

Theorem 1. Let Uy ~ G(ay), Us ~ G(aa),... be a sequence of independent
geometric random variables. Denote B, =1 — «a,, and T,, = Z?Zl Uj, for any
n € N. The following assertions hold:

(i) if B; < Bix+1, for any i € N then U; <pg U;11, for anyi € N.

(1) Ty, <pr Tny1, for anyn € N.

3.2 The case of independent inter-arrival times.

Next, we obtain results for several stochastic orderings. Some related results
can be found in Ross and Schechner (1984), Kochar (1990), Pellerey (1993),
and Ortega (2009), among others.

Theorem 2. Let Uy ~ G(ay), Us ~ G(aa),... be a sequence of independent
geometric random variables, that are independent of M and of N. Consider
the random sums Thy = Z]Nil Uj(aj) and Ty = Z;vzl Uj(a;).

Z) IfM SLR N, then TM SLR TN.

ZZ) IfM SFR N, then TM SFR TN.

ZZZ) IfM SRHR N, then TM SRHR TN.

iﬂ) ]fM SST N, then T]y[ SST TN.

v) If B < Biy1, for anyi € N and M <jcx N, then T <;cx Tn.

vi) If B; < Bit1, for any i € N; and M <p; N, then Ty <p: Tn.

vii) If (Z;Ok §J P, ) / (Z;ok g’ Q; ) is decreasing ink = 0,1,..., Tay <yr Iv.
The previous results provide technical conditions to be checked for ranking
multistate models. Also, these conditions enable us to construct analytical

bounds for the multistate models based on parametric families used to describe
the survival for recurrent events.
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3.3 The case of arbitrarily distributed number of recurrent events

In this subsection we deal with the case of independent inter-arrival times
having arbitrary distribution (not necessarily geometric) and having the ILR
property, for which the main assertions in Theorem 2 also hold.

Theorem 3. Consider the random sums Ty = Z;\il Uj(ej) and Ty = Z;\f:l Uj(ey),
where the summands are independent random variables with an arbitrary dis-
tribution.

i) If Uy, Us,... have the ILR property, if M <pr N, then Tpy <pr Tn.

i) If Uy, Us,... have the IFR property, if M <pg N, then Tng <pr.ror IN.

i11) If Uy, Us,... have the IFR property, if M <pr N, then Thy <prr TN

For analyzing the effect of unobserved heterogeneity given by random pa-
rameters, we have a random sum of mixed geometric random variables that
are independent of the number of summands. The stochastic comparisons of
mixed geometric random variables are studied in Ortega, Alonso and Ortega
(2013).

3.4 The case of correlated inter-arrival times

Analogously, for arrival times being increasing in the ST order, the assertion
in Theorem 2 holds too, and the same happens for the C X, and Lt orders.
Similar results for the LR and F'R orders can be given.

Theorem 4. Let Uy ~ G(ay), Uy ~ G(ag),... be a sequence of geometric
random variables. Consider Ty = ZJM:I Uj(ej), Ty = Z;V:l Uj (o).

i) IfU; <cx Ujq1 forany j=1,2,... and M <cx N, then Tpy <cx Tn.

ZZ) IfU] SST Uj+1 fO?” anyj = 1,2,... and M SICX N, then TM S]cx TN.
i) If Uj <p4 Ujga forany j =1,2,... and M <y N, then Ty <p: Tn.

When the correlated inter-arrival times are dependent via random environ-
ments the ICX order is studied in Escudero et al. (2010). In addition, we
observe that the results in Escudero et al. (2010) can be used to compare two
multistate models with discrete-time pure birth process for recurrent events,
with different arrival processes (i.e., different parameters for the inter-arrival
time distributions) and with the same distribution of the number of experi-
enced recurrent events. They extend the results in the literature, of stochastic
comparisons for convolutions of geometric random variables, from some related
majorization type orders between two parameter vectors of the geometric sum-
mands (see e.g., Boland et al. (1994)).

3.5 The case of multivariate multistate models

The earlier setting can be extended to the multivariate case in several ways. A
first extension is determined by probabilities of recurrent events that depend
on the state of the process apart of the number of previous events. Given that
j events have occurred, then a new recurrent event happens with probability
a1, where k represents that the process is in the state k. A second extension
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comes from considering random vectors of environmental or exposure parame-

ters for the components of the models, as in Escudero et al. (2010). Third, by
taking random vectors of multistate models and using multivariate stochastic
orderings, for which similar results as in Belzunce et al. (2006) can be derived.
The results in this issue are omitted.

3.6 The case of discrete-time Poisson process for recurrent events

Consider a sequence of iid geometric random variables where U; ~ G(a), j € N,
with 0 < o < 1. Then T}, = Zle U; has the negative binomial distribution
with parameters (k, ), with £ € N. Unconditioning T/ is a random sum with
iid geometric summands, and assume that Pr[Ty; = 0] = 0, i.e., Ths has on
values over N. For 8 =1 — «, the survival function of T); is

H(m)=>_ a"B"k+m— 1kPy,m € N. (2)
k=0

Next, we study the ageing properties NBU, NBU(2), and NBUC for the
multistate model when the probability of occurring another recurrent event
does not depend on the previous events, that is, in the case when there are
identically distributed inter-arrival times. The dual notions arise analogously.

Theorem 5. Consider the random sum Ty = Zj\il U; given by (2), where
the summands are iid geometric random variables, that are independent of M .
i) If M is NBU, then Ty is NBU.

it) If M is NBU(2), then Tir is NBU(2).

iti) If M is NBUC, then Ty is NBUC.

The NWU notion is studied in Theorem 4.1 in Willmot and Cai (2001), and
also in Li et al. (2006) and Belzunce et al. (2009) for several kind of discrete
random sums, under other assumptions. Using some inequalities for these
ageing notions as can be seen in Barlow and Proschan (1981), some numerical
upper and lower bounds for the number of transitions of an individual can
be calculated. Statistical inference can be used to test these ageing notions
(see Lai and Xie (2006)). From the migration movements in demography, the
previous results mean that the number of migrations to be completed by an
individual in his/her life are larger, in some stochastic sense, than the number
of migrations that remain to be completed by individuals who have carry out a
given amount of movements. These bounds can be used to develop social and
economical policies concerning with possible massive migration movements.
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Abstract. Insurance plays the leading role in compensation for losses, and its ne-
cessity increases together with the development of the economy. Investment activity
is also one of the main factors for effective operating of the insurance company. The
paper under consideration is devoted to the search of the optimal investment strat-
egy for an insurance company. Several discrete models are investigated by means of
dynamic programming and Bellman equation.

1 Description of the model with equal rates for
investment and borrowing

We consider the discrete-time model connected to the operating of some insur-
ance company.

Let x be initial capital of the insurance company. In a unit interval the com-
pany earns some premia c¢ and has to pay possible claims 7;. We let {n;}_,
be an iid sequence with distribution function F'(¢) and density function f(t).
Since claims are nonnegative, let F'(t) = 0 and f(¢) = 0 for t < 0 and suppose
that F'(t) increases in [0;00).

In the beginning of every period after collecting premia the company is sup-
posed to be able to invest or to borrow some value y with some interest rate 7.
In the end of the period company gets claims and if it does not have enough
capital to pay the claims, then it borrows lacking money immediately at a
higher rate ¢ (¢ > 7). The aim of the company is to find the optimal value of
investment (or borrowing) v for every n = 1,2,3, ... in order to minimize ex-
pected costs for n periods. If ¥ obtained is positive, then the company should
borrow y;, otherwise it should invest —y.

1.1 One-period strategy

Let us discuss optimal strategy for a company, which operates for one period
only Let £ be expected costs of the company with initial capital x, then

c=4Yn nszrtety;
yr+qin—(z+c+y), n>z+cty.

Denote by P(x,y,n) capital of the company with initial capital « in the end of
the first period, provided that the value y was borrowed (or —y was invested).

TH+c—n—yr nN<r+cty;
P =
(z,y,m) {—y(r+1)—(1+q)(77—(55+0+3/))> n>z+c+y.
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Let us find the expectation of the costs for one period:

o0

G(x,y>:E§:yr+/++ 4(s — (@ + c + ) f(s) ds.

Having computed the derivative of this expression
Gy(z,y) =r—q+qF(x+c+y),
we equate it to zero, and find the optimal solution:

'
F(x+c+y):q7;

yi(z) = F! <W> —z—c

q

The second derivative of expected costs
Gy(x,y) = qF'(x +c+y) = qF’ (F‘1 (q_r» >0,
q

is positive since F(t) is increasing function. Therefore, the function of expected
costs reaches its minimum in the obtained point y(z)

1.2 Two-period strategy

Let fn(x) be expectation of costs for n periods provided that value of y; was
chosen optimally in each period.
According to Bellman optimality principle we derive following equation:

ful@) = min (G, ) + Efact (P(a,,1))
Consider this equation for n = 2:

f2(w) = min [G(z,y) + Efy (P(z,y,m)]-

f1(xz) may be found since we know one-period optimal solution:

fi(@) = Gl i () = r (F_1 (q‘) s ) ;

q
o L)
P (470)
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, - n<zr+c+y;
Py(at,y7n)—{(r+1)+(1+q), n>x+c+y.

Having computed the derivative of this expression
[G(z,y) + Efr (P(z,y,m)], = (r — ) (1 +7) + (1 +71)gF (x + ¢ +y).
we equate it to zero, and find the optimal solution:

(q—7r)(1+7)
q(1+7)

T e R ]

Again the second derivative of expected costs

Flx+c+vy) =

(Gla.y) + Ef (Pl y. )]y = (- 0)aF (eety) = (r+1)aF (F h <q;>>>0

is positive. Thus, the function of expected costs reaches its minimum in the
obtained point y3(z)

1.3 n-period strategy

Proposition 1 yi(z) = F~! (%) —x —c for everyn =1,2,3, ....

Proof is by induction. Suppose that for alln < k—1y}(z) = (

7 )
and f_o(x) =1 — (1+r)""2. We will prove that it holds for n = k. The
recurrence equation will be as follows:

fk(x) = myin [G(l’,y) + Efkfl (P(x7yan))}a

[fr—1 (P(xy,m)], = froy (P(z,y,m)) - Py @, y,m);
fr—1(x) = Gz, y5_1(2)) + Efi—s (P2, y_1(2),m)) ;
fr1(@) = Gz, i1 (2)+ G (@, yr 1 () Vit (@) + Bl fr—2 (P(2, Y51 (2), m))]2;
Gy (2,451 (7)) = Gy (2,97 () =0,
since y; (z) is a solution of the equation G (x,y) = 0.

Gz, i (2) = Go(a,y(2) = —q(1 = Fa + c+yi(2))) = —r;

* / *
[fk—2(P(33,yk—1($)777))]w = fl;—Q(P($7yk—1(z)7n))'
: (Pa/c(l”vy/jq(m)ﬂl) =+ P;(mayZ—l(x)an) : yZ—ll(z)) .
Let us find the derivatives of the capital in the end of the first period:
—1(g=r}).
L n<F ( 7 ) ;

P,y (2) = Py, yi(z),n) =
TR sl ()
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Py(x,y5_1(x),n) = P,y (x),n) =

By the inductive assumption, y;_,'(z) = yi'(z) = —1.
Therefore, we find

E [fu-2(P(@,yi_1(x),m)], = (1= (1 +7)*?)-

/ (147)f(s)ds + / (I4qtr—qf(s)ds | =
0 as

‘(1—<1+r>‘°2)~<<1+r)q;7”+<1+r) (1_(];?))

=1— (142 (1+7);
fisi@)=—r+1-1+r)"?) - 1+r)=1—(1+r)"1
Using all the expressions above we may find:
[G(z,y) + Efi1 (P(@,y,)], = (r =) (1 +7r) "+ qF(z +c+y)(1+7r)" L
By equating this derivative to zero and solving the following equation
Flx+c+y) = a-r

we obtain y} = F~! (%) -z —c

The second derivative:

[G(x,y) + Efs—1 (P(z,y,n)l, = g1+ )" Fl(z + c+y) >0,

is positive since F'(t) is increasing function. Thus y}isaminimumpoint. Henceinductivestepisdoneandthe Propc

2 Description of the model with different rates for
investment and borrowing

In this section we assume that rates for borrowing and investment differ, namely
r is rate for borrowing, v is rate for investment (r > v)

2.1 One-period strategy

In this model the capital of the insurance company in the end of the first period
is:

r+c—n—yr n<zr+c+y, y > 0;
P(z,y,n) = r+ec—n—yv, n<rtcty,  y=<0; _
R —yr+ 1)~ (1+q)(n—(x+c+y), n>ztcty,  y>0;

—y+1)-1+qn—(x+c+y), n>x+c+y, y=<0.
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:{x+c—n—y(1(y>0)T+I(y§0)v), n<z+cty;
—yI(y>0)r+I(y<0v+1)—(1+q9)(n—(z+c+y)), n>xr+c+y.

The costs are as follows:

yr, n<x+c+y, y > 0;
_ ) yv, n<x+cty, y < 0; _
¢ yr +q(n—(z +c+v)), n>z+c+y, y>0;
yv+q(n — (z+c+vy)), n>z+c+y, y < 0.

:{y(I(y>0)r—|—I(y§O)v), n<zx+c+uy;
y(I(y>0)r+1I(y<0)v) +qn—(z+ct+y), n>z+cty.

Let us find the expectation of the costs:

z+cty
G, y) = BE = / y(I(y > 0)r + I(y < 0)) f(s) ds+

o0

+ / ly (I > 0)r + I(y < 0)0) + a(s — (z + ¢ +1))] £(5) ds =

rt+ct+y

=y(I(y>0)r+I(y<0)v)+ / q(s —(x+c+vy))f(s)ds.
T+ct+y

In order to find extremums we need to find the derivative with respect to y:
Gyla,y) =(y>0)r+Iy<0w)+q(F(z+ct+y)—1);

Gy(z,y) = qF'(x +c+y) >0,

Hence G(z,y) is a convex function. Let us consider two cases:
1) y > 0. Then, having equated derivative to zero:

r—q+qF(x+c+y)=0,

yi=F"" (q—r) —z—c
q
x< F71 (qr)c
q
v—q+qF(zr+c+y)=0;
yr =F~! (q_v>—x—c.
q

x> F! (qv)_a
q

we obtain

2) y <0.

695



ASMDa Proceedings, 15" Applied Stochastic Models and Data Analysis (ASMDA2013)

\nternatioha International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

Taking into account that r > v, notice that F'~! (%) —c>F1 (%) —c.

Then we need to obtain optimal value 3, when F~1 (q%q”) —c>z>F7! (%T) -

c. With such initial capital the function of expected costs is decreasing for y < 0
and increasing for y > 0, hence function of expected costs reaches minimum at
yi = 0.

Summarizing the results we may write:

F1 ) —a—c r< F1 q?) -
yi(x) =4 F7! ) —z—c x> F1 ) =
0, F‘l(%)—c>m2F_1 ) —c

2.2 Two-period strategy

In this subsection I would like to provide some graphs illustrating the behaviour
of the derivative in case of exponential distribution function F(t) depending on
the values of premium ¢ and initial capital . The derivative on every interval
is computed. There may be three qualitatively different situations.

1. The graph of the derivative intersects negative anxle. Thus, to reach
minimal costs the company is to invest some value.

/
008[- /

Fig. 1.

2. The graph of the derivative intersects positive anxle. Thus, to reach
minimal costs company is to borrow some value.

-0.10 -0.05 0.05 010 — 015 020

—002/

Fig. 2.
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3. The graph of the derivative does not intersect anxle anywhere. In this
case function of expected costs is decreasing while y < 0 and increasing while
y > 0. Therefore minimum of the function of expected costs is at point y = 0.

Fig. 3.
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Abstract: A whole range of techniques have been developed for estimating infant and
child mortality from the information routinely recorded in maternity registers on age and
reproductive history of delivering mothers. Among them, the best-known and most
widely applied indirect technique was developed by William Brass. Using the baseline
information from a birth cohort (Generation XXI) assembled in the period 2005-2006 in
the metropolitan area of Porto, North of Portugal, we addressed in this paper the
following objectives: (1) to estimate the child mortality rates based on information about
previous births and their survivorship among women recruited for this birth cohort; (2) to
compare these indirect estimates with direct values retrieved from Portuguese vital
statistics; (3) to analyse the potential of this birth cohort to generate plausible estimates
of life-table indicators. We retrieved data on mother’s age, previous live births prior to
the current one, and number of surviving and deceased children from a group of
multiparous women (n=3521). The data was divided into seven 5-year groups by
maternal age and survival and death probabilities were computed for each group.
Through the Brass method, we obtained estimates of probability of dying before attaining
certain exact childhood ages, g(x), by using the multipliers k(i) as proposed by Trussel.
Then, a logit life-table system was used to derive life-table indicators. Accordingly,
probabilities of dying between birth and 2, 3, 5 and 10 years were respectively: 4.1; 6.7;
9.4 and 13.1 per 1,000 children ever born, which were alocatted in time-period. These
indirect estimates compared with the direct ones obtained from Portuguese vital statistics

revealed that they were very similar. The life expectancy at birth was 77.6 years for both
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sexes, and the implied infant mortality was 4.0 per 1000 live births for Grand Porto
during the period 2005-2006. The use of indirect method to analyze the potential of the
Generation XXI cohort data in provide relevant information on reproductive issues, not
available in the vital statistics, seems to be an important and effective tool, and

promissory for analyzing the follow-up studies of this cohort held in 2009 and 2012.

Keywords: Child mortality, Brass” Method, Preceding Birth Technique.

1 Introduction

The 5th stage of demographic transition, which many call postmodern
demographic regime, already occurs in some of the more developed countries of
the world where death rates, although low, begin to exceed birth rates, which
results in a negative crude rate of natural increase [1]. Portugal went through all
stages of the Demographic Transition Model. According to the Portuguese vital
statistics [2], since 2007 the number of deaths (n=103,512) has exceeded the
number of live births (n=102,492). In the recent years Portugal went into the 5th
phase; the fertility rate is around 1.3 and infant mortality rate reached 3.4 per
1000 live births which are among the lowest rates in Europe [3].

Tracing the evolution of child health indicators is essential for evaluating the
availability and quality of health care in a community. Infant and child mortality
[4,5] have been used for this purpose. The accurate estimation of the
probabilities of dying before certain age, particularly under-five years old, are
largely used by international agencies to monitor development progress [6] and,
is one of the principal input parameters used to develop estimates of life
expectancy at birth and other summary indicators of mortality [7,8].

In the face of dramatic reduction in absolute level of infant and child mortality
in developed countries, the challenge is to document disparities across groups
concerning such deaths. The evaluation of potential efficacious interventions to
reduce adverse neonatal and childhood outcomes should take into account a set

of characteristics, namely demographic, social and obstetric factors in order to
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perceive the decline of disparities rather than the decrease of crude mortality
rates. The estimates of demographic and health indicators available in Portugal
are based on census data and vital statistic registration [2]. From the latter the
infant and child mortality rates can be directly obtained. However, Portuguese
vital statistics has no information about a set of demographic characteristics
such as parity, social factors as education, adverse maternal behaviours and
obstetric complications; medical records are usually more detailed than vital
statistics concerning such information.

A whole range of indirect techniques have been developed for estimating infant
and child mortality based on the information retrieved from medical records of
women delivering a child, or based on sample surveys, on age and reproductive
history of delivering mothers [7-9]. These indirect estimation techniques could
be useful to provide childhood mortality rates when a set of maternal
characteristics is not available in vital statistics. They also offer potential
estimates for continuous follow-up studies over time.

One of the largest birth cohort ever assembled in Portugal was established
between 2005 and 2006 in the Porto Metropolitan Area, North of Portugal
(Generation XXI). We addressed in this paper the following purposes: (1) to
estimate the child mortality rates based on information about previous births and
their survivorship among women recruited for this birth cohort; (2) to compare
these indirect estimates with direct values retrieved from Portuguese vital
statistics; (3) to analyse the potential of this birth cohort to generate plausible

estimates of life-table indicators.

2 Methods

In Portugal, nearly all deliveries occur within hospitals and 90% of them occur
in public hospitals free of charge for all childbearing women and their offspring.
The participants of the present study were recruited in five public hospitals level
I11, while assembling a birth cohort in Porto Metropolitan Area, in the north of
Portugal (Generation XXI). Between April 2005 and August 2006, 70% of all

701



AS/M DA BREEEEEHE 15™ Applied Stochastic Models and Data Analysis (ASMDA2013)

ternationsi International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

pregnant women delivered at those five public hospitals were invited as
participants on the basis of “first come first served” and only 8% of those
invited refused to participate. This approach allowed a representative sample.
The final sample comprised 8495 women who delivered live infants (>24
weeks). Information on social and demographic characteristics, obstetric and
gynaecological history, lifestyles and current pregnancy events was obtained
using a structured questionnaire. Individual interviews were performed 24 to 72
hours after delivery by trained interviewers. Information on pregnancy
complications, delivery circumstances and data on newborn characteristics were
abstracted from patient medical records.

From all mothers enrolled in this cohort only multiparous women with at least a
previous child before the current delivery (n=3520) were included in the present
analysis. We retrieved data on mother’s age, previous live births prior to the
current one and number of deceased children.

In this work we used the method developed by William Brass [7], the best-
known and most widely applied indirect technique for estimating child mortality
rates. Accordingly, women were stratified by five-year age groups from 15-19
to 45-49. The procedure converts proportions dead children ever born, D(i),
reported by women’s age group into estimates of the probability of dying before
attaining certain exact childhood age, g(x=1, 2, 3, 5, 10, 15 and 20 years old),
by using the multipliers k(i) as proposed by Palloni-Heligman, assuming that
Far Eastern family in the United Nations model life tables system is an adequate
representation of the pattern of mortality of Porto [7].

We computed also the reference time-period, #(x), which represents an estimate
of the numbers of years before the survey date to which the child mortality
estimates, q(x), refer. The values of the coefficients to estimate #(x) were
retrieved from the United Nations Report [7].

We assumed that the pattern of fertility by age of the women and the childhood
mortality have remained without important changes during the recent past.
Indeed, between 2000 and 2006 the total fertility rate varied from 1.36 and 1.41

live births per woman and infant mortality rate varied between 5.5 and 3.6 infant
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deaths per 1000 live births. We assumed also a similar pattern of fertility by age
of the multiparous in the Generation XXI and the Portuguese women as a
whole. We obtained the direct estimates of child mortality from Portuguese vital
statistics [2], taking into account the reference period and we compared the
values of direct and indirect estimates.

Once ¢g(x) is estimated, its complement /(x), the probability of surviving from
birth to exact age x, is readily obtained as /(x) = 1.0 — g(x), which was converted
in logit function, Y(x). According to the logit life-table system as proposed by
Brass [7], the Portugal (2009-2011) life table was used as a standard model to

derive the adjusted life table to Porto for ages under 10 [2].

3 Results and Discussion

Table 1 shows the basic data and the main results on the application of the
Brass’s method according to five-year age group of mother. In Portugal,
increasing numbers of women are delaying childbearing into their thirties and
early forties, making the consequences of older maternal age for the infant an
important public health concern. Grand multiparity, by contrast, is now
exceedingly rare in this country. There were 3521 multiparous women in the
present analysis; only 24% (n=829) of those women reported to have 2 or more
children previously to the current birth. The mean age of women was 32 years
(standard deviation £5.26). The total number of children ever born was 4651;
1.2% (n=55) of those children died.

Proportions deceased are quite instable in age group 15-19 due to the very small
numbers of births. On the other hand, for the last age group, no dead was
reported, and the proportion of the age group 40-44 is out of line probably due
to the age composition of the sample. Therefore, mortality estimates based on
the reports of women for these age groups were disregarded. Proportions
deceased were also instable in age group 25-29 and 35-39, which demanded

some adjustments. Since there is no evidence that the proportion of death
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provided by the age group 20-24 and 30-34 are unreliable, the obtained
estimates for the adjacent age groups (25-29 and 35-39) was performed by
linear interpolation. As presented in Table 1, the indirect estimates of the
probability of dying (mortality rates) between birth and age 2, 3, 5 and 10 years
old were 4.0, 5.7, 7.3 and 9.6 per 1000 children ever born, respectively.
Assuming that Porto has a little lower mortality rates compared with the country
as whole, and considering the reference time-period to which child mortality
q(x) refer, in general the mortality rates presented similar values when indirect
and direct estimates of child mortality are compared.

Calculation of logit transformation of the estimated survivorship
probabilities, /(x), and the corresponding logit tranformation of the standard life-
table used (Portugal 2009-2010) showed a reasonable degree of coincidence
between one set and the other for multiparous womem. Notably deviant points
were those associated with the /(5) and /(/0) estimate. On the basis of these
observations, the level indicated to match with the standard life-table was ¢(2),
which correspond to a more recent period. In this way, the adjusted pattern was
obtained by assuming an value for a level of a = 0.050 and standard = 0.979

according to the Brass’s logit life table system.

Table 1. Data required to compute child mortality according to the Brass’ method and indirect and

direct estimates of mortality rates under 2, 3, 5 and 10 years old to Porto Metropolitan Area,

Portugal.
Women’s Average Number Proportion Index Generation XXI Portuguese vital
Age parity  of children of X statistics
Group per ever born  children Prob. of Reference Prob.of Reference
(years) women dead dying time-period dying time-period
15-19 1,0000 35 0.0286 ¢(1) - - - -
20-24 1,1682 382 0.0052  ¢(2) 0,0040 2001 0,0057  2000/01
25-29 1,2247 894 0.0179 ¢(3) 0,0057 1999 0,0060  2000/01
30-34 1,2592 1681 0.0071 ¢(5) 0,0073 1997 0,0073 1999/00
35-39 1,4651 1279 0.0149 ¢(10) 0.0096 1997 0.0860 1999/00
40—44 1.7438 354 0.0141 ¢(15) - - - -
45-49 2,3636 26 0.0000 ¢(20) - - - -
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The construction of a life table based on the estimated level (o) and pattern (o)
derived from the aplication of the Brass’s logit life table system, implied in a
life expectancy at birth of 77.7 years and, an infant mortality of 3.7 per 1000
live births for both sexes for Grand Porto during the period 2005-2006. These
life table estimates seem very plausible, since the official estimate of life
expectancy at birth for the Grand Porto in the year 2005 using direct vital
registration data was 78.0, and infant mortality of 3.7 per 1000 live births [2].

Conclusions

As other European countries, Portugal witnessed a dramatic decline in crude
rates of child mortality [3]. The challenge nowadays is to document disparities
in child mortality rates. A set of characteristics should be take into account in
order to perceive the decline of these disparities. However, important
demographic, social and obstetric factors are not available in the vital statistics.
Thus indirect estimation of child mortality based on information about previous
births retrieved from medical records of women, could be a useful tool.

We evaluated the appropriateness of the Brass’ method to estimate the
probability of dying of dying before attaining certain exact childhood ages based
on information about previous births, and their survivorship collected in the
north of Portugal from a group of multiparous women, when registering a
current birth. Accordingly, we observed that the obtained indirect estimates
were generally consistent with direct estimates for child mortality rate under 10
years. But don’t add substantial insight beyond direct estimates when vital
statistics is available. However, the use of indirect method to analyze the
potential of the Generation XXI cohort data in provide relevant information on
reproductive issues, not available in the vital statistics, seems to be an important
and effective tool, and promissory for analyzing the follow-up studies of this

cohort held in 2009 and 2012.
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Abstract. In this paper we explore a method that, based on a particular implemen-
tation of a genetic algorithm (GA), aims to optimize the quantization of Electrocar-
diogram (ECGQ) signals to be transmitted over communication channels with low bit
rate. In particular, the goal of the proposed GA is to compute the optimum number of
quantization bits that minimizes the Percentage Root Mean-square-difference (PRD)
between the quantized and original samples, constrained to the maximum number of
available bits and the maximum distortion allowed. In this effort, we propose a novel
GA-based ECG encoding approach to represent the candidate solutions or individu-
als, and those evolutionary algorithms that finally lead to the optimum solution. The
experiments point out that, although in its preliminary steps, the method could be
useful to quantize ECG signals to be transmitted over channels suffering from low bit
rate.

Keywords: ECG signals, Quantization, Genetic Algorithm.

1 Introduction

Electrocardiogram (ECG) data compression is very often required because of
the huge amount of information generated by this monitoring systems when
applied to a patient over a long period of time. In order to store all these data,
or to transmit them (for example, in telemedicine applications [1,2]), it is very
important to achieve high compression ratios while maintaining an acceptable
quality of the reconstructed signal in the sense that it does not interfere with
the diagnostic process, or, in order words, in the effort of avoiding misdiagnosis,
what is of the utmost importance.

Regarding this, there are several different approaches in the specialized
literature focused on the compression of ECG data. There are important con-
tributions, such as, for instance, [3], [4], [5] or [6], which are particular cases
of either time-domain, parametric or transform-domain techniques. In [7], a
different approach, consisting in the use of the JPEG2000 image compression
standard to code ECG signals, has been studied.

In this paper we explore the feasibility of using Genetic Algorithms (GAs)
to ECG data compression in the sense that our GA, constrained to a number of
limitations (the number of available bits versus the quality of the synthesized
signal), search for the optimum number of bits to quantize ECG samples.

GAs are optimization and search methods which, inspired by the princi-
ples of Genetics and Natural Selection [8], exhibit useful properties for solving
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problems that, otherwise, would be intractable. Among these advantages, it
is worth mentioning that GAs deal with large number of variables, provide a
global solution for multilocal extrema problems, optimize functions with con-
tinuous or discrete variables, optimize variables with extremely complex cost
surfaces, and do not require derivative information. In the effort of making
this paper stand by itself, Section 2 focuses on summarizing the GA funda-
mentals that will assist us in better explaining our approach to quantize the
ECG signals.

Although it will explain throughout the paper in a more detailed way, the
system we propose divides the ECG signal into frames (or blocks), and com-
putes the number of bits to properly quantize the bits of any frame. Just in
this respect, Section 3 describes the proposed GA, which aims at computing
the optimal number of bits to quantize the ECG that minimize the Percentage
Root Mean-square-difference (PRD) of the quantized signal (when compared
to the original one), constrained to the maximum number of available bits and
the maximum distortion allowed.

Section 4 focuses on the experiments we have carried out in the effort of
designing the GA, and discusses some preliminary results which seem to point
out that the proposed GA-based approach, after some improvements, could be
a feasible tool to optimally quantize ECG signals.

Finally, Section 5 summarizes our approach and the main conclusions we
have found.

2 Genetic Algorithms in a nutshell

Genetic Algorithms [8] are one the most representative strategies belonging
to the wide field of “Evolutionary Computation” (EC) approaches, which are
inspired by the principles of Genetics and Natural Selection. In turns, EC
belongs to the broader research area of “Soft-Computing” (SC). It is a key
part of Artificial Intelligence (AI), and many of its methods also belong to the
area of knowledge called “Natural Computing” (NC). The wider term Natural
Computing refers to algorithms inspired by the way Nature solves extremely
complex problems. It draws inspiration from Evolution (leading to Evolution-
ary Computation), Physics (Simulated Annealing), social living being networks
(social insects, what leads to Ant Colony Optimization (ACO) algorithm [9],
and Swarm Intelligence [10]), Neural Networks (human brain metaphor inspires
Artificial Neural Networks [11,12]), Immune Systems (leading to Immunocom-
puting), the simulation of an orchestra composition (Harmony Search algorithm
[13]), and so on.

Evolutionary Computation algorithms have been widely used for solving
combinatorial optimization problems, which work primarily in intrinsically dis-
crete search spaces. Put it very simple, these algorithms are based on an
encoding of candidate solutions of the problem by using strings of numbers,
and on evolving the population of candidate solutions by applying a series of
evolutionary operators.
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In particular, a GA is based on three key facts: 1) Encoding the candi-

date solution; 2) Generate an initial population of candidate solutions, and 3)
Applying evolution mechanisms.

1.

Encoding candidate solutions

In Nature, all of the genetic information which encodes and causes the ex-
ternal characteristics of a living organism (or “individual”) is called geno-
type. Any particular characteristic produced by a piece of this genetic
information is encoded by a gene, the chromosome being the set of these
genes. Each gene is located at a particular position on the chromosome
and can have different values, called allele. Note that this strategy can
be considered as transforming the real search space into another in which
working is much easier. From a mathematical point of view, if F' is the
set containing all the candidate solutions, and G is the set of chromosomes
that codifies them, this representation is equivalent of defining a bijection
¢ : F — @, so that any solution is represented by an unique chromosome.
Thus, roughly speaking, the terms chromosome and individual are inter-
changeable.

Generating an initial population of candidate solutions

The size of the initial populations of individuals is a crucial issue for GA
performance. On the one hand, a large population could cause more genetic
diversity (and thus, a higher search space) and, consequently, suffer from
slower convergence. On the other hand, with a very small population, only
a reduced part of the search space is explored, thus increasing the risk of
prematurely converging to a local extreme. Once the adequate size of the
population has been explored, the second question remaining is related to
the initial values its individuals should have. Usually, the values of the
chromosomes representing this population are randomly initialized.
Applying evolutionary mechanisms

In Nature, the random creation of novel genetic information may lead to
the ability to survive. The better an individual is suited to an environment,
the higher its probability of survival. This is the so-called survival of the
fittest and the longer the individual’s life is, the higher its chances of hav-
ing descendants. In this procreation process, the parent chromosomes are
combined (recombination) to provide a novel chromosome. Sporadically,
and because of unavoidable errors in copying genetic information or exter-
nal factors (for instance, radiation), mutations (random variations) occur.
The consequence is the creation of a generation of living beings with some
novel characteristic which are slightly different from those of their progen-
itors. If the new attribute makes the offspring better suited to the varying
environment, the probabilities of survival and of having descendants also
increase. Part of the offspring could inherit the modified genes and the
corresponding external characteristic. In this way, the population of in-
dividuals evolves and for a number of generations the described process
results in the creation of individuals better adapted to the environment,
and in the extinction of those worst suited.

With these concepts in mind, we can now better understand the fundamen-

tals of the standard genetic algorithm, proposed in [14]. This algorithm uses

709



ASMDa

International

Proceedings, 15" Applied Stochastic Models and Data Analysis (ASMDA2013)
International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

operators of selection, crossover and mutation, binary encoding and selection
by means of the roulette wheel method.

As motivated before, the genetic algorithm is based on a number of evolution

operators, which will be detailed below, implemented in a loop process. The
algorithm starts with the initialization of individuals, usually at random, and
the calculation of “fitness” values associated with each individual (that is, to
what extent each candidate solution solve the problem). It then enters a loop
in which evolution operators are applied, until a certain stopping condition,
usually, when, after a number of generations, no improvements are observed in
the results. These operator work as follows:

A selection operator aims at selecting those individuals (population com-
ponents) that will be part of the population for the next generation. In the
standard implementation of the algorithm, each individual has a probabil-
ity of survival for the next generation proportional to its associated fitness
value (objective function to optimize). This selection procedure is called
the roulette method. Although the method of roulette is considered the
standard algorithm, there are other well known selection methods such as
the method of probabilistic tournament (widely used by its good results),
the ranking selection, and so on.

A crossover operator, whose goal consists in generating novel individuals
from existing pairs of individuals. In the standard implementation, individ-
uals are paired at random, and crossed (by exchanging parts of the binary
string) with a probability called crossover probability that is usually around
60% (that is, 60% of pairs of individuals are crossed in each generation).
Each pair then leads to another pair of individual offsprings, replacing par-
ents in the next generation. There are different types of crossover methods
depending on whether the parents are crossed exchanging parts in one, two
or more points in the binary string.

Mutation operator. It aims to mimic the following fact in Nature: the
chromosomes (which contain genes that encode the physical characteristics
of an individual —genotype—) can undergo random changes called muta-
tions. They may be due to external causes (eg. radiation) or internal (a
simple failure to copy the material). These mutations can generate indi-
viduals with novel external physical characteristics (phenotype) that may
allow them (or not) adapt to the changing environment. If advantageous,
the feature can be spread with a certain probability to later generations.
In a Genetic Algorithm, the mutation operator generates a new individual
from an existing one. This process is performed by changing certain bits
chosen from 0 to 1 and vice-versa, with very low probability (usually the
mutation probability for a given individual is about 1%). It differs from
the previous one in that the bits change occurs within the same individual
and not with another of its generation.

For non-binary implementations of algorithms, the operators of crossover

and selection can be maintained as we have defined for the standard algorithm,
and only the mutation operator would change, which should suit the imple-
mented encoding selected for the specific problem.
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All these concepts will assist us in explaining our approach to the problem
at hand. This is just the goal of the next section.

3 The proposed GA-based quantization algorithm

Put it very simple, the ECG data stream to be quantized is divided into blocks
or frames, each block containing a number of NV samples. In this problem, the
number of samples per block, N, and the maximum number of bits for coding
the ECG signal, 1,4, are two input parameters. For instance, the value used
for nyq, could be limited by the uplink data bit rate of the communication
system in a telemedicine application.

The goal of the proposed GA-based algorithm is to find, constrained to
the aforementioned limitations, the number of bits to represent the samples
of each N-length block, n;, by minimizing the overall Percentage Root Mean-
square-difference (PRD) between the quantized signal and the original one.
The ECG signals belong to the public MIT ECG database. This database has
been divided into a training subset and a test subset to properly design the
GA and test to what extent the algorithm works accurately.

The following paragraphs emphasize the key points in the design of our
GA-based approach.

3.1 Encoding the candidate solution

A proper way to encode the candidate solutions or individuals is like the one
illustrated by the following example. Let imagine we have only 5 blocks. The
chromosome of a candidate solution could be, for example, 23014, which
means that each sample of the first block will be coded with 2 bits, any sample
of the second block will be coded with 3 bits, and so on. To what extent this
potential solution is good enough will be evaluated by the selection operator,
as will be shown later on.

Once we have decided the more appropriate way of representing the can-
didate solution, the second key point is the design of the initial population of
individuals to be evolved.

3.2 Generating the initial population of candidate solutions

The size of the initial population has been chosen to be 300 individuals, a good
balance between a larger population (which could lead to slow convergence)
and a smaller population (which could lead to converge to a local extreme).

The population for the problem at hand has been initialized by dividing
the number of available bits, 1,42, by all the blocks of the input signal. This
division has been made randomly, ensuring that the total number of bits is
equal or less than the maximum n,,q4.

Once the initial population has been initialized, the algorithm starts with
the calculation of fitness values associated with each individual, and enters a
loop in which evolution operators are applied until it reaches 600 generations, a
stopping condition that, as will be shown in the results, keeps the PRD stable.
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3.3 Applying evolutionary mechanisms

The crossover operator used is a one-point crossover operator. It randomly
chooses a point on the two parent chromosomes and, by interchanging those
genes before and after the point, creates the offsprings. The probability that the
crossover operator is applied to each individual is called crossover probability,
pe < 1. In this respect, it is important to note that not all individuals are
selected for crossover. After a number of experiments we have chosen p. = 0.9.

The Gaussian mutation operator implemented works as follows: it selects
a gene with a mutation probability p,,, adds an unit Gaussian noise (with
zero mean and a standard deviation of o chosen 0.1 times the length of the
dynamic range [8,15]), and rounds it to the nearest integer. Its purpose is to
maintain diversity within the population and inhibit premature convergence
to local minima. Note that not all the offspring chromosomes are mutated:
the probability that the mutation operator is applied to each chromosome is
usually p,, < 1. Empirically, it has been observed that a value of p,, = 0.02
reaches good results.

Since both crossover and mutation may lead to a total number of bits higher
than the maximum allowed, it is necessary to include a correction operator.
This operator looks for, among all individuals, those whose number of bits is
above the limit. In these cases, the number of bits is randomly reduced in steps
of 1 bit until the problem is fixed.

Finally, regarding the selection, a ranking selection operator has been se-
lected since it has been found it reaches good results.

4 Preliminary results

In this section, we present some preliminary results in the effort of checking
the utility of the proposed algorithm.

Figure 1 shows the evolution of the fitness value in terms of PRD as a
function of the number of generations. We have represented two PRD curves:
the one corresponding to the best fitness, and another for the case in which an
average of 3 bits is fixed for the genetic algorithm. As it can be observed, the
convergence is fast, obtaining the best result in only around 100 generations.

While Figure 1 has shown the fast convergence of the proposed algorithm,
Figure 2 represents the fitness value in terms of PRD as a function of the
average number of bits per sample. As it can be observed, a fast decrease of
the number of bits needed to quantify the signal is obtained when increasing
the number of bits.

5 Conclusions

In this work we have explored the feasibility of using a particular implemen-
tation of genetic algorithms to optimize the quantization of electrocardiogram
signals by minimizing the Percentage Root Mean-square-difference between the
quantized and the original signal, constrained to the maximum number of avail-
able bits and the maximum distortion allowed. After explaning the concepts
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Fig. 1. Percentage Root Mean-square-difference (PRD) values (%) of the quantized
signal obtained as a function of the number of generations. The blue line corresponds
to the PRD results when an average of 3 bits is fixed for the genetic algorithm, while
the red line corresponds to the best fitness.
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Fig. 2. Percentage Root Mean-square-difference (PRD) values (%) of the quantized
signal obtained as a function of the mean number of bits per sample.

the approach is based on, we have proposed: 1) a novel encoding approach
to represent the candidate chromosomes (a string of integer that labels the
number of bits for each sample in a frame); and 2) some implementations of
evolutionary algorithms (selection, crossover, mutation, and correction —which
keeps the values of genes within the allowed dynamic margin—).

The work presented is a preliminary approach to the problem, but it is
enough to show that the application of evolutionary algorithms to dynamic bit
allocation problems is a promising research topic. The algorithm has proved
to converge in a low number of generations, which can be reduced even more
if information from one block is used to initialize the next one.

Next works will continue exploring this idea, introducing also the block
length as a variable for the genetic algorithm, in the effort of improving the
results.

713



"4 Yoy Proceedings, 15™ Applied Stochastic Models and Data Analysis (ASMDA2013)

tornation International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

Acknowledgements

This work has been partially supported by Spanish Ministry of Economy, under
project number EC02010-22065-C03-02.

References

1.R.S.H. Istepanian and A.A. Petrosian, Optimal zonal wavelet-based ECG data com-
pression for a mobile telecardiology system, IEEE Transactions on information
technology in biomedicine, 4(3) pp. 200-211, 2000.

2.A.1. Hernandez, F. Mora, M. Villegas, G. Passariello and G. Carrault, Real-time
ECG transmission via Internet for nonclinical applications, IEEE Transactions
on information technology in biomedicine, 5(3) pp. 253-257, 2001.

3.R.J. Coggins and M.A. Jabri, A low-complexity intracardiac electrogram compres-
sion algorithm, IEEE Transactions on Biomedical Engineering, 46(1), 1999.
4.G. Antoniol and Tonella, EEG data compression techniques, IEEE Transactions on

Biomedical Engineering, 44(2), 1997.

5.G. Nave and A. Cohen, ECG compression using long-term prediction, IEEE Trans-
actions on Biomedical Engineering, 40(9), 1993.

6.R.S.H. Istepanian, L.J. Hadjileontiadis and S.M. Panas, ECG data compression
using wavelets and higher order statistics methods, IEEE Transactions on infor-
mation technology in biomedicine, 5(2) pp. 108-115, 2001.

7.Ali Bilgin, Michael W. Marcellin and Maria I. Altbach, Compression of electrocar-
diogram signals using JPEG2000, IEEE Transactions on Consumer Electronics,
49(4) pp. 833-840, 2003.

8.A. E. Eiben and J. E. Smith, Introduction to evolutionary computing, Springer-
Verlag, 2003.

9.M. Dorigo and T. Stiitzle, Ant Colony Optimization: Overview and Recent Ad-
vances. M. Gendreau and Y. Potvin, editors, Handbook of Metaheuristics, 2nd
edition. Vol. 146 in International Series in Operations Research and Management
Science, pp. 227-263. Springer, Verlag, New York, 2010.

10.R. Eberhart and Y. Shi, Particle swarm optimization: developments, applications
and resources, In Proc. IEEE Congress on Evolutionary Computation, 2001.

11.C.M. Bishop, Pattern Recognition and Machine Learning, Springer 2007

12.R O. Duda, P. E. Hart , and D G. Stork, Pattern Classification, Wiley and Sons,
2000.

13.Z. W. Geem, J. Hoon Kim and G. V. Loganathan, A New Heuristic Optimization
Algorithm: Harmony Search, Simulation, 76(2) (2001) 60-68.

14.D. E. Goldberg, Genetic algorithms in search, optimization and machine learning,
Reading, MA: Addison-Wesley, 1989.

15.P.S. Andrews, An Investigation into Mutation Operators for Particle Swarm Op-
timization, In Proc. 2006 IEEE Congress on Evolutionary Computation, 2006.

714



ASMDa Proceedings, 15" Applied Stochastic Models and Data Analysis (ASMDA2013)

\nternatioha International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

Multistage Non-Homogeneous Markov Chain
Modeling of the Non-Homogeneous Genetic
Algorithm and Convergence Results.

André G. C. Pereira! and Viviane S. M. Campos?

! Mathematics Department, Universidade Federal do Rio Grande do Norte,
Natal/RN, Brazil
(E-mail: andre@ccet.ufrn.br)

2 Mathematics Department, Universidade Federal do Rio Grande do Norte,
Natal/RN, Brazil

(E-mail: viviane@ccet.ufrn.br)

Abstract. In this work, the results presented in the paper titled Multistage Markov
Chain Modeling of the Genetic Algorithm and Convergence Results are extended. The
size of the neighborhood in the crossover stage of the Algorithm 1, is permitted to
vary throughout the evolution of the algorithm and instead of a fixed mutation prob-
ability, in mutation stage of the Algorithm 2, a sequence of mutation probabilities is
introduced . Finally, numerical simulations are developed and comparisons between
the original algorithms and the new versions of them are presented.

Keywords: Simulated annealing, Global optimization, Genetic Algorithms..

1 Introduction

The Canonical Genetic Algorithm (CGA), introduced in Holland[6], is a compu-
tational tool that describes the natural genetic evolutionary process of a popu-
lation that undergoes three stages: selection, crossover (mating) and mutation.
In the CGA, a population of N individuals or chromossomes, (u1, ug, ..., un), is
considered. An evaluation function f : E' — (0,00) assigns to each individual
u; a fitness value 0 < f(u;) < co. In the selection stage, the actual population
will be resampled, individuals with higher fitness are more likely to be selected
and those with low fitness tends to be eliminated (elitist selection). Follow-
ing the natural evolutionary process, biological reproduction (crossover) and
eventual mutation occur. In the crossover stage, individuals are independently
chosen for crossover with a prescribed probability p.. Mutation also operates
independently on each individual with a prescribed probability p,,. In order to
be easier for implementation, each individual is represented by a binary vector
of lenght [, where [ depends on the desired precision. For more details as well
as implementation procedures see, for example, Campos et al.[2], de Andrade
et al.[3], Goldberg[5] .

In optimization context, CGAs are used to solve problems of the type
max{ f(z),r € E} with the objective function satisfying 0 < f(z) < oo. The
individuals represent the feasible solutions and the selection stage preserves
with higher probability the best fitted/searched points. In the crossover stage,
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neighboring points are searched, allowing a refined comparison in the surround-
ing. In the mutation stage, random points, possibly away from the preserved
ones, are visited and constitute a strategy to avoid being trapped in local op-
timum points.

In Dorea et al.[4], the convergence of the genetic algorithm was proved under
certain hypothesis. In particular, the Algorithm 2, which has a superindivid-
ual, was proved to converges almost surely to a set of all populations that have
an optimum point as one of its elements. All algorithms presented in Dorea et
al.[4] were modeled by an homogeneous Markov chain because theirs transition
probabilities did not change through time.

The non-homogeneous Genetic Algorithms (NHGA) was introduced in Cam-
pos et al.[1] as an attempt of improving the eficiency of CGA, by allowing the
mutation and crossover probabilities to vary under certain hypothesis. The
elitist genetic algorithm (EGA), which was introduced in Rudolph[8], it was a
modification in the CGA that solved the problem of eficiency of the CGAs. A
non-homogeneous version of the EGA, called elitist non-homogeneous genetic
algorithm (ENHGA), was introduced in Rojas Cruz and Pereira[7] in order to
improve the eficiency of the EGA. Other attemptings to improve the eficiency
of the CGA, without changing the mutation and crossover probabilities can
be seen in Dorea et al.[4], some numerical comparisons between ENHGA and
EGA, can be seen in Campos et al.[2], and the proper way of running the EN-
HGA can be seen in de Andrade et al.[3].

In this paper two different versions of each of the algorithms presented in
Dorea et al.[4] are proposed. All algorithms presented in this paper have a su-
perindividual as explained in Dorea et al.[4]. Theorical convergence results of
these algorithms and numerical comparisons among these algorithms are also
presented.

This paper is divided into 4 sections. In section 2, the algorithms presented
in Dorea et al.[4], the results that guarantee their convergences as well as some
other results that will be used in the rest of the paper are presented. In sec-
tion 3, the changes in the algorithms presented in section 2 are introduced and
convergence results are obtained. In section 4, numerical comparisons between
the original algorithm and its versions are made.

2 Preliminaries

Summarizing what was said in the previous section, let f : E — (0,00) be a
function, and genetic algorithms were set in order to find the following point

" = argmaz{f(z),z € E},

where F is a discretization of the domain of the function f. To proceed the fol-
lowing steps of the the algorithm, such points are represented as binary vectors
of length [, where [ depends on the desired precision. A population of size N
is considered, let Z = {(uy,ug,....,un);u; € E,i = 1,2, ..., N} be the set of all
populations of size N. Z is the state space of the Markov chain that is used to
prove the convergence of the algorithm, see Campos et al.[1], Dorea et al.[4],
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Rojas Cruz and Pereira[7] and Rudolph[8].

In Dorea et al.[4], in both algorithms presented, the roulette scheme is used
in the selection stage. In algorithm 1, it is proposed a different scheme for the
crossover stage. In that approach, neighborhoods of the actual points of the
population are used to select the next points of the population. The mutation
stage is performed in a traditional way, that is, the population is considered
as a binary vector and each entry can be changed independently with a fixed
probability p,, . By their stages, those algorithms can be summarised in the
following way:

e Algorithm 1: In the selection stage it is used the roulette scheme, in
the crossover stage it is used neighborhoods scheme, and in the mutation
scheme it is used the traditional method where each gene can be changed
independently with a fix probability py,.

e Algorithm 2: In the selection stage it is used the roulette scheme, there
is no crossover stage, and in the mutation scheme it is used the traditional
method.

The evolution of the ENHGA is different from the evolution of the EGA just by
the update of the values of parameters p,, and p.. Thus, the elitist algorithm
can be summarized in the following sketch:

a)Choose randomly an initial population having N elements, each one being
represented by a binary vector of length [, and create one more position, the
N + 1-th entry of the population vector, which will keep the best element
from the N previous elements.
b)Repeat
1. perform selection with the first N elements
2. perform crossover with the first N elements
3. perform mutation with the first N elements
4. If the best element from this new population is better than that of the
N + 1-th position, change the N + 1-th position by this better element,
otherwise, keep the N + 1-th position unchanged
5. perform p. and p,, changes, as previously planned.
¢) until some stopping criterion applies.

Denote this new state space by Z.

In Rojas Cruz and Pereira[7], it is shown that the ENHGA is a non-
homogeneous Markov chain, with a finite state space Z, whose transition ma-
trices are given by P, = SC,M,,VYn € IN, where S,C,, M, are transition
matrices which represent the selection, crossover and mutation stages respec-
tively. Here the M, is composed by the third and fourth steps described in
sketch just presented. In the same paper it is shown that there is a sequence
{an }nemw such that

inf Pu(i,f) > an,
i€Z,jeZ*
where Z* C Z, which contains all populations that have the optimum point as
one of its points. The following results were obtained.
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Corollary 1: Let {X,, }nemw be the Markov chain which models the elitist non-
homogeneous genetic algorithm, if the sequence above is such that >, o, ax =
oo then B

P(lim X, € Z*) = 1. (1)
n—oo
A more simple condition, to run in simulations, that guarantee the above result
is
Corollary 2: Let {X,, },cw be the Markov chain which models the elitist non-
homogeneous genetic algorithm, if the mutation probabilities {p,,(n)}nemw are
such that p,(n) >~ > 0foralln € IN or ¥, pm(n)" = co then (1) holds.

3 The New Versions of the Algorithms 1 and 2

In this section, two new versions for each algorithm 1 and 2 of Dorea et al.[4]
as well as its almost sure convergence are presented. All algorithms presented
in this paper have a superindividual as explained in Dorea et al.[4], or in other
words, the algorithms are elitists as explained in Rojas and Pereira[7].

Consider these two versions of Algorithm 1 (with a superindividual) of
Dorea et al.[4]

e Algorithm 1-1: In this algorithm we perform selection and mutation as
in Algorithm 1, but in crossover stage the neighborhood size is allowed to
vary in a predefined way or randomly.

e Algorithm 1-2: In this algorithm we perform selection as in Algorithm
1, crossover as in Algorithm 1-1 and in the mutation stage, the mutation
probabilities are allowed to vary throughout time. The mutation probabil-
ities {p%”}new are such that
P > >0 for all n € IV or >, pm(n)t = o0.

Note that, while the algorithms 1 and 2, in their superindividual versions are
EGAs, Algorithms 1-1 and 1-2, are ENHGAs, see Rojas and Pereira[7]. Thus,
we have, as a consequence of corollary 2, that

Corollary 3: In a ENHGA such that its selection stage is defined as in Al-
gorithm 1, the size of the neighborhoods are allowed to vary throughout the
evolution of the algorithm and the mutation probabilities {p,,(n) }nec v are such
that py,(n) >~ >0 foralln € IV or Y, pm(n)! = oo then (1) holds.

This show that algorithm 1-1 and 1-2 converge almost surely to a subset of
all populations that have as one of its points, the optimum point.
Consider these two versions of Algorithm 2 of Dorea et al.[4]

e Algorithm 2-1: In this algorithm we perform selection and crossover as in
Algorithm 2, but in mutation stage, the mutation probabilities {p£,if )}ne N
are such that
pﬁ,’f) >~ >0foralln € IN or anm(n)l = 0.
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e Algorithm 2-2: In this algorithm the selection is performed as in Algo-
rithm 2, crossover as in Algorithm 1-1 and in the mutation stage, a simu-
lated annealing (SA) algorithm without a cooling schedule is performed as
in example 2 of Dorea et al.[4]. Note that, in Dorea et al.[4] it is used a
matrix Q = (Quy)s,ycr to generate the next points, and this matrix does
not change through time.

Obs: The acceptance probability used in the SA is of the form (in case of
maximization)

1, if f(Y;) > f(Xi
an(X;,Y;) =< _sxop-sorp 1 USOE) )z =1,2,...N
e T i f(YE) < f(XG)

where {1, }nen is the cooling schedule. Here a,(z,y) = a(z,y),Vn € IN,
because the algorithm 2-2 does not have a cooling schedule, that is,
T, =cVne IN.

When applying the SA in each entry of the population vector, in the muta-
tion stage, M, (X,Y) is obtained as a product of terms of the form A4;(X,Y) =
Qx,v;an(X;,Yi) when X; # Y; and Bj(X,Y) = 1-3, ., Qx,v;an(X;, Y;) when
X; =Y, where X; and Y; are the i-th coordinate of X, the actual population
vector, and the population which was generated, Y, respectively, that is, they
are the i-th individuo in the actual and generated population respectively.

Theorem 1: In an ENHGA such that its selection and crossover are performed
as in algorithm 1-1 and a SA is used in the mutation stage. If the SA is such
that

Q(z,y),a(x,y) > 0,Ve,y € E

then (1) holds.

Proof: It was shown in Campos et al.[1] that P, = SC,M,, where S is a
stochastic matrix that describes the selection stage,C), is a stochastic matrix
that describes the crossover stage at time n and M,, = M is a stochastic matrix
that describes the mutation stage at time n (in that paper the selection matrix
did not change as time goes by). The SA used in mutation stage is such that

inf  M(A,B) >~ >0,
AcZ,BeZ~

for some v € IR. That happens because () can generate any point of the space
with a positive probability, ay(z,y) = a(z,y) > 0,Vz,y € E and B € Z*
(that is essential). Observe that such constant does not exist in the case where
A€ Z* and B ¢ Z* . Thus, for X,Y € Z we can write

Pu(X,Y)= Y Su(X,A)Cu(A, B)M(B,Y)
A,BeZ

IfY € Z*,
Pu(X,Y) =7 > Su(X,A)Cn(A,B)=7>0
A,BeZ
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So,

inf
XeZYezx

Pu(X,Y) >y =0, >0.

Hence,
oo
E Oy, = 00
n=1

and by corollary 1, (1) holds.

4  Numerical comparisons

In this section we present numerical comparisons among algorithms 1, 1-1, 1-2
and among algorithms 2, 2-1,2-2. For these comparisons, the following two-
variable functions are used:

o 1. f:[-2,1] x[-2,1] — IR defined by f(z,y) = 6 + 22 — 3cos(2mx) +y* —
3cos(2my).

sin?(y/z2+y2)—0.5
o 2. f:[—1280 12401, [ 1280 12401 _, IR defined by f(z,y) = .5—%.

63 7 63 63 7 63

These functions were chosen for having many local minimum and maximum
points, which turns the convergence of optimization algorithms hard.

In the following simulations, each algorithm was run 100 times and in each
repetition 1000 steps of the algorithm were performed. The graphics illustrate
the results of such simulations. If (x,y) is a point of the graphic, y represents
the number of repetitions in which the optimum point was found in x steps.
Each interval that compounds the domain was partitioned into 26 points. Thus,
a net of 22 feasible solutions was created. Each algorithm was simulated for
two different population size, namely: 5 and 15 points.

It was used p,, = 0.01 for those algorithms that used a fixed mutation
probability. For those algorithms that uses a varying mutation probability, it
was used a linear function to do this changes in the value of p,,. It begins with
Pm = 0.5 and dimishes linearly to its final value p,, = 0.001 after 1000 steps.

It was used a neighborhood of size one for those algorithms which has a fixed
neighborhood scheme.For those algorithms that use a varying neighborhood
scheme, a linear funtion was used to change the size of the neighborhood in
each step. The size of the neighborhood begins begger than half of the number
of genes of the population and it diminishes linearly to its final value, which is
the same of those algorithms that use a fixed neighborhood scheme.
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Fig. 3. Function 2, population size=5 Fig. 4. Function 2, population size=15

To perform the simulations of the algorithm 2, the distribution used to
generate the next point needs to be specified . In this paper a simmetric (in
relation to the actual point) distribution is used. A distribution where the
closer the point is from the actual point the higher is the probability of it to
be chosen and its expression is given by

e_lx_yl
ZZGE eilzizl

and in the acceptance probability the values of T;, = ¢,Vn € IN that was used
is ¢ = 10.

Q(r,y) =

Fig. 5. Function 1, population size=5 Fig. 6. Function 1, population size=15
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Fig. 7. Function 2, population size=5 Fig. 8. Function 2, population size=15

Conclusions Changes in the algorithms 1 and 2 of [4] were proposed and
sufficient conditions to guarantee its convergence almost surely to a population
that has an optimum point in it were given. Examples in the previous section
showed that it is possible to find a way of varying the parameters in order to
obtain an improvement on the time that is spent by the algorithm for finding
its optimal point. These simulations were done with the belief that higher
probabilities should be used at the beginning so that the algorithm is able
to search a solution in a larger region initially, and as time goes by, those
probabilities should get smaller in order to do a more intense search near the
population that evolves until that moment. That is just one manner to proceed,
a problem that is still open is the following: How to vary the values of the
parameters in order to obtain the best performance of the algorithms?
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Partial Least Squares (PLS) is a family of multivariate data analysis methods that allows for analyzing blocks of variables
over a set of observations. The variety of PLS methods depends on the number of blocks of variables and the relationships
among blocks. The common denominator of all PLS methods is the fact that they are based on an iterative algorithm in which
the parameters are calculated by a series of least squares regressions. Due to the introduction of PLS, one of the main
Structural Equation Modeling (SEM) techniques, by Wold in 1966, it has been received with considerable interesting among
researchers. In most cases, the PLS approach to SEM is usually named as PLS Path Modeling (PLS-PM). PLS-PM is a
multivariate data analysis methodology, which provides a framework for analyzing multiple relationships between a set of
blocks of variables. It is supposed that the relationships among the blocks are established taking into account previous
knowledge (theory) of the phenomenon under analysis. The purpose of this study is to examine the success of 18 Turkish
national football teams in 2011-2012 Super League Season by using PLS-PM.

Key Words: Football Teams, Attack, Defense, Success, PLS, PLS-PM.
1. Introduction

Partial Least Squares (PLS) is a family of multivariate data analysis methods that allows for analyzing blocks of
variables over a set of observations. The variety of PLS methods depends on the number of blocks of variables
and the relationships among blocks. The common denominator of all PLS methods is the fact that they are based
on an iterative algorithm in which the parameters are calculated by a series of Least Squares (LS) regressions.
The term Partial is due to the fact that the iterative procedure involves separating the parameters instead of
estimating them simultaneously (Sanchez [2]).

PLS Path Modeling (PLS-PM) is the PLS approach to Structural Equation Modeling (SEM). Although both
terms are often used interchangeably, the term PLS-PM is preferred over SEM around the small but growing
PLS community. PLS-PM is a multivariate data analysis methodology that provides a framework for analyzing
multiple relationships between a set of blocks of variables. It is supposed that the relationships among the blocks
are established taking into account previous knowledge (theory) of the phenomenon under analysis. Moreover,
each block of variables is assumed to play the role of a theoretical concept represented by in the form of a latent
(unobserved) variable (LV). (Sanchez [1]; Sanchez [2]).

The purpose of this study is to examine the success of 18 Turkish national football teams in 2011-2012 Super
League Season by using PLS-PM. For this purpose, following the study of Sanchez (2013), a model is proposed
in which the overall success of the football teams depends on the quality of the attack as well as on the quality of
the defense made by them. There are three LVs which are defined as attack, defense and success. The number of
won matches at home and the number of won matches away variables are taken as indicators of success, the
number of goals scores at home and the number of goals scores away variables are taken as indicators of attack
and the number of goals conceded at home and the number of goals conceded away are taken as indicators of
defense.

2. PLS Path Modeling

Before we get involved into the details of the PLS-PM, we need to talk about a couple of things closely related to
it: a) Latent Variables, b) PLS Path Model (Structural Model, Measurement Model, Weight Relations) c) Path
Diagrams (Sanchez [1]; Sanchez [2]).

2.1. Latent Variables: Measuring the Immeasurable

One of the first concepts we must mention is that of LVs. The most common definition of a LV is a variable that
is unobserved. More precisely, a LV is a variable that could not be measured directly. Examples of LVs abound
in social sciences (e.g., psychology, sociology, economy, and politics) such as intelligence, motivation,
satisfaction, socioeconomic status, economic development, social crisis, etc. (Sanchez [2]). In statistics, LVs are
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widely used in several data analysis and modeling techniques with applications in many fields of knowledge.
Within the literature related to LVs we can find synonymous terms like: theoretical concepts, hypothetical
variables, constructs, composites, factors and intangibles (Sanchez [1]; Sanchez [2]).

In the context of PLS-PM, a LV will be obtained as a linear combination of a set of observed variables, which
are also called as manifest variables (MVs), indicators or items. We assume that MVs contain information that
reflect or indicate one aspect of the construct; hence we use the information contained in MVs to obtain an
approximate representation of the LV. LVs can be measured in two ways: (1) through their consequences or
effects reflected on their MVs and (2) through different M Vs that are assumed to cause the LVs. In the first case,
called reflective way, MVs are considered as being caused by the LVs. The second case is known as formative
way because the MVs are forming the LVs The main difference between the reflective and formative ways has
to do with the causal-effect relationships between the MVs and the LVs (Sanchez [1]; Sanchez [2]).

Let's assume that we have p variables measured on n observations (i.e. individuals, cases, samples), and that the
variables can be divided in j blocks. X is the data set containing the n observations and p variables that means a
matrix of dimension nxp. X can be divided in j (mutually exclusive) blocks X, X,,..., X; Each block X has K
variables: Xji, Xj,,..., Xjk. Each block X is assumed to be associated with a LV denoted as LVj. Keep in mind
that L'Vj is just an abstract representation (i.e. unobserved). The estimation of a LV, also known as score, is

denoted by L\A/j = Yj (Sanchez [1]).

2.2. PLS Path Model

In this section, the formalization of a PLS Path Model and its specifications are mentioned in detail.

2.2.1. Structural Model

Firstly, it could be talked about the specifications of the structural part in a PLS Path Model. A structural model,
which is also called an inner model, relating some dependent LVs to other LVs (Tenenhaus et al. [3]).There are
three things that is needed to consider about the inner relationships: Linear relationships, recursive models,
regression specification.

Linear Relationships: The first aspect of an inner model is that the structural relationships are treated as linear
relationships. The structural relations are expressed in mathematical notation as in Eq. (1). The subscript i of LV;

refers to all the LVs that are supposed to predict LV;. The coeffcients B ji are the path coeffients and they
represent the “strength and direction” of the relations between the response LV; and the predictors LV;. Bo is

just the intercept term, and the €ITor; term accounts for the residuals (Sanchez [1]).

LV, =B, + ZBﬁLVi + error, )

i—>j

Recursive Models: The second aspect, which is needed to be aware of, is that the system of equations must be a
recursive system. This means that the paths formed by the arrows of the inner model could not form a loop
(Sanchez [1]).

Regression Specification: The third aspect about the inner relationships is something called predictor
specification which is just a fancy term to express a linear regression idea. The idea behind this specification is
that the linear relationships are conceived from a standard regression perspective as shown in Eq. (2) (Sanchez

(1D

E(LVJ'|LV1) = Boi + ZBjiLVi (2)

i—>j
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2.2.2. The Measurement Model

The measurement or outer model is the part of a model that has to do with the relationships between a LV and its
block of MVs. The relevant aspect about the outer model is that there are two main measurement options:
reflective blocks and formative blocks (Sanchez [1]; Tenenhaus et al. [3]).

Reflective Way: The most common type of measurement is the reflective mode. In this case, the LV is
considered as the cause of the MVs. That's why it's called reflective because the MVs are “reflecting” the LV.
Just like in the inner model, the outer model relationships are also considered to be linear. The outer model for

reflective way is expressed in mathematical notation as in Eq. (3). The coefficients A jk are called loadings, 7“0

is the intercept term, and the error terms account for the residuals (Sanchez [1]; Tenenhaus et al. [3]).
X =Aop + A, LV, +error;, 3)

Formative Way: The other type of measurement is the formative mode. In this case, the MVs are considered to
be the cause of the LV. That's why it's called formative because the MVs are “forming” the LV. The outer model
for formative way is expressed in mathematical notation as in Eq. (4) (Sanchez [1]; Tenenhaus et al. [3]).).

LV, =%k + A, X, +error; 4)

2.2.3. The Weight Relations

There's one last thing belonging to the specifications of a PLS Path Model that it is needed to mention: the
weight relations. The weight relations is used to bridge the gap between the virtual LVs and the material LVs. In
PLS-PM, LVs are estimated as a linear combination of their MVs. Furthermore, an estimated LV; is called a

score, denoted as Yj as in Eq. (5). Since LVs are calculated as a weighted sum of their MVs analogously to

what is done in principal component analysis, PLS-PM is referred to as a component-based approach (Sanchez

(1D

LV, =Y, = ijkak (%)
k

2.3. Drawing Models: Arrow (Path) Diagrams

The term path modeling is a very generic term used to designate a set of different statistical techniques that seek
to explain the relationships among multiple variables. The reason for the term path modeling is due to the
graphical representation of structural relationships by drawing a picture of the model. Pictures of path models are
called path diagrams, which are drawn according to well established conventions of terminology and symbols:
Variables can be of any kind, i.e. MVs, LVs or residual variables (error terms). MVs are enclosed in boxes, LVs
are enclosed in circles/ellipses and error terms are maintained unclosed. Relationships also can be of three types:
causal links meaning that variable A causes variable B; correlation links indicating simply correlation between
two variables A and B without implying causality; or the affection of a error term € to some variable A. Causal
relationships are assumed to be linear, and are represented by straight single-headed arrows, correlations are
represented by curved two-headed arrows, and residual affection by straight lines. In addition, variables may be
grouped in two classes: those that are not caused by any other variables in the diagram, and those that are caused
by one or more variables. The first class of variables is called exogenous or independent variables. The second
class is known as endogenous or dependent variables. The convention is to use Greek letters for the LVs, and

Italic letters for the MVs. Exogenous LVs are usually represented by the Greek letter c";(xi ), while endogenous

LVs are represented by m(eta). Path diagrams are very helpful because they allow for the visualization of the

relations and, in terms of a causal model, its graphical display makes it possible to understand the
conceptualization of the model. The visual notations of these variables and relationships in path diagrams are
shown in Fig. 1 (Sanchez [2]).
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X Manifest variables are represented as square boxes

@ Latent variables are represented as cicles or ellpses
®_’® Causal relations are indicated by straight arrows. £ causes 77

Residual terms are represented as vnclosed variables. and
are linked to MV's or LV's by a straight line

/‘\ Correlation between two variables is illustrated

x v by curved two-headed arrows

- Reciprocal causation is mdicated by
. two straight smgle headed arrows

Fig. 1. Path diagram notations (Sanchez, 2009)

PLS Path Modeling follows a sequential procedure that can be divided in three major stages; Stage 1: Get the
weights to compute LV scores; Stage 2: Estimating the path coefficients (inner model); Stage 3: Obtaining the
loadings (outer model).

3. Application

The simple theory for examining the success of 18 Turkish national football teams in 2011-2012 Super League
Season by using PLS-PM involves two hypotheses. In one of them, it is supposed that if a team improves its
attack, it should be more successful, therefore, wins more matches. The other hypothesis is that if a team
improves its defense, it should also be more successful or at least it should avoid losing matches. This theory

could also be expressed in a more abstract form like this: Success = f (Attack, Defense) . This is simply a
conceptual way to say that Success is a function of Attack and Defense. But we could go further by specifying a
linear function and expressing this theory with an equation like this one: Success = b; Attack + b, Defense..

3.1. Measuring Success, Attack and Defense

We have used the model proposed by Sanchez (2013) in which the Overall Success depends on the Quality of
the Attack as well as on the Quality of the Defense. These are our three LVs. Now we need to establish a set of
indicators for each of the three LVs. Following his study, we are going to take GSH and GSA variables as
indicators of Attack; GCH and GCA variables as indicators of Defense; WMH and WMA variables as
indicators of Success. These variables are defined as below:

* GSH: Number of goals scores at home
* GSA: Number of goals scores away

* GCH: Number of goals conceded at home
* GCA: Number of goals conceded away

* WMH: Number of won matches at home
* WMA: Number of won matches away
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The data including these six variables, of 18 Turkish national football teams in 2011-2012 Super League Season,
is given in Table 1.

Football Teams GSH GSA GCH GCA WMH WMA
Galatasaray 38 31 14 10 13 10
Fenerbahge 39 22 12 22 14 6
Trabzonspor 36 24 22 17 10 5

Besiktas 29 21 18 21 10 5
Eskigehirspor 18 24 16 25 8 6
Biiyiiksehir bld 31 7 15 34 9 5
Sivaspor 25 32 20 34 7 6
Bursaspor 20 24 12 23 8 5
Genglerbirligi 32 17 16 32 9 4
Gaziantepspor 24 15 13 20 9 4
Kayseri 28 14 19 20 8 5
Kardemir 30 14 21 35 11 2
Mersin 15 19 24 21 5 7
Ordu 17 11 13 21 7 3
Antalya 19 13 18 24 7 3
Samsun 24 12 24 23 6 3
Manisa 16 15 27 25 5 3
Ankaragiicti 7 15 36 41 1 1

Table 1. The data for 18 Turkish national football teams in 2011-2012 Super League Season
(Data source: http://www.iddaliyim.org/gecmis/turkiye superlig_gecmis/2011-2012 sup lig_sonuc.php)

Firstly, it must be mentioned that to assess the quality of a reflective block it is need to understand the key ideas
behind a reflective measurement model: it is supposed that reflective indicators are measuring the same
underlying LV, hence they are reflections of the construct. On one hand, reflective indicators need to have strong
mutual association. Shortly, they will be highly correlated. On the other hand, reflective indicators need to get
along with its LV; they must show sings of membership and belonging to one and only one LV: they need to be
loyal to its construct. If one indicator loads higher on another construct, this could be evidence of treason.
Basically, three aspects of reflective measures must be evaluated:

1. Unidimensionality of the indicators: In PLS-PM there are three main indices to check unidimensionality:

a) Calculate the Cronbach's alpha, b) Calculate the Dillon-Goldstein's tho ¢) Check the first eigenvalue of the
indicators' correlation matrix. The R output of the three indices of unidimensionality is given in Table 2. In Table
2, the first column shows the type of measurement. In our example, all the blocks are reflective. The second
column indicates the number of MVs in each block (2 in our example). The third column contains the
Cronbach's alpha, the fourth column is the Dillon-Goldstein's rho, the fifth and sixth columns are the first and
second eignevalues, respectively. Dillon-Goldstein's rho is considered to be a better indicator than the
Cronbach's alpha because it takes into account to which extent the LV explains the block of indicators. Hence,
here we used this index to assess the unidimensionality. As a rule of thumb, a block is considered as
unidimensional when Dillon-Goldstein's rho is larger than 0.7. As seen from Table 2, the values of Dillon-
Goldstein's rho’s for attack, defense and success blocks are larger than 0.7. So, these blocks are considered as
unidimensional.

Tyvpe.measure MW= C.alpha Diz.rho eig.lst eig.z2nd

Attack Feflectiwve 2 0.4453647 0.78535111 1.255963 0.7110373

Defense Feflectiwve 2 0.6227777 0.58413150 1.452195 0.54758016

Juccess Feflectiwve Z2 0.6240999 0.53673403 1.531511 0.4654593
Table 2. The unidimensionality metrics for each block of indicators

2. Check that indicators are well explained by its LV: Communalities represent the amount of variability
explained by a LV. The loadings are correlations between a LV and its indicators. In turn, communalities are
squared correlations. The R output of communalities are given in Table 3. Each element in the list is a table (a
matrix) with four columns. The first column contains the outer weights. The second column are the loadings
(correlations). Loadings greater than 0.7 are acceptable. In Table 3, all loadings are greater than 0.7.
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Communalities are just squared loadings. They represent the amount of variablity explained by a LV. A loading
grater than 0.7 means that more than 0.7* =~ 50% of the variablity in an indicator is captured by its latent
construct. As seen from third column in Table 3, the communalities of GSA and GCA are not greater than 0.7. It
means that more than 0.7~ 50% of the variablity in an indicator is not captured by its latent construct. But these
variables are keeped in the model since loading values of these variables are greater than 0.7.

> datal plsfouter.mod

fhttack

weights =td. loads commounasl reduandan
o H a.7275 o.57421 o.7641 O
oo ao.5073 ao.7176 o.5149 O

ihefen=es

weights =td. loads commounasl reduandan
ZiZH O.56315 o.57a0 o.76743 O
ZiZn o.5405 O.53263 O.85285 O

ffucce==

weights =td. loads commounasl reduandan
TMH o.5l1z2=2 o.5937 o.7937 o.71i90
TIMA ao.5z29a6 o.5550 o.7311 o.a53=2

Table 3. The loadings and communalities

3. Assess the degree to which a given construct is different from other constructs: Besides checking the
loadings of the indicators with their own LVs, the so-called cross-loadings must also be checked. That is, the
loadings of an indicator with the rest of L'Vs. The reason for doing so is that it is needed to be sure that there are
not traitor indicators. The cross-loadings are given in Table 4. It is needed to look at the list of results as if it was
a super matrix. The way to read the cross-loadings is by looking at this super matrix block by block paying
attention to the sections in the diagonal. These sections are the loadings of each block with its construct. A given
loading in one of these sections must be greater than any other loading in its row (Sanchez [1]). For example,
let's consider the first section that corresponds to the first column in the Attack block. GSH has a loading value
of 0.8741. This value must be greater than any other value in that first row. The cross-loadings of GSH with
Defense is -0.5248; the cross-loading of GSH with Success is 0.8127. Clearly, 0.8741 is greater than -0.5248 and
0.8127.

With the cross-loadings it is evaluated the extent to which a given construct differentiates from the others. The
whole idea is to verify that the shared variance between a construct and its indicators is larger than the shared
variance with other constructs. In other words, no indicator should load higher on another construct than it does
on the construct it intends to measure. Otherwise, it is a traitor indicator. If an indicator loads higher with other
constructs than the one it is intended to measure, its appropriateness might be considered because it is not clear
which construct or constructs it is actually reflecting (Sanchez [1]).

> datal plsfouter . oo
SActack

Attack Defense Sucocess
=E5SH O.S57Va31l —a.S5=24a345 O.s51=2"7
FESL O.717Ee —O.z=27=25 O. 5550

Shefense

Atrtack Defense Svucoces=s
ZCH —O.<a770 oO.s7e0 —O.s32773
ZCh —O.g31= O.sS263 —A.593a53
SSnooeEess

Arttack Defense SucocesSsS
TMH O.=SZ2Zaez2 —O.7075 O.=s3537
ML O.7O035 —O. 85230 O.=s550

Table 4. The cross-loadings

Secondly, the quality of the structural model is evaluated by examining three indices or quality metrics:
a) the R? determination coefficients, b) the redundancy index, ¢) the Goodness-of-Fit (GoF). These metrics are
given in Table 5. As seen from Table 5, the inner model seems to be fine since the value of R-square, R*= 0.90,
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is higher. It means that the 90% of variance in the Success explained by Attack and Defense. “Av.Redun”
represents the percentage of the variance in the endogenous block that is predicted from the indepedent LVs
associated to the endogenous LV. High redundancy means high ability to predict. In our model, the average
redundancy for Success represents that Attack and Defense predict 68% of the variability of Success indicator.
The third quality metric of model is GoF. GoF can be used as a global criterion that helps us to evaluate the
performance of the model in both the inner and the outer models. Basically, GoF assess the overall prediction
performance of the model. In our model, the value of GoF is 0.79 could be interpreted as if the prediction power
of the model is of 79%. The naive rule of thumb is: the higher, the better. Acceptable “good” values within the
PLS-PM community are GoF >0.7, as the case in our example.

> datal plsiinner.sum

LV.Type Megasure MV=s PR.sgquare Lwv.Comiou Awv, FEedun LUE
Attack Exogen Eflct 2 0.0000000 0.63925011 0.0000000 0.639E5011
Defense Exogen Eflct 2 0.0000000 0.7250808 0.0000000 0.7250208
Suncess Endogen Eflct 2 0.9002366 0.7649069 0,6885972 0.7649069

Table 5. Quality Metrics of structural model

As PLS-PM is a soft modeling approach with no distributional assumptions, it is possible to estimate the
significance of the parameters based on cross-validation methods like jack-knife and bootstrap (Trinchera and
Russolillo [4]). The estimating the precision of the PLS parameter estimates is obtained by using bootstrapping
which is a non-parametric approach. The bootstrap procedure is the following: M samples are created in order to
obtain M estimates for each parameter in the PLS model. Each sample is obtained by sampling with replacement
from the original data set, with sample size equal to the number of cases in the original data set (Sanchez [1]).
The results of bootstrapping are given in Table 6. In table 6, for each of the displayed results, the bootstrap
confidence interval (95%) provided by the percentiles 0.025 and 0.975 should be examined. . This is especially
important for the path coefficients. When bootstrap intervals for the path coeffcients contain the zero, it means
that these coefficients are not significant at a 5% confidence level. As seen from Table 6, the bootstrap
confidence intervals for the Attack and Defense indicators do not contain zero. Hence, the path coefficients of
these indicators are significant at a 5% confidence level.

EOOTSTREAP WALIDATION
weights

Driginal Mean.EBoot Std.Error perc.0zs perc.9vs
S5 H o.7=28 o.737 O.1laa o.5500 a.997
S o.5a7 O.455 o.170 —0.0554 O.Gz20
ZiZ2H O.&831 O.&5343 o.151 0.3656 O.9948
Lelay 0O.531 O.454% O.2865 —0.1604 O.5685
TTMH O.61= O.833 O.14= 0.5154 O.9z26
TIMA o.530 o.479 o.179 —0.2325 O.&a37
loadings

Original Mean.EBoot Std.Error perc.0zZs perc . 975
GSH o.574 o.582 0.133 a.7g9 o.97%a
S o.71g O.540 0.273 -0.=251 0.335
ZiZ2H o.37a 0.35a O.1la:2 O.3a3 O.994
L Lay:} O.3z2a0 o.7z20 0.335 -0.255 O.952
TIMH 0.594 o.599 o.130 0.758z a.973
TIMA O.555 aO.77a O.295 —0.4=4 O.985
paths

Original Mean. Boot Std.Error perc.0z 5 perc.975
LAttack->Success .66 O.&8655 O.1066 o.4z29 o.547
Defense—>3uccess —0.4dz —0.43z25 0O.0933 —0.614 —0.=214
r=o
Driginal Mean.EBoot Std.Error perc.0zs perc.S975
Success o.9 o.903 o.0515 o.78g o.973
total.efs=s
Original Mean.EBoot Std.Error perc.0z5 perc.975

Attack->Defense o.oa o.oaa o.oooo o.oaa o.oaa
Attack->5Success O.66 0O.8655 O.1066 o.4z29 o.547
Defense—>3uccess —0.4dz —0.43z25 0O.0933 —0.614 —0.=214

Table 6. Results of Bootstrapping

In addition to expressing our model in text and mathematical format, we can also display our model in a
graphical format using a path diagram as shown in Fig. 2. As mentioned before, these diagrams help us to
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represent the relationships stated in our models in a visual way. In our example, the following diagram depicts
the relation Success depending on the quality of the Attack as well as on the quality of the Defense. In brief, the
model parameter estimates of PLS-PM of our example are shown in Fig. 2.

Attack

0.89

0.86 WWIMLA

Success

Defense

Fig. 2. PLS-PM analysis of Turkish football teams

As seen from Fig. 2, it is possible to examine the relations between Attack, Defense and Success via path
coefficients: the two LVs Attack and Defense impact in opposite sense on the response Success. However,
Success largely depends on Attack rather than on Defense. The higher attack causes the higher success but the
higher defense causes the lower success. Because the higher defense means that the high values of GCH and
GCA. Namely, teams conceded a lot of goals. Hence, the negative path coefficient related to defense refers to if
the number of conceded goals of a team is increased, the success of the team is decreased. GSH, GSA, GCH,
GCA, WMH, WMA are positively correlated to the LVs Attack, Defense, Success respectively.

Conclusions

In this study, we examine the success of 18 Turkish football teams using PLS Path Model. The relationship
between LVs Attack, Defense and Success are examined. The LV Defense has a negative effect on the Success,
however, the LV Attack is possitive effect on the Success. The Success of the Turkish teams largely depends on
Attack. The better the attack, the more number of GSH and GSA, however, the better defense, the less number of
GCH and GCA. Proposed a model in which the Overall Success depends on the Quality of the Attack as well as
on the Quality of the Defense. Although GCH and GCA have to do with defense, they are measuring “lack” of
defense. If a team has high values of GCH and GCA, they conceded a lot of goals, hence having a poor Defense
quality. Briefly, GCH and GCA are pointing in the opposite direction. Hence, the better Quality of the Defense
means that a team has low values of GCH and GCA.
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Abstract. In this paper, we are interested in estimating a dynamic index of the
concentration of wealth shared by a population of economic agents — Theil’s entropy.
At any time, each agent produces an amount of wealth, independent of other agents.
According to this wealth production, a wealth class (among predefined classes) is
associated to each agent. We suppose that wealth class allocation is governed by a
continuous-time birth-death process so that the repartition of total wealth’s produc-
tion among classes at any time is an explicit function of birth and death rates. Then,
by considering Theil’s entropy of wealth distribution among all classes at any time
yields dynamic concentration index of wealth. If moreover, the birth-death process
is ergodic, then Theil’s entropy associated to the asymptotic repartition of wealth
measures the concentration of wealth when agents’ population reaches its equilibrium
state.

When the class allocation process is observed at equidistant discrete times, it is
necessary to estimate Theil’s entropy index. In the same fashion as in Regnault [10],
we prove the strong consistency and asymptotic normality of plug-in estimators of
dynamic and asymptotic Theil’s entropy, built from empirical estimators of the tran-
sition matrix of the discretized class allocation process. Confidence intervals for
dynamical Theil’s entropy are then derived.

Keywords: Population Dynamic, birth-death Process, Theil’s Entropy, Reward, Es-
timation.

1 Introduction

Both inequality and wealth concentration dynamics within an economic sys-
tem evolving over time have been extensively studied in the last years. In
particular, D’Amico and Di Biase [1] recently proposed and studied stochastic
versions of usual wealth concentration indices. They consider economic sys-
tems involving independent agents whose income evolves over time according
to some discrete-time semi-Markov model. These agents are partitioned into a
few number of economic classes according to their income or some other eco-
nomic, social or demographic feature; concentration wealth among classes is
then measured dynamically by considering its Theil’s entropy at any time —
the so-called dynamic Theil’s entropy. The model has been successfully imple-
mented in D’Amico et al. [2] for simulating an artificial economic system with
immigration, and also in D’Amico et al. [3], applied to studying wealth concen-
tration in several European countries whose citizen are partitioned according
to their age.
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The present paper aims at adapting the framework proposed by D’Amico
and Di Biase [1] to estimating wealth concentration of dynamic economic sys-
tems involving a large number of independent agents, where agents’ income
class allocation is modeled by a continuous-time birth-death process. These
assumptions are mainly motivated by the need of a simple and flexible model
to be estimated and implemented for real applications. The birth-death model
is also supported by previous studies; see Quah [9] and D’Amico et al. [3]
where only transitions from one class to its neighboring classes are shown to
be statistically significant. Moreover, income dynamics is usually modeled by a
discrete time process because measurements of income of individuals occur at
some fixed and known times, for example each year or fractions of year. On the
contrary, agents’ income can change at any time. One major problem is how to
estimate the income inequalities from discrete observations of agents’ income
class allocation continuous-time process. We define and show good asymptotic
properties of plug-in estimators of dynamic Theil’s entropy function built from
discrete observations of one or several agents’ income. We then derive from
these properties confidence intervals for Theil’s entropy.

The paper is organized as follows: Section 2 presents the stochastic model.
Section 3 introduces the dynamic version of Theil’s entropy and its asymptotic
value as time goes to infinity. Finally, Section 4 defines and establishes asymp-
totic properties of plug-in estimators of both dynamic and asymptotic Theil’s
entropy; confidence intervals for Theil’s entropy are then derived from these
properties.

2 The stochastic model

Let an economic system be composed of N economic agents, typically individ-
uals. Each agent i € {1,..., N} produces a quantity X;(t) of wealth — their
income, changing randomly with time ¢ so that X; := (X;(¢)): is a positive
valued stochastic process.

Assume that the system evolves in a non competitive way so that wealth
production of the agents do not depend on each others, that is the stochas-
tic processes X;, i € {1,..., N} are independent. The agents of the system
are classified according to their income and allocated into one of K mutually
exclusive and ordered classes

E ={C,Cq,...,Cx},

such that agent ¢ belongs to Cj, at time ¢ if its income X;(¢) belongs to [wg, wit1],
where w1 =0 < wy < -+ < wrg < w41 = oo are fixed thresholds. Then, let
us introduce for any agent i, the process C; := (Cj(t)):er, that maps income
X;(t) of agent i at time ¢ into its corresponding class Cy, € E.

The main assumptions of the present study are the following.

Assumptions 1 1. the number of agents N tends to infinity;

2. the processes C; = (Ci(t))ier+, ¢ € N* are independent and identically
distributed birth-death processes taking values in E = {Ci,...,Cr} with
common initial distribution v;
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3. gwen k € {1,..., K}, the conditional expectation Wy, := E(X1(¢)|C1(t) =
Ck) 1s constant over time t.

The dynamic of the process C; is completely described by its generator
which is a tridiagonal matrix, say

—-A1 A1 0

o —Xa2 — o Mo
A = ) )

0 MK —HEK
The coefficients \; and py are called the birth and death rates.
Finally, let us define for n > 0 and ¢ € N, the sequence D; := (C;(nm))men
of income classes of agent ¢ at times nm, m € N —say discretized class allocation

process. It is well known that D; is an homogeneous irreducible and aperiodic
Markov chain with transition matrix

P, :=exp(nA);

see for example Bladt and Sgrensen [6]. Thus, the coefficients of the matrix
P,, are probabilities that an agent’s income has moved from one income class
to another after n units of time.

Note that  must be closed to the mean jump time of C; for D; to catch rel-
evant information about Cjy; see Bladt and Sgrensen [6] and references therein
for more details.

Example 1 Service providers such as retail brands constitute economic sys-
tems involving a large number of agents — the customers. Such providers offer
different levels of service according to the budget (or income) X; of customers;
for example, a retail brand can sell several competitive products for a common
use with a large range of prices. Customers are then partitioned into exclusive
economic classes C1,...,Cxk at any time, according to the service level (or prod-
uct) they choose. Any customer allocated to the service class Cy, contributes to
the provider’s turnover by Wy units of money per unit of time, where Wy, is
the price of type k service.

3 Dynamic Theil’s entropy

We are interested here in quantifying the inequality of repartition of the total
wealth into the different classes C,, € E. For this purpose, let us define the
instantaneous share of produced income due to class Cx at time ¢ by

N
_ Dimt Xi(t)l{ci(t):Ck}
= = .
Zz‘:l Xi(t)
One of the most used inequality measure is Theil’s entropy proposed by Theil

[13]. It derives from the mathematical theory of communication founded by
Shannon [12]. As stated in Athanasopoulos and Vahid [4] or Cowell [7], it is

Pk (t) :
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more sensitive to transfers of wealth in the lower tail than in the upper tail. It
is also additively decomposable: for any significant grouping of agents popu-
lation, Theil’s entropy of the whole population can be additively decomposed
to inequality between subgroups and an appropriately weighted average within
each group.

A stochastic version of Theil’s entropy was recently proposed in [1] by con-
sidering the process (T(t)):er, , where

T(t) := Zpk(t) log (ka(t)),
k=1

with the convention 0log(0 = 0.
Assumptions 1.1 and 1.2 and the law of large numbers jointly imply that
the instantaneous share of produced income of class Cj at time ¢ is

</wk+1 zdle(t)(SC)) P(Cy(t) = Cp)

Wk

v, ([ wtre o)) Bert) = )

Wk

__ EX@)[Ci(H) = CR)P(CL(E) = Cr)
S E(Xq (8)|C1 () = C)P(C1 (1) = Ci)

Hence, the multivariate process p(t) = (p1(t),...,px(t))icr, becomes a deter-
ministic function of time. Assumption 1.3 yields

_ WkP(Cl (t) = Ck)
S S TATTAT oS

pr(t)

Theil’s entropy T(¢) of the system at time ¢ thus becomes an explicit function
of the probability distribution of C;(t), and hence, T = (T(t));er, becomes a
deterministic function of time ¢, explicitly determined by the generator A and
the initial distribution v of the allocation class process C;. Precisely,

K

Wi (vexp(tA))k Wi (vexp(tA))k
T(t) = log | K , 2
0= 2 S W ema)), g( zf_lewexp(m»j) )

where v exp(tA) denotes the product of v and exp(tA), and (v exp(tA))y is its
k-th component.

Note that the dynamic Theil’s entropy T can be expressed as a function T'
of the transition matrix P, for time values ¢ of the form ¢ = mn, with m € N.
Indeed, exp(mnA) = exp(nA)™ gives in (2),

K WP ( Wi (VP >
T(mn) =T (P,,m) := L log | K L . (3)
! 2 S S WPy,

Note that T is formally defined on the set of stochastic matrices on E =
{C4,...,Ck}, differentiable on the open set of irreducible transition matrices.
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It is well known that the processes C;, i € N*, are ergodic. Let m =
(m1,m2, ..., Tk ) denote its stationary distribution; see [8] for an explicit expres-
sion. Markov chains D;, ¢ € N*, are also ergodic with stationary distribution
m. Particularly, 7 satisfies 7P, = .

Consequently we can compute the asymptotic value of the dynamic Theil’s
entropy as follows,

. i Wiy Wiy
T(o0) i= lim T(t) = 3 — 5 log | K i — (4)
fmeo =1 2= Wi > i1 Wi,
= TOO(W)ﬂ

where T, is differentiable on the set of probability measures supported by E.

4 Estimation of dynamic Theil’s entropy from discrete
observations

This section aims at studying sequences of plug-in estimators for both dynamic
and asymptotic Theil’s entropy built from discrete observations of income class
allocation process of one (Section 4.1) or several (Section 4.2) agent(s).

4.1 Discrete observations of one agent’s wealth

Let us suppose the income class allocation process C; of one agent are observed
at discrete times mn, up to time M, where M € N, so that a truncated
trajectory of the Markov Chain D; is available. Let Pj; be the empirical
estimator of P, built from D;(0),..., D1(M) as follows:

M-1
Z ]]“{Dl(m):CkaDl(mJl‘l):Cl} M-—1
m=0 3
— if k#land > Wp,m)=c,) # 0,
m=0
PM(/{?, l) — mz_:o ]]-{D1(m):Ck}
= M-1
0 if k # 1 and I p, (m)=c,} =0
m=0

(5)
for (k,1) € {1,...,K}2 Tt is well known (see for instance Billingsley [5]) that
the sequence (f’M)MeN is strongly consistent and that (\/M(f’M —P))nren is
asymptotically normal, with zero mean and asymptotic variance matrix 212:’77
equal to the inverse of the Fisher information of the chain D;.

For any m € N let us define the estimator Ty (mn) of T(mn) built from

P m by plugging it into the function T'; precisely

Tar(mn) == TP, m).
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Because T' is differentiable on the set of stochastic matrices, the sequence
(Tar(mn)) pmen, for m € N, inherits of the good asymptotic properties of
(13 M) Mmen — thanks to the continuous mapping theorem and the Delta method;
see Van der Vaart[14] for details. Precisely, for all m € N,

Tas () —*— T(m),

where .
0 0
B = (5T ®wm) ) 55, (5T 0

Similarly, for estimating the asymptotic Theil’s entropy T(oo), we define
iy (00) by plugging whether the stationary distribution 7y of Py if Py is
irreducible and aperiodic or any distribution supported by E if not, into T,
given by (4); precisely

K

o 51 (it )
= WiEM () i) Wiwn(C))

with the convention 0log0 = 0.
Again, the continuous mapping theorem and delta method ensure the strong
consistency of (Tas(00))pmen and asymptotic normality of (v M (Tas(c0) —

T(c0)))aren, With asymptotic variance £2 ) = (%Tm)t 22 (L7,), where
X2 is explicit.

To estimate T(t) for ¢ € nN is much more complicated. Indeed, (3) does not
hold true anymore. Hence, it is required to estimate the generator of C; from
observations of the discretized chain D; and then to plug this estimator into (2).
The main mathematical obstacle is due to the non-injectivity of the exponential
function for matrices : given the transition matrix P, of Dy, it may exists
several different generators A such that exp(nA) = P, so that the statistical
model may not be identifiable. Regnault [11] shows that the model of birth-
death processes with constant rates, i.e. Ay = A > 0 and pry1 = p > 0 for all
ke{l,..., K —1}, is identifiable. Indeed, the generators of such processes are
proven to have K distinct eigenvalues, a sufficient condition for the uniqueness
of the logarithm matrix of P,. Further investigations would be necessary to
extend this result to the whole family of generators given by (1).

4.2 Discrete observations of several agents’ wealth

Let us now suppose that the discretized income class allocation processes
D4,...,D, of n independent agents up to time M € N is observed. Let PS\Z/I)
be the maximum likelihood estimator of P, given by (5), obtained from the

trajectory D, for each i € {1,...,n} and let

b IRS B (9)
Pryni=— P,
= 2
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define the estimator of P,, obtained as mean of the estimators 135\14), ie{l,...,n}.

The sequence (13 M.n)Men is obviously strongly consistent. Moreover, ob-
serve that v M (P, — P,) = Ly \/M(IA)S\Z) — P,) is the mean of n inde-
pendent, asymptotically normal variables, with the same asymptotic variance
X%, so that

VMn (f)M,n - P,]) — P N(0,52).
M—o0 K

Observing n agents in the place of a unique one thus leads to improve the rate
of convergence by a factor y/n.

Hence, the estimators TMﬁn(mn) for m € N, obtained by plugging IADM,n
into T inherit this asymptotic behavior. Precisely,

']ATM,n(mn) BN T(mn),
M— oo

vVMn (']ATM,,L(mn) — 'H‘(mn)) — 2 N(o, 2 mm))-

M —o0

Similarly, the sequence of estimators of T(o0) given by TM,n (00) = Too(Tar,n),

where Tz, is the stationary distribution of Pyy ., is strongly consistent and
asymptotically normally distributed, with rate of convergence v Mn.

4.3 Confidence intervals for dynamic Theil’s entropy

Confidence intervals for dynamic Theil’s entropy at times mn, where m € N,
can be derived from the asymptotic distribution of estimators P s and Py p,
for n € N* and M large enough. Precisely, given a confidence level o — typically,
a = 0.95, the confidence interval for T(mn) is

~

5 _ Q(lJra)/QEM. -~ Q(1+a)/22M

Pun sPuyn +
P vVMn M vVMn

where q(14q)/2 is the quantile of order (1 + a)/2 of the standard normal dis-

[

tribution and X%, is any strongly consistent estimator of E%(mn built from

independent truncated trajectories of D up to time M. Such an estimator
— (1)
can be obtained by computing the inverse Fisher’s information matrix X3

~ — (1)
of the empirical transition matrix PS\}[) and hence by plugging both 2123” y and

Pl into (6).

Although a thinner study could refine the following limitation, we recom-
mend to use the normal asymptotic distribution for M larger than 100 units
of time when K < 5, so that truncated trajectories Dy,..., D, catch enough
information about system’s dynamics.

Other applications of the central limit theorem would be of interest, such
as computing the minimal number n of customers to observe to ensure a given
accuracy of the estimation of Theil’s entropy, for a given M > 100.
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Abstract. In this work, we intend to analyze the progression of renal function in
patients of Hope Hospital in Salford, England. The aim of this work is to model
the evolution of creatinine in the blood taking into account that time measurements
depend on the responses obtained. For that, we propose a model that considers
dependence between the longitudinal outcome process and the follow-up time process.
This model use subject-specific random effects to describe the association between
the two processes of interest and a joint-likelihood-based estimation was developed
for estimation. We will also analyze the same data with a standard longitudinal
model which ignore the dependence assumption, aiming to compare the results of
the two analyzes. The principal difference between these two models and different
approaches is that, the standard longitudinal model considers the follow up time
process as deterministic while the model that we propose considers the follow up
time process stochastic.

Keywords: Follow up Time Process, Longitudinal Analysis, Monitoring Kidney
Function.

1 Introduction

Renal failure is a disease caused by the slow and irreversible loss of renal func-
tion. It is defined by progressive loss of the ability of the kidneys to filter, re-
sponsible for eliminating toxic products to the body and producing substances
essential to life. Often, the loss of renal function is silent in the absence of the
manifestation of symptoms for extended periods in time. There are already
some risk factors known for kidney failure such as diabetes, hypertension and
patient age.

For the control of renal failure, the creatinine level in blood should be moni-
tored. The kidneys control levels of creatinine in the blood, therefore it is an
indicator for evaluating kidneys performance. High levels of creatinine in the
blood warn for possible failure in the functioning of the kidneys.

The times where measurements of creatinine are observed are decided accord-
ing to the patient’s clinical status. For example, if the patient on the last
measurement had a high value of creatinine in the blood, the patient will be
measured sooner than other patient with a creatinine value within normal val-
ues. Thus, in this context, the measurement times are considered dependent of
the longitudinal responses and the follow up time process can not be considered
deterministic in the study design.
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In standard longitudinal models (Diggle et al.[4]), the follow up time process is
assumed deterministic, meaning, the follow-up time process is noninformative
about the outcome longitudinal process of interest. Therefore, this type of anal-
ysis does not considered the dependence that can exist between the follow-up
time process and the longitudinal outcome process. In recent years, a number
of authors have considered the situation where longitudinal outcome process is
correlated with the follow up time process (Sun et al.[2]; Ryu et al.[1]; Liang
et al.[6]).

In this work, we intend to analyze the progression of renal function in patients
of Hope Hospital in Salford, England. The aim of this work is to model the evo-
lution of creatinine in the blood taking into account that time measurements
depend on the responses obtained. For that, we propose a model that considers
dependence between the longitudinal outcome process and the follow-up time
process (Rocha et al.[3]). This model use subject-specific random effects to
describe the association between the two processes of interest. For estimation,
a joint-likelihood-based estimation was developed. We also use a standard lon-
gitudinal model which assumes follow up time process as deterministic, aiming
to compare the results of the three approaches.

2 The Data Set

For study the progression of renal function in patients of Hope Hospital in
Salford, England, we used two data sets: one with primary and secondary
care patients and other data set with healthy patients (Hoefield et al.[5]). The
response variable of interest is the indicator eGFR (estimated gromelular fil-
tration rate). Doctors suggest that a person with an annual rate of decrease in
eGFR exceeding 5% should be referred to a specialist treatment center.
Below, we show some information about the two data sets.

Healthy patients

162.394 patients;

Of these 162.394 individuals, 74.222 were males and 88.172 were female;
9% of the patients died during the study;

The age range 18 to 106 years, and the average is about 57 years;

The patients follow up was maximum of 2502 days (approximately 7 years).
The average length of patients follow up is 616 days (approximately 1 year
and 8 months).

Primary and secondary care patients

18.350 patients;

Of these 18.350 individuals, 9.457 were males and 8.893 were female;
25.8% of the patients died during the study;

The age range 18 to 106 years, and the average is about 70 years;

The patients follow up was maximum of 3066 days (approximately 8 years
and half). The average length of patients follow up is 938 days (approxi-
mately 2 years and half);
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e In this data set we have information about some risk factors: 45.3% of
the patients have diabetes, 17.3% had a myocardial infarction, 21.9% have
hypertension, 20.3% of the patients take ACE drugs and 6.4% take AT2
Blockers drugs.

Figure 1 show the logarithm of eGFR versus patient age of two databases.
The solid red line in the graphs represent the mean estimate of evolution using
the function smooth.spline in software R. It is known that, as will the age of
patients increases, renal function worsens. It is found that, from the age of 65,
measurements of the logarithm of eGFR are worse. As expected, patients in
primary and secondary, on average, have values of eGFR lower than healthy
patients. This means that patients in primary and secondary care are with
renal function in worse condition than healthy patients.

log(eGFR)
a4 46
L L

logteGFR)
a2
L
log(eGFR)

40
L

3.8

= 1 = Primary and Secondary Care% a4
= Healthy Patients
T T T T T
20 40 60 80 100 20 40 60 80 100
20 40 60 80 100
age (vears) age (years)
age (vears)

Fig. 1. Evolution of renal function in healthy patients and primary and secondary
care patients

3 Notation and Model

Consider Yj; the variable response observed in the individual i = 1,,7n at time
t;j = 1,,m; and X;; a matrix of covariates with dimension Nxp. Consider the
model defined as

Yij = BXi; + Wilti;) + Ui + € (1)
where (3 is the vector of regression parameters and €;; are independent re-
alizations of a Gaussian variable with Ele;;] = 0 and Varle;;] = 72. Con-

sider U; as the random effect of individual i, where U; ~ Normal(0,~?%) and
Wi (ti;) as the serial correlated variation for individual 4, where E[W;(t;;)] = 0,
Var[W;(ti;)] = o2 and Corr[W;(t;;), W;(tij — u)] = p(u). Also consider the
follow up time process T;; defined as

T, ~ Expl\(t;)]  and  A(t;) = Expla + p /0 Tyia @)
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where « and p are unknown parameters. The difference between the standard
longitudinal model and our model is that, the standard longitudinal model
considers the follow up time process T as deterministic while our model con-
siders the follow up time process stochastic. The parameters are estimated by
maximizing the likelihood function, using the function optim (for our model)
and the function Ime (for the longitudinal standard model) in software R.

4 Discussion

In this work, we propose a model for repeated measures in the presence of
informative observation times. For the model adjusted to the data, the effect
of age is negative. This simply means that will as, renal function decreases
with age.

It was also observed that there is a changing point in age effect at 65 years
of age where the decrease of renal function happens more rapidly. Is also the
starting of 65 than the difference between the renal function of patients in
primary and secondary and healthy patients is increased.

We believe that the model proposed is the most appropriate model to the data
concerned.
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Abstract. The Kumaraswamy distribution is similar to the Beta distribution but has the
key advantage of a closed-form cumulative distribution function. In this paper we present
the estimation of Kumaraswamy distribution parameters based on Generalized Order
Statistics (GOS) using Maximum Likelihood Estimators (MLE). We proved that the
parameters estimation for Kumaraswamy distribution can not be obtained in explicit
forms, and therefore it has been implemented using the simulated data for illustrative
purposes. We compare the performances of parameters estimation through an extensive
numerical simulation for different sample sizes. These simulations examine the
sensitivity of estimation to different sample sizes. In particular, how do estimations
perform for small, moderate and large sample sizes? The main findings are: First, the
worst performance estimation for small sample size selection for different values of the
parameters estimation. Secondly, as the sample size increases the MSE of the estimation
decreases. Finally, the estimation accuracy reaches its superiority for large sample sizes.

Keywords: Kumaraswamy Distribution, Generalized Order Statistics, Simulation,
Maximum Likelihood Estimators.

1 Introduction

Poondni Kumaraswamy was a leading Indian engineer and hydrologist.
Kumaraswamy[9] introduced the distribution for variables that are lower and
upper bounded. With its two non-negative shape parameters p and q, it was
originally conceived to model hydrological phenomena, (See for example
Mitnik[10]). The Kumaraswamy distribution is a continuous probability
distribution with double-bounded support, defined on the interval [0,1] differing
in the values of their two non-negative shape parameters p and ¢. It is similar to
the Beta distribution but has the key advantage of a closed form cumulative
distribution function, Carrasco et al.[4].

Generalized Order Statistics (GOS) concept was introduced by Kamps[8]
as a unified approach to several models of ordered random variables such as
upper order statistics, upper record values, sequential order statistics, ordering
via truncated distributions, censoring schemes, among others. Ateya and
Ahmad[3], Jaheen[7], Habibullah and Ahsanullah[6], Ragab and Ahsanullah
[11]among others, utilized the GOS in their works.

Abu El-Fotouh and Nassar[1] have investigated the estimation problem
for the unknown parameters of Weibull extension model based on GOS by
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Maximum Likelihood Estimators (MLE). Alkasasbeh and Raqab[2] considered the
MLE of the different parameters of a generalized logistic distribution and
compared the performances of these procedures through an extensive numerical
simulation.

This paper is organized as follows. Section 2 presents some basic
definitions; Section 3 demonstrates the estimation of  Kumaraswamy
distribution parameters based on GOS Using MLE, the main results of this
paper are stated and proved. Simulation study is shown in section 4; and Section
5 summarizes the important results.

2 Preliminaries
In this section, we introduce some basic definitions.

Definition 2.1 The random variables X (1 n n%k) (n,n,n%k)are

called GOS based on the Cumulative Distribution Function (cdﬁ, F (x), if their
joint probability density function (pdf) is given by Kamps|[§].

1 )= (T, 0P GO 7 )07 7 ) 22D

on the cone F™'(0)<X, <X,<..<X <F'(l) of ™", with parameters

ne¥, n22, k>0, W=(m,...m,_)e" """, M, i)m , such that

j=r

y,=k+n—r+M, >0 for all re{l.n-1, let ¢ =7

J=1

r=1,2K.,n-1and y, =k .

Special Case
Given Definition 2.1, let £k =1 and m, =m, =...=m, |, =zero , then the joint

pdf of all Ordinary Order Statistics (00S) is f (x,,...,x, ) = [nﬂl 7; }[ﬁf (x, )}
j=l i=l

n-1 n—1
[H;f}}:ﬂ(k+n—j+Mj) M, zm =zero . Then
j=1 j=1

r=j

Therefore, the joint pdf of all OOS f (x =n 'H f (x,), which is the well
known pdf of all OOS.

Definition 2.2  The pdf of the Kumaraswamy distribution is given by
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1 z—cY" z-cY "
L(z)= - (2.2)
/2 () (b—c)pq(b—cj {1 [b—cH o<z b,

with shape parameters p >0 and ¢ > 0, and boundary parameters c and b. The
standard form of the Kumaraswamy density function (¢ =0, b =1), kum (p.q)

is given by
fy(xspg)=pgx"" (I—X’")‘F1 (2.3)

The closed form of the cdf of the Kumaraswamy distribution is given by
Fx;pg)=1-(1-x") (2.4)

Definition 2.3 The joint pdf of X (1,n,Mok ), X (2,n,Mok ),...X (n,n,Mok )

for Kumaraswamy distribution is
n-1 n-1

S (xiex, )=k {H?i }H[(l—xip )qmi pgx,”" (l—x,-” )qil](l—xn/’)"("fl) X
j=1 i=1

q-1

pgx,”" (1-x,")
(2.5)

3. Estimation of Kumaraswamy Distribution Parameters
Based on GOS Using MLE

The method of MLE is, by far, the most popular technique for deriving
estimators and a reasonable choice for an estimator. The MLE is the parameter
point for which the observed sample is most likely. In general, the MLE is and a
good point estimator, possessing some of the optimality properties such as
invariance property of MLE, Casella and Berger[5]. In this section, the
estimation of Kumaraswamy distribution parameters based on GOS using MLE
will be derived. Furthermore, the estimation of Kumaraswamy distribution
parameters based on OOS will be derived as special case when £ =1
andm =0.

Theorem 3.1 Let X (1,n,Mok ), X (2,n,Mok ),....X (n,n,Mok ) be n GOS for

Kumaraswamy with parameters p and ¢, i.e. X has kum(p,q). The estimation of
Kumaraswamy distribution parameters based on GOS for p and ¢ are given by

,,Zl{lnxi (1_[]”(;111, +1)x1f3)J+lnx" (l—({kxf) -1

3P p
I-x]

n

p=-n (3.1

i=1 I-x

and
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qA:—nrl(m,.+1)ln(1—xf)+kln(l—xf)}, (3.2)

i=

respectively.

Proof. The likelihood function for GOS for kum(p,q) is defined by

n-1 n-1 gm; _ q-1 q(k-1)
Lpagi) =k | Ty, |TT) (15 L (E0 R ((EE D B
(p.q:%) LH/,}H}( x )" pgx " (1-x,7) |(1-x,7)

pax, " (1-x,7)"

Collecting terms, L(p,q;x) can be written as

n-1 n-1
L(p,q;x) =k [H}?’,}[l—[l(l_x,-p)q(miﬂ)lpqx[p1}(1—)6””)”"lpqx,fl (3.3)
j= i=

While this function in (3.3) is not all that hard to differentiate, it is much easier
to differentiate the log likelihood. Now take logarithm on both sides of (3.3) to
get

In [L (p,q,‘x )] =
Ink +j§ln 7 +jz;ll[(q(mi +l)—1)ln (l—xi")+lnp+lnq +(p—l)lnxl.]
+(qk —l)ln(l—xnp)+lnp+lnq +(p—1)lnxn

Take the first partial derivatives, with respect to p and ¢, and collecting
terms, we find that

oln[L(p.q;x)] _ nzlllnxi (l—q (m, +1)xi”)]+lnxn (l_qu’[’))Jrﬁ’ ind
op i 1-x? I-x?” p

%ﬁ;q;xﬂ:g[(% +1)in(1-x7 )]+ ln(l—x,f)+§,

respectively.

Setting these first partial derivatives equal to zero and solving forp and ¢,
yield the solution

et ) ]
+ ~

p=-n|x 7 > , and

l-x, I-x!

g :—n[i(m[ +1)In(1-x7)+k ln(l—xf)}l,

i=1

respectively.
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Evaluating the second derivative at p=p and ¢g=qg yield
*in|L(p.,q;x in|L(p,q;x
Tl 1o g PPN 1 e
P p=p 4 9=4 4

each of p and ¢ is the local maximum, and since they are the only values
obtained when the first partial derivatives are equal to zero, then p and g are
the global maximum for the likelihood function In [L ( J X )] This completes
the proof of the Theorem. []

Corollary 3.1 The estimation of Kumaraswamy distribution parameters based
on OOS for p and ¢ are given by

p=n z[m(l—_qx)] , (3.4)

i1 1-x!

i

and

(i:—n(iln(l—x;}))q, (3.5)

i=1

respectively.

Proof. Let m =0 and £ =1 in (3.1), then

nzl[lnxi (1_‘ijiﬁ )]+ lnxn (1—éx’/j) -1

p=-n and collecting terms, we get
I-x? 1-x7?

i

ia
(3.4).
Let m =0 and k =1 in (3.2), then ci:—n[}ijln(l—xi”)+ln(l—xf)}1 and
collecting terms, we get (3.5). This completes thé proof of the Corollary. []

Equations (3.1), (3.2), (3.4) and (3.5) are complicated and consequently
computer facilities and numerical solutions are needed to compute p and ¢ .

4 Simulation Study

In this section, since there are no closed forms for the estimation of
Kumaraswamy distribution parameters, we consider the simulation technique
for the estimation of Kumaraswamy distribution parameters p and ¢ for

different sample sizes. These simulations examine the sensitivity of estimation
to different sample sizes. In particular, how do estimations perform for small,
moderate and large sample sizes?
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Definition 1. The efficiency of the parameter estimation for sample size n,
relative to that of n, in terms of the Mean Squared Error (MSE) of the
parameter p , RE ( ﬁ) , 1s given by
r n 2
nZ. 1(pi.n1 _pnl)

RE (p)=—"— T (4.1)
n Z(pi.n2 _Pnz)
i=1

where r represents the number of simulations. Note that, p, and p, are the

true parameters values for the two samples sizes n, and n,, respectively. A
ratio greater than one indicates that the parameter estimation for the sample size
n, is less efficient than sample size n, estimate, and if RE (p) is close to one,
then the parameter estimation for the sample size n, is nearly as efficient as
sample size n, estimate. We will look for different pairs of parameters for
Kumaraswamy distribution that we can use to characterize the efficiency ratio,
such as p=g=1, p=1,qg=2, p=2,q=1 and p=qg =2. We will try to
find an answer to the following question: How robust are Kumaraswamy
parameter estimations for different sample sizes?

4.1 The Simulation Setup
Three finite sample sizes (50, 200, and 500) and four values for the
parameters p andg . We also generated a simulation of length 500 observations

for each of the selected parameters; (p,q): (1,1), (1,2), (2,1) and (2,2).

4.2 The Simulation Results for RE ( 13)
Table (4.1) shows the complete simulation results for all selected parameters for
Kumaraswamy distribution; ( p,q): (1,1), (1,2), (2,1) and (2,2) for three finite
sample small, moderate and large sizes (50, 200, and 500). The estimated
values of the parameters and their corresponding MSEs are given. In addition,
the ratios of parameter estimationp , RE ( 13), for sample size n, relative to
that of 7, in terms of the mean squared error are shown.

Looking at the Table (4.1), we see that for the parameter p =1, the
relative efficiency of the MSE for estimating the parameter p =1 with sample

size 50 with respect to 200 equals 19.3. This means the parameter estimation
error for small sample size (n =50) is about 19 times for moderate sample size
(n=200). While the relative efficiency of the MSE for estimating the
parameter p =1 with sample size 50 with respect to 500 equals 113.0. This

means the parameter estimation error for small sample size (n =50) is about
113 times for large sample size (n =500). This result is the worst performance

6
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of small sample size selection as compared to large sample size for estimating
the parameter p . In addition, the relative efficiency of the MSE for estimating

the parameter p =1 with sample size 200 with respect to 500 equals 5.9. This

means the parameter estimation error for moderate sample size (n =200) is
about 6 times for large sample size (n =500 ). This result indicates that as the
sample size increases the MSE of the estimated parameters decreases. This
indicates that the MLE tend to its true parameters values. In other words, the
estimation accuracy reaches its superiority as the sample size gets larger and
larger. Results for the other sample sizes and different parameter choices for
Kumaraswamy distribution demonstrate a similar pattern as shown in Table
(4.1).

Table 4.1. Estimation of the Parameters for Kumaraswamy Distribution p and
q for Different Sample Sizes

Parameters| sample size| # | MSE (P)|RE ()| 4 |MSE(4) |RE(4)
p-a-! 50 1.00115| 0.000379 19.3* ]0.988747|0.000166691| 6.2*
200 0.994804| 0.000020 | 113.0** |0.988783| 0.000027 | 37.4**
500 0.994319] 0.000003 5.9%** 10.985543| 0.000004 | 6.1%**
p=l.a=2 50 0.852075| 0.002560 17.9*% 11.447103| 0.020512 27.2%
200 0.945802| 0.000143 | 387.6** |1.767986| 0.000755 | 173.9%*
500 0.971881] 0.000007 | 21.7*** |1.877155] 0.000118 | 6.4***
p=2.a7l 50 1.638147| 0.005442 7.9* 10.931092| 0.000379 5.0%
200 1.660116] 0.000692 | 29.7** 0.893285| 0.000074 9.6%*
500 1.718804] 0.000183 | 3.8*** |0.91861 | 0.000039 | 1.9%**
pra= 50 1.320175| 0.019067 50.4* |1.291178]0.050228212| 77.1*
200 1.852513] 0.000379 | 299.5** [1.829603| 0.000652 | 462.1**
500 1.940557| 0.000064 | 5.9%** [1.894831| 0.000109 | 6.0%**

* RE estimate of n;=50 relative to n,=200.
**RE estimate of n,=50 relative to n,=500.
*** RE estimate of 7,=200 relative to n,=500.

5. Conclusions
This paper deals with the estimation of Kumaraswamy distribution parameters
using maximum likelihood estimators. Statistical estimation of Kumaraswamy

distribution parameters have been derived based on generalized order statistics.
Special cases are also deduced for ordinary order statistics. The resulting

7
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equations are complicated and numerical solutions for parameters p and g is
recommended. The simulation technique is discussed.
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Abstract. This paper presents a novel bio-inspired algorithm to tackle complex op-
timization problems: the Coral Reefs Optimization (CRO) algorithm. The CRO
algorithm artificially simulates a coral reef, where different corals (namely, solutions
to the optimization problem considered) grow and reproduce in coral colonies, fight-
ing by choking out other corals for space in the reef. This fight for space, along
with the specific characteristics of the corals’ reproduction, produces a robust meta-
heuristic algorithm, shown to be powerful for solving hard optimization problems. In
this research the CRO algorithm is detailed and tested in several continuous and dis-
crete optimization problems, obtaining advantages over other existing meta-heuristic
techniques. The obtained results confirm the excellent performance of the proposed
algorithm.

Keywords: Coral Reefs Optimization algorithm, optimization problems, modern
meta-heuristics, bio-inspired algorithms.

1 Introduction

In the last years, huge research efforts have been conducted towards solving
hard optimization problems, by well balancing the trade-off between the com-
plexity incurred by the utilized method and the optimality of the produced
solutions. These problems, often characterized by search spaces of high dimen-
sionality (either discrete or continuous), non-linear objective functions and/or
stringent constraints, arise frequently in Science and Engineering applications.
In such fields, classical optimization approaches do not provide in general good
solutions to these problems, or are just not applicable, due to the unmanageable
search space structure or its huge size.

In this context, modern optimization heuristics and meta-heuristics have
been lately the core of research, aimed at solving the aforementioned lack of ef-
ficient methods. A good number of such algorithms are bio-inspired techniques
such as evolutionary algorithms (EA), which includes a whole family of tech-
niques such as Genetic Algorithms [1], Evolutionary Strategies [2], Evolutionary
Programming [3], Differential Evolution [4], among others. These schemes are
based on concepts borrow from natural evolution and survival of the fittest in-
dividuals in Nature. Likewise, Ant Colonies Optimization (ACO) [5] are based
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on the social behavior of ants, Particle Swarm Optimization (PSO) approaches
[6] are in essence elegant algorithms specially well-suited for continuous opti-
mization problems. They imitate the behavior of birds flocks or fish schools.
There have been more research activity on bio-inspired meta-heuristics, with
approaches such as Artificial Bee Colony [7], the Invasive Weed Optimization
Algorithm (IWO), [8], based on weed growth and their invasive properties,
or the so-called Cuckoo search approach [9], built upon the reproduction and
breeding of the cuckoo bird, among others.

In this paper we present a novel bio-inspired meta-heuristic for optimiza-
tion problems, which will be hereafter coined as the Coral Reefs Optimization
(CRO) algorithm. The CRO algorithm is based on an artificial simulation of
the process of coral reefs’ formation and reproduction. During this process,
the CRO algorithm emulates different phases of coral reproduction and fight
for space in the reef, which ultimately renders an efficient algorithm for solving
difficult optimization problems. The proposed CRO approach can be regarded
as a cellular-type evolutionary scheme, with superior exploration-exploitation
properties thanks to the particularities of the emulated reef structure and coral
reproduction. The performance of the proposed approach has been tested in
different benchmark problems obtaining very good results in comparison with
alternative approaches in the literature.

The rest of this article is structured as follows: for the sake of self-completeness
of the manuscript, the next section provides an introduction to coral reefs and
corals’ structure and reproduction. Next, Section 2 presents the CRO algo-
rithm in detail, including an analysis of similarities and differences with other
existing meta-heuristics. Section 3 shows the performance of the CRO algo-
rithm in different optimization problems. Finally, Section 4 ends the paper by
giving some concluding remarks.

2 The Coral Reefs Optimization algorithm

The CRO is a novel meta-heuristic approach based on corals’ reproduction and
coral reefs formation. Basically, the CRO is based on the artificial modeling of
a coral reef, A, consisting of a N x M square grid. We assume that each square
(¢,7) of A is able to allocate a coral (or colony of corals) = ;, representing
a solution to a given optimization problem, which is encoded as a string of
numbers in a given alphabet Z. The CRO algorithm is first initialized at
random by assigning some squares in A to be occupied by corals (i.e. solutions
to the problem) and some other squares in the grid to be empty, i.e. holes
in the reef where new corals can freely settle and grow in the future. The
rate between free/occupied squares in A at the beginning of the algorithm is
an important parameter of the CRO algorithm, which is denoted as rho, and
note that 0 < pg < 1. Each coral is labeled with an associated health function
f(Zij) : T — R, that represents the problem’s objective function. The CRO is
based on the fact that reef will progress, as long as healthier (stronger) corals
(which represent better solutions to the problem at hand) survive, while less
healthy corals perish.
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After the reef initialization described above, a second phase of reef forma-
tion is artificially simulated in the CRO algorithm: a simulation of the corals’
reproduction in the reef is done by sequentially applying different operators.
This sequential set of operators is then applied until a given stop criteria is met.
Several operators to imitate corals’ reproduction are defined, among them: a
modeling of corals’ sexual reproduction (broadcast spawning and brooding), a
model of asexual reproduction (budding), and also some catastrophic events in
the reef, i.e. polyps depredation. After the sexual and asexual reproduction,
the set of larvae formed (new solutions to the problem), try to locate a place to
grow in the reef. It could be in a free space, or in an occupied once, by fighting
against the coral actually located in that place. If larvae are not successful in
locate a place to grow in a given number of attempts, they are depredated in
this phase. This second phase of the CRO can be detailed as follows:

1. Broadcast Spawning (external sexual reproduction): the modeling of coral
reproduction by broadcast spawning consists of the following steps:

1.a. In a given step k of the reef formation phase, select uniformly at random
a fraction of the existing corals py, in the reef to be broadcast spawners.
The fraction of broadcast spawners with respect to the overall amount
of existing corals in the reef will be denoted as F;. Corals that are
not selected to be broadcast spawners (i.e. 1 — F}) will reproduce by
brooding later on, in the algorithm.

1.b. Select couples out of the pool of broadcast spawner corals in step k.
Each of such couples will form a coral larva by sexual crossover, which
is then released out to the water. Note that, once two corals have been
selected to be the parents of a larva, they are not chosen anymore in
step k (i.e. two corals are parents only once in a given step). These
couple selection can be done uniformly at random or by resorting to
any fitness proportionate selection approach (e.g. roulette wheel).

2. Brooding (internal sexual reproduction): as previously mentioned, at each
step k of the reef formation phase in the CRO algorithm, the fraction
of corals that will reproduce by brooding is 1 — F}. The brooding mod-
eling consists of the formation of a coral larva by means of a random
mutation of the brooding-reproductive coral (self-fertilization considering
hermaphrodite corals). The produced larva is then released out to the
water in a similar fashion than that of the larvae generated in step 1.b.

3. Larvae setting: once all the larvae are formed at step k either through
broadcast spawning (1.) or by brooding (2.), they will try to set and grow
in the reef. First, the health function of each coral larva is computed.
Second, each larva will randomly try to set in a square (i,j) of the reef.
If the square is empty (free space in the reef), the coral grows therein no
matter the value of its health function. By contrast, if a coral is already
occupying the square at hand, the new larva will set only if its health
function is better than that of the existing coral. We define a number « of
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attempts for a larva to set in the reef: after x unsuccessful tries, it will be
depredated by animals in the reef.

4. Asezxual reproduction: in the modeling of asexual reproduction (budding
or fragmentation), the overall set of existing corals in the reef are sorted
as a function of their level of healthiness (given by f(Zj;)), from which a
fraction F,, duplicates itself and tries to settle in a different part of the reef
by following the setting process described in Step 3. Note that a maximum
number of identical corals (i) are allowed in the reef.

5. Depredation in polyp phase: corals may die during the reef formation phase
of the CRO algorithm. At the end of each reproduction step k, a small
number of corals in the reef can be depredated, thus liberating space in the
reef for next coral generation. The depredation operator is applied with a
very small probability P; at each step k, and exclusively to a fraction Fy
of the worse health corals in A. For the sake of simplicity in the parameter
setting of the CRO algorithm, the value of this fraction may be set to
Fy = F,. Any other assignment may also apply provided that Fy+ F, <1
(i.e. no overlap between the asexually reproduced and the depredated coral
sets).

3 Experiments and Numerical Results

In this paper we carry out a first performance assessment of the proposed CRO
algorithm in different test problems. Specifically, different well-known contin-
uous and discrete benchmark problems are under consideration: continuous
analytical functions and several instances of the Maz-Ones and 3-bit Deceptive.

We have selected other meta-heuristic algorithms for comparison: Evolu-
tionary Algorithms, Genetic Algorithms (EA and GA, [1]) and Harmony Search
(HS, [10]), which have obtained excellent results in a wide range of optimiza-
tion problems during the last years. Regarding the continuous benchmark
problems, we have compared the results obtained by the CRO in the same
problems tackled in [11].

Following this rationale, the encoding strategy used to represent the pro-
duced solutions for the aforementioned problems is set identical for all the
algorithms under comparison. Specifically, real encoding has been adopted for
the continuous benchmark problems, whereas the Maxz Ones and 3-bit Decep-
tive problems resort to standard binary encoding. On the other hand, values of
all parameters controlling the CRO approach have been set to be comparable
to that of its counterparts tested in every benchmark function. Therefore we
have kept the number of function evaluations constant for all the compared
algorithms in Mazones (15000), whereas for the 3-bit Deceptive problem the
total number of function evaluations is set to 50000 for GA and HS, and 30000
for the proposed CRO. In the continuous benchmark functions, we have set the
number of function evaluations to be comparable with the results in [11]. For
every simulation instance, 30 executions of each algorithm have been launched
S0 as to obtain well-sampled performance statistics (best, average and standard
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deviation of the metric after all iterations are done). Note that the size of the
population — N x M for CRO, population length L for the GA, and harmony
memory size HM for HS — have been set equal for all the experiments for the
sake of fairness in the comparison of the algorithms: in the Max Ones problem
N x M =5x10, L = 50 and HM = 50 and in the 3-bit Deceptive problem
N x M =10 x 10, L = 100 and HM = 100. The CRO parameters F; and p
has been set to F, = 0.9 and p = 0.7, unless otherwise stated in the discussion
on the specific simulated application.

3.1 CRO Evaluation in Continuous Benchmark Problems

This first round of experiments includes four well-known benchmark functions,
on which the proposed CRO is comparatively assessed with respect to different
hybrid evolutionary algorithms described in [11]. In these experiments we have
incorporated Gaussian and Cauchy mutations [3] in the internal reproduction
(brooding) of the corals in order to accommodate the corresponding operator
to the real encoding of the solutions. In the Gaussian mutation we have estab-
lished a fixed standard deviation o = (max — min)/100, where maz and min
are the maximum and minimum values that each component of the solution
can take, whereas in the Cauchy mutation the value of the 7 parameter has
been fixed to 1 following the guidelines in [3]. The rest of operators in the CRO
are the ones shown in Section 2.

Table 1 lists the results obtained by three different versions of the CRO
(with Gaussian, Cauchy and Gaussian-Cauchy internal reproduction) in the
benchmark functions tackled in this first round of experiments. Also included
are the results for different versions of the hybrid evolutionary algorithm pro-
posed in [11], labelled as Hybrid Adaptive Evolutionary Algorithm (HAEA) in
what follows. It is straightforward to note that the CRO approach is able to
obtain better results than the different versions of HAEA consistently — and
with statistical significance positively checked through Kruskal-Wallis tests —
in all the functions under consideration. The inclusion of both Gaussian and
Cauchy mutations in the brooding coral reproduction (always maintaining the
number of functions evaluations) appears to improve the performance of the
CRO solver.

3.2 CRO Evaluation in Discrete Benchmark Problems

The first discrete benchmark problem considered is the well-known Max Ones
problem, often used in a number of previous works aimed at evaluating different
approaches of genetic algorithms (e.g. see [?,11] and references therein). This
optimization problem is defined in a binary search space S = {0,1}", where n
stands for the dimension of the space. The One Max problem is then defined
as

xES

max f) = 23w (%], (1)
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Table 1. Results (mean/standard deviation) obtained in the different continuous

benchmark functions tested.

Algorithm Rosenbrock Schwefel Rastrigin Griewank

CRO (G) 7.0-107°/5.0-107°1.3-107%/2.0-107° 7.1-107%/3.0-10~% 0.22/0.05

CRO (C) 7.2-107°/5.6-10751.3-107*/1.6-107% 6.7-1073/2.3 - 1072 0.03/0.02
CRO (G+C) 2.3-107°/1.0-107° 1.3-107*/1.4-107% 4.3-1073/1.5 - 107® 0.05/0.02
HAEA (XUG) 7.0-107*/1.0-107°  5.6-1073/0.01 0.05/0.02 0.055/0.03
HAEA (XU) 4.1-1073/4.0-1073 1.3/0.93 0.24/0.15 0.5/0.2
HAEA (XG) 1.3-1073/3.6-107° 140.5/123.7 7.7/3.2 0.05/0.02
HAEA (GU) 1.4-107*/2.5-1073 201.9/81.2 6.3/1.4 1.6/0.38

Despite the evident simplicity of its definition, this problem is challenging for
optimization algorithms when dealing with large values of the space dimension-
ality n.

Table 2 summarizes the results (maximum, average and standard deviation)
obtained by CRO, GA and HS in Maz Ones instances of varying size from
n = 50 to n = 500. As one may expect, in the scenarios of smallest dimension
all the utilized heuristic approaches are able to obtain the optimum solution
(100%) in every run of the algorithm. However, when the dimensions of the
simulated problem increase, the differences between the CRO and the other
tested algorithms become more significant. Specially remarkable is the fact
that the CRO obtains the best value in all the instances with a very high
probability (over 99% of the times in which the algorithm was run). HS also
obtains good solutions, but notably worse than the GA even in the smallest
instances. By contrast, the CRO clearly dominates GA and HS, specially in
the largest Max Ones instances.

Table 2. Results obtained by CRO, GA and HS in Maz Ones problems of increasing
size. The results are shown in best/average/standard deviation over 30 runs of the
algorithms.

n CRO GA s
50 100,/100,/0 100/100/0 100/100/0
100 100/100/0 100/100/0 98/95.67/0.92
150 100/100/0 100/100/0  94.67/90.84/1.13

200 100/99.98/9.12-107*
250 100/99.97/7.3-107*
300 100/99.96 /8.45-10~*
350 100/99.96/9.8 - 10~*
400 100/99.95/7.3-107*
450  100/99.93/0.13

500  100/99.92/0.1

100/99.93/0.17  90/87.32/0.88

100/99.81/0.25  86.80/84.64/1.04
100/99.61/0.39 83.67/82.0700/0.62
100/99.21/0.46 81.4300/80.03/0.71
99.50/98.67/0.58 79.50,/78.45/1.04
99.55/98.11/0.67 78.67/76.97/0.99
98.60/97.04/0.75  78/75.99/0.69
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The second discrete benchmark problem addressed is the maximization of
the aforementioned 3-bit Deceptive function, which has been previously utilized
to evaluate different improvements in genetic and evolutionary heuristics [11].
The 3-bit deceptive function is a binary optimization problem defined in blocks
of 3 bits. Each 3-bit block is assigned a value according to Table 3. The
optimization of the function is known to be computationally hard for heuristic
algorithms, since the 111 block (optimum since it is assigned the highest value)
is “surrounded” by low-valued blocks of two 1s (i.e. with small Hamming
distance with respect to 111). Different size functions (integer multiple of 3)
are considered in this study, i.e. n = {15, 30,45, 60, 75, 90, 105, 120}.

Table 4 shows the results obtained by the CRO in the considered 3-bit De-
ceptive functions, and its comparison to those of HS and GA. In this problem
the CRO clearly obtains the best results among all the compared algorithms.
Indeed, it is able to obtain the optimum (maximum) value in all the instances
and in almost every executed run. The performance of the alternative algo-
rithms degrades significantly in the largest instances, though in the smallest
ones the GA is able to obtain the optimum value.

Table 3. Value assignment in the considered 3-bits Deceptive function.

Groups of 3 bits Value

1 80
70
50
49
30

O, P, = OOO
R O P, OFr OO
= =, O OO O

3
2
1

Table 4. Results obtained by CRO, HS and GA in the considered 3-bit Deceptive
instances. The results are shown in best/average/standard deviation over 30 runs of
the algorithms.

n CRO HS GA Upper Bound
15 400/400/0 400/399.66/1.82 400/400/0 400
30 800/800/0 800/792/8.05 800/795/6.82 800

45 1200/1200/0  1190/1159/14.93 1200/1179.3/13.37 1200
60  1600/1600/0  1560/1517.3/21.96 1590/1562.70/18.74 1600
75 2000/2000/0  1910/1882/20.97 1990/1940.30/22.04 2000
90  2400/2400/0  2280/2243/22.63 2340/2297.30/21.16 2400
105 2800,/2799.70,/1.82 2660,/2598.80,/34.20 2730/2687.70/27.75 2800
120 3200/3200/0  2990/2924.8/37.90  3090/3049/21.22 3200

757



"4 Yoy Proceedings, 15™ Applied Stochastic Models and Data Analysis (ASMDA2013)

tornation International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

4 Conclusions

In this paper we have presented a novel algorithm to solve optimization prob-
lems, inspired by the process of coral reefs formation, and guided by coral
reproduction, reef expansion and fight for the space in the reef. The algorithm,
named as the Coral Reef Optimization (CRO) algorithm, is a kind of cellular
evolutionary algorithm rendering very good properties of convergence to global
optima. In this paper we have studied the main characteristics of the proposed
CRO and analyzed its comparison to other existing meta-heuristic approaches
in different benchmark problems. The promising obtained results encourage
the application of the proposed CRO approach to other practical optimization
paradigms of high complexity.
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Abstract. In this paper, we use the Reciprocal Inverse Gaussian (RIG) kernel to estimate
nonparametrically the probability density function (pdf) and the hazard rate function for
independent and identically distributed (iid) data. The estimator uses adaptive weights
depending on the points at which we estimate the functions. We derive the strong
consistency, the asymptotic normality and the asymptotic mean squared error (AMSE) of
the proposed estimator. Also, the selection of the optimal bandwidth is investigated. The
performance of the proposed estimator is compared to that of the Gaussian kernel.

Keywords: Reciprocal Inverse Gaussian kernel, hazard rate function, kernel estimation,
asymptotic mean squared error, boundary bias.

2000 MSC: 62G07, 62G08
1 Introduction

Estimators of the hazard rate function based on kernel estimation have been
studied extensively in literature. For example, see Watson and Leadbetter [7],
Rice and Rosenblatt [2] and Salha [4, 5]. However, when the support of the
curve under estimation is bounded, many nonparametric estimators appear to be
biased more than the usual in regions near the endpoints. Boundary bias is due
to weight allocation by the fixed symmetric kernel outside the density support
when smoothing is carried out near the boundary. To solve this problem,
boundary kernels are used only within the boundary region. This is an efficient
way to correct boundary bias but it requires complicated adjustments to the
estimator. To solve this problem, Chen [1] has replaced the symmetric kernels
by asymmetric Gamma kernel which never assigns weight outside the support.

In Salha [4], the estimation of the hazard rate function using the Inverse
Gaussian (IG) kernel has been considered. In this paper, we consider the RIG
kernel estimation of the hazard rate function. As Gamma kernel estimator, the
RIG kernel estimator is free of boundary bias, always non-negative and achieves
the optimal rate of convergence for the mean integrated squared error (MISE)
within the class of nonnegative kernel density estimators, see Scaillet [3].

This paper is organized as follows. In Section 2, some basic definitions and
conditions are stated. In Section 3, the main results of this paper are stated and
proved. The AMSE of the proposed estimator and the selection of the optimal
bandwidth are investigated in Section 4. In Section 5, the performance of the
proposed estimator is tested and compared to that of the Gaussian kernel
estimator. Section 6, contains some concluding remarks.
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2 Preliminaries

In this section, we state the conditions under which the results of this paper
will be proved. Also, we introduce some basic definitions.

Conditions
1. Let X ,X,,..,X be a random sample from a distribution with an

unknown probability density function f* defined on [0,0), such that f is

© 2
twice continuously differentiable, an X X X <oo.
i i ly differentiable, and | F'(x)) d

5

1 =z
2. his a smoothing parameter satisfying & +_h —0, and nh*> >0
n

asn — oo

Definition 1. Scaillet [3] defined the RIG kernel estimator of the pdf f (),

A 1 1 1
f[uG (X) Z_ZKMG (—’_)(X,')a where (1)
nig x—h h
1 1 1 x—h _ u x—h
Koo (—— —)u) = - 24 L@
o ) Jzﬁhue“{: R (2 )j @

Definition 2. Let X be a random variable with pdf f (x)and cdf F(x), the
hazard rate function 7(x ) of X is defined as
. PX <=x+Ax | X >
) — tim PE SX AKX >x)f ()
Ax 0 Ax S(x)

S () =1-F(:) is called the survivor function.

, x >0, where

Definition 3. The proposed kernel estimator for the hazard rate function is

. TriG &) 5 * 2
given by 7p . (x) = “RIGT T where S, (x)= 1_.[0 S e W)du.
SriG )
Lemma 1. Under the conditions (1) and (2), the following hold

. 1
(i) Bias (f o, (1)) =5 f " +o(h),

A 1 _1 L
(ii) Var(fR[G(x))z—2 \/_hx 2f(x)+o(n h ?).
n

T
Proof. See Proposition 1 and 2 in Scaillet [3].

3. Main Results
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The asymptotic normality of the RIG kernel estimator of the pdf is given in

Theorem 1.

Theorem 1. Under the conditions (1) and (2), the following holds

L 1 1
nh? (f e () =f (X)) —">N | 0, x 2f(x) |
RIG 2\/;
1 ) N 1 n
Proof. LetV =K, (x,;)(X,.), i =1,2,.,n, then f (x)=—> V.
n i

Now, we show that Liapounov condition is satisfied, that is for some & > 0,

i E|Vn—E(Vn)|M_
m -~ =
n—»w0 n 20-2“;([/”)

0.

1 246
Let 7. bea RIG (—h,T) distributed random variable. Hence
X —

2
(c=m)h 2

and T =Var(n. )= .
. (1.) 248 (2+9)

h
=F =x—-h+
U, (m,) s

(240 —h)j[ Yy xh
X

2+6
1 (
— | exp
N 27hy j 2h —h y

27ch z ( —%(Hé)f ( )J
= é 77}( 77x *
2150rh) 2

E|Vn |2+(5=E (

By using the Taylor’s series to expand f (77, ) about £z, we obtain

5
—(

-%(ms) -%(ms) 1 -%(ms) " 3 -21+5) ,
E\n? f@)|=x f(X)+5(x S (X)—Ex S(x)

5
——(1+6
3 S(1+9)

R f’(x)%x_z(“&?(x»x}h+o<h>

—x 2 ) +o(h).
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This implies that

1+

J2+6 (27h) 2

Lemma 2. Under the conditions (1) and (2), the following holds
1

nh? |F(x)—F(x)| —2>0.
Proof. From the definition of £ (x), the following Relations (3) and (4) hold.

3 (1+9)
1 S -
EV [ x 2 f(x)+o(h 2 j—>o.

N wpx 1 1 x
EF ()= [ [ Ko )0 e f )y =[ [ E(f (&, )

:J'OX(f(u)‘l‘%uf "(u)h)du +0(h) :F(X)-i-o(h),

This implies that,

1 51

nh? |EF(x)—F(x)|=0((nh*)*)— 0. 3)

Now, F (x) can be written in the following form

A 1 & px 1 1 1 &
Fx) == [ Ky (—— )X )du == D W, (x).
nig”? u—h h n o

Let € > 0,0 >0 be given.

1 1 1
L2 n . 2 . 1 n .
P {(nh ) | F(x)-EF(x)|> g}s X (mh?) T E | =Y W, (x)—EW, (x)] [’
n o5
. IL& N n N . . l . n .
— gV | Z[W, ) —EW,. (x )] |2+a < I+d g228 (n 2 )1+o ZE |W,- (x) |2+2o
i=1 i=l
l n
+21+5 8—2—25 (n —lh 2 )l+§z | EWI (x ) |2+2§_> 0
i=l1
This implies that,
1
nh? | F(x)—EF(x )| —2>0. 4)
Now, using Relations (3), (4) and the following fact,
|F(x)=F(x)|<|F(x)—EF(x)|+|EF(x)—F(x)]|, we obtain that
1 1 1
nh? |F(x)—F(x)| < \Nnh? |F(x)—EF(x)|+\nh? |EF(x)-F(x)| —2>0.
This completes the proof of the lemma. [
Now, the asymptotic normality of the proposed etimator is given in Theorem 2.
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Theorem 2. Under the conditions (1) and (2), the following holds

N nh? (f(x)—r(x ))—‘/—)N (0, Lx K mj

Wro Sx)

Proof.
Vnhz(ﬂﬁ)—r@))anhZ(LQQ—llflj
Skx) S(x)

21/nh§(f(X)_f(X)_f(x)J(x)j

Sx) Skx) Skx) S)
=_W[f(x)_f(x)]+—“nhzf(x)

S(x) Sx)S(x) [S@-s@]. 6

The proof is completed by a combination of Theorem 1, Lemma 2 and Equation
(5). Since by Theorem 1, the first term in Equation (5) is asymptotically
normally distributed and the second term vanishes by Lemma 2. [

From Theorem 1 and 2, we get that

E(f)) £ )5 af "o Legeon
E(F(x))=— = h) = 2 Lo
(A@x)) E(S(x)) S0 +o(h)=r(x)+ S +o(h)
This implies that
1
~xf o . .
Bnm(fu)):z—gz;;——+ounandVm(fug):znjzzx Z;Ei§+oﬁz% 2,

4 Bandwidth Selection

The selection of the bandwidth in kernel estimation plays an important role. It
depends on choosing a value of the bandwidth that minimizes the AMSE.
Using the same techniques of Scaillet [3], the AMSE is given by
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2

1 ”
Exf (x)h 1 L)

AMSE = + 2 . 6
S(x) odar s ©

Differentiate the AMSE with respect to /2, the n equating it to zero, we obtain

1 2
—xf"(x) 1 3
o2 L s 7
S(x) Az S(x)2

3
2

Multiplying Equation (7) by A

() F o
h_(zx/;(f”(x)fjx " ®

, and solving for /1, we obtain

5 Applications

In this section, the performance of the proposed estimator in estimating the
pdf and hazard rate function is tested upon two applications. For comparison
purposes we also estimate the two functions using the Gaussian kernel
estimator. For the practical implementation of the RIG estimator, we used the
bandwidth selection procedure described in Section 4 and for the Gaussian
estimator, we used Equation (3.28) in Silverman [6].

5.1 Real Data

In this subsection, we use the suicide data given in Silverman [6], to exhibit
the practical performance of the RIG estimator. The data gives the lengths of the
treatment spells (in days) of control patients in suicide study.  Figures 1(a) and
1(b) show the two estimators of the probability density and hazard rate
functions, respectively. Although the suggested values of the density and
hazard rate functions from the two estimators are different, they both suggest a
similar structure for the two estimated functions. As we see, the divergence of
the two estimators gets large at the boundary near the zero and becomes smaller
in the interior especially from approximately ¢ > 250.

5.2 A Simulation Study

A sample of size 200 from the exponential distribution with pdf /' (x)=e™" is

simulated. After that the density function and the hazard rate functions were
estimated using the RIG and the Gaussian estimators. The estimated values and
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the true functions are plotted in Figures 2(a) and 2(b), respectively. The two
figures show that the performance of the RIG estimator is better than that of the
Gaussian estimator at the boundary near the zero. In the interior the behavior of
the two estimators becomes more similar as we get away from the zero.
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Fig.1: The RIG and Gaussian kernel estimators of (a) the density
function (b) the hazard rate function for the suicide data.
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Fig. 2: The RIG and Gaussian kernel estimators of (a) the density
function (b) the hazard rate function for the simulated data of the
exponential distribution

6. Comments and Conclusion
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In this paper, we have proposed a new kernel estimator of the hazard rate
function for (iid) data based on the RIG with nonnegative support which was
proposed by Scaillet [3]. The proposed estimator overcomes the bias problem
when the hazard rate function is estimated at the boundary region near the zero.

The asymptotic normality, the strong consistency and the AMSE of the
proposed estimator were obtained. The AMSE of the new estimator is smaller
than that of the Gaussian kernel near the zero.

Two applications show that the performance of the proposed estimator is
better than that of the Gaussian kernel estimator at the boundary region near the
zero. This is due to weight allocation by the Gaussian kernel outside the density
support when smoothing is carried out at the boundary near the zero.

The new estimator can be modified by considering a new bandwidth selection
technique that uses a variable bandwidth that depends on the points at which the
hazard rate function is estimated rather than a constant bandwidth.
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Abstract. Estimation problems within the context of stochastic processes are usu-
ally studied with the help of statistical asymptotic theory and proposed estimators
are tested with the use of simulated data. For processes with stationary increments
it is customary to use differenced time series, treating them as selections from the
increments’ distribution. Though distributionally correct, this approach throws away
most information related to the stochastic process setup. In this paper we consider the
above problems with reference to parameter estimation of a gamma process. Using
the derived bridge processes we propose estimators whose properties we investigate
in contrast to the gamma-increments MLE. The proposed estimators have a smaller
bias, comparable variance and offers a look at the time-evolution of the parameter
estimation. Empirical results are presented.

Keywords: Lévy processes, gamma process, bridge process, Dirichlet distribution.

1 Introduction

The estimation of stochastic models to fit to data obtained from real systems
borrows a lot from statistical estimation theory, but arguably not enough from
the theory of stochastic processes. In many papers dedicated to the estimation
of Lévy processes, the estimation is understandably restricted to the estimation
of either the parameters of the infinitely divisible distribution of the increments
or else to the Lévy measure. Clearly both characterize completely the distri-
butional framework of the corresponding processes. However there are other
static and dynamical statistical properties which are of interest to look into in
practical applications.

In this paper we study the gamma process with the aim of tackling estimation
issues using stochastic properties other than the stationary gamma increments.
In particular, we consider the problems of estimator bias and minimization of
estimator variance.

The gamma process has been much studied because of its common use in cli-
mate and hydrology related modelling exercises Thom [10] and more recently
also in finance Avramidis et al. [1].

Let us denote the gamma process by (G¢)ier, . The overall distributional struc-
ture of this process is underpinned by the independently gamma distributed
increments with parameters o, A\. For G¢,,Gy, — Gy, ..., G, — Gy, we have
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the joint density function:

A
T(at))C(a(ta —t1)) ... I(a(ty, — ty,_1)Ae(En=t1))

xrlthlg:g(tz—h)—l - .mz&(tn—tn—l)—l exp (*(%*zl))
f(xl,acg,...,xn): (1)

So letting Z; = G, — G, _, the form above is exploited in maximum likelihood
estimation applied on the increments Zy, Z, ..., Z, which are treated as in-
dependent gamma random variables. This approach blurs out the stochastic
process context.

The maximum likelihood estimator is not just a venerable tool for estimation,
but a superior one on many counts. Its more important virtues are of course
asymptotic normality, consistency, asymptotic efficiency and functional invari-
ance. Nevertheless it is also known to exhibit defects, one of which is biasedness
in the case of the gamma distribution. We would like to tackle this problem
through the use of other estimators which make use of intrinsic properties of
the gamma process.

2 The gamma bridges and their derived estimators

The gamma bridge process (Gir)o<i<r on the time interval [0,7T] is derived

from the gamma process by :
G

Gir = — 2

=g @

The gamma bridge has some nice independence properties as discussed by

Emery and Yor [9]. We propose the following construction of bridges. Given

two time points t; and t,, the time interval in between is partitioned as:

{t1,t2,...,t,}. Now for any two intermediate time points, 0 < ¢; < t; < ¢, the

random variables (G, —Gy,)/ (G, —Gy,) and Gy, — Gy, are independent. Fur-

thermore standard theory as in Ferguson [8] tells us that the following random

vector
(Gtz ~Gi, Gu =G Gi, - thl) -
Gi, — G, G, — Gy, Gy, — Gy,
conditioned on the values of the bridge end-point, has a Dirichlet distribution:
fur,ugy ... un|Gey, Ge,) =
Ia(t, — tl)}uf(tz_tl)_lug(t?’_tz)_l .. .ui(t"—t"_l)_l
Ia(tas — )] a(ts — t2)] ... Da(ty — th—1)]

n

(4)

Given integer k such that mk + 1 takes us to the closest value to n, we take
the following bridge end-points G,, Gy, ., .-, Gmiy1. The corresponding in-
crements are denote by X(;_1)r4; which is the it" increment within the j**
bridge. We then define m Dirichlet distributed independent random vectors

Uk ubh, ok ok, (5)

defined similarly as above by
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Uik,j = j 1)k+1 (Z X(] 1 k+z>

These k gamma bridges thus give us an intricate construction, woven over the
span of time and built from the intrinsic structure of the gamma process. It
provides us with new estimation tools which we proceed to describe.

We shall assume that time increments are equal in size, say §t, and to simplify
notation we drop 6t which we pack in as part of a so that the joint density
function will be given by I'[ka](ujuz ... ux)* 1) /(I'[a]*). The log likelihood
function for the ;" bridge is given by:

k

Li(a) = (a— 1) Y uf? +log(I'[ka]) — klog(I'a]) (6)
=1

We quote the standard results about the Dirichlet distribution:

1 (k-1 .
U= 2=  varlU® = k,J U] k,j
E[U;] Var[U;™] k2(ak +1)’ CovlU; I= k(ak +1)’

J k
Also, Ellog Uik’j] = Y(a) — Y(ka), Var[log Uik’j] = Ya)(a) — Ya)(ka), and
Covllog U] = —4(1)(ka), where 9 ;(0) = d74(0) /967

The maximum likelihood equation for the j** set of k readings is given by

?r\*—‘

k
Z (UF7) = (ap k) — ¥(kap ), (7)

where Gp jr denotes the estimator from the 4" bridge using the Dirichlet
model .

3 The pooled estimator &p i,

Next we compare the ML estimates for « from a set of k original gamma incre-
ments with those obtained by using the Dirichlet model for the corresponding
bridge increments. For the j** set of k& gamma distributed increments the ML
equation is given by:

k k
. S X1kt
E log(X(j—1)k+i) = ¥(ag,jk) + log <1(31)+ (8)

i=1 kaG,j,k

where G¢ j i is the corresponding ML estimator. Using equations (7) and (8)
we obtain the following,

Y(ap k) — Y(kép j k) Zlog ((]1)k+z>

i=1 Zl 1X(g 1)k+1
= ¥(ag jk) — log(kag k) 9)
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Hence ¢(&p j k) — ¥ (kép k) < ¥(éq,;k) — Y(kda k), and since the function
U(k,z) = ¢¥(z) — (k) is a smooth, increasing function, we can conclude that
ap,jk < QG jk-

We are using ideas due to Berman [2] where it is also proved directly that these
two estimators are both positively biased.

Using standard techniques as in Cox and Snell [6], Bowman and Shenton [3] and
Cordeiro and McCullagh [5] we can obtain bias estimates for both estimators.
The bias of &p ;i is given by:

kY (k) = Py (@) 1
= (s (her) — v (@) ¢ (k) B

For the gamma-based estimator, the minimal bias is attained over the whole
range of readings, k = n , for which the bias estimate is

aw(l)(a) — 0421/J(2) (Oé) -2 i
om0 (#) -

n2
The results above tells us that if we increase k we will eventually have a bias
which is smaller than that for &g ,. Thus if we take £ = n — 1 so that we have
one bridge with the end-points being the first and last data points, we have
a guarantee that the bias of the Dirichlet estimator is smaller than the bias
of the gamma estimator which uses all the data points. But we can do better
since we do not have to take k too large to obtain a smaller bias. For moderate
values of k£ , m will not be so small. So we have m Dirichlet-based estimators
Gp j,r Which we can pool together. In fact, since they are independent random
variables the best thing to do is to average them as follows:

Elap, k] —

]E[CAMG’”} — =

1 m
Dk = o ZdD,j,k' (12)
=1

The double-sequence of estimators ép j . offers a lot of information about the
behaviour of the underlying stochastic process through its realized path. Be-
sides testing whether the time evolution of these parameter estimators does
occur in an independently random manner, we can also investigate changes as
we vary the value of k. These checks would help reveal internal probabilistic
structure which would go beyond the simple mechanism for the gamma process.

We now examine how the biases of the estimators &p ., and &g vary as
we change the values of n, k, and a. Using equations 10 and 11 we first define
the function g(k,n) which computes their difference:

_ Fey(ka) —va(a)  alda)(e) — a(a)] -2
2k[k 1y (ko) — 1y (a)]” 2n(apry (@) — 1)

Figures 1 and 2 illustrate g(k) for different values of @ and n. From these
graphs one notices that the difference in the bias gets larger as the value of
« increases for any value of k. However, as n gets larger, the difference gets
smaller for any value of k. Furthermore, from some value of k, depending on n
and «a, onwards the bias of &p ., will be less than that of &g .

g(k,n) (13)
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Fig.1. n =100, a = 3 Fig. 2. n = 1000, o = 20

This result is confirmed from a number of simulations the output of which is
displayed in the table 1. In particular this table gives estimates of the bias
of &p . and &g, as a percentage of the actual value of o. Furthermore the
table gives the estimated variances of the said estimators.

k  %Bias(&p,k,n) %Bias(da,n) Var(dpkn) Var(dgn)

50 3.9889 0.9898 0.7967 0.6650
100 1.8752 1.0049 0.6941 0.6598
250 0.7897 0.9354 0.7606 0.6507
290 0.6601 1.0468 0.7070 0.6873
n 0.5981 0.8826 0.6888 0.6934

Table 1. Simulation results using n = 300 and o = 10

So the estimator we propose is one which corrects for the bias by using its
estimate in the spirit of Giles and Feng [7]. This bias-corrected pooled MLE of
a, which we shall denote by d’jka , is defined by:

& =4 k2 2) (kGp kn) — P(2) (QD k)
n — XDkn ™ ~ N
Dok, 2k (k1) (kép kn) — %) (@D kn))?

Note that the bias-correction procedure leaves the variance of the estimator
unaltered. Table 2 illustrates the results obtained from a number of simula-
tions during which the above bias correction technique was implemented. The
said table gives the bias of &p ., and &, , as a percentage of the true value
«. Furthermore one can also observe that the estimated variances of the two
estimators are comparable.

(14)

k  %Bias(ap ) %Bias(@pkn) Var(ap,,) Var(&p,k,n)
75 0.1987 2.5267 0.6781 0.7064
150 0.0872 1.2493 0.7905 0.7838
250 0.0785 0.7674 0.6435 0.6522

Table 2. Simulation results using n = 300 and a = 10
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4 Comparison of variances for &py,, and &g

Finally we consider the variances of the above mentioned estimators. The
estimator using ML on independent gamma distributed increments looks in
a strong position. We know that it tends to the Cramer-Rao lower bound
asymptotically. Using the usual Fisher matrix calculations an estimate for this
variance is given by:

a 1
Varla =—+ 0| = 15
e = =5+ (%) (15)
In the case of &p j i, making suitable modifications to take the dependence be-
tween the Ui’C *J into consideration, we apply again information matrix method-

27 .
ology with the Dirichlet distribution-based estimation to obtain E {6 l-’} =

da?
l;»/ = k21/)(1) — ]ﬁ/)(l)(a)
So MLE theory allows us to conclude that:

Var(t) = | (£ 10g (U27) - Ko@) - vira))) | =
kVar [1og (Uf’jﬂ + k(k - 1)Cov [U{W , U{W} = k(@) — k20 (ka) (16)

Thus, 1 1

Var[Vkap ) = +O<>-
[ 3T ] 1/)(1) o k¢(1)(ka) k

It can be shown that as n and k tend to infinity, the formula for the variance

of a7 ., which is given in (17) tends from above to that of dg,, (15). We

cannot improve on the variance-related performance of é&¢,, but we approach

to it very closely with significant improvements in the bias.

Figure 3 and figure 4 shown below illustrate equations (15) and (17) with the

variance of &g, being indeed slightly less than that of &p ;. As k increases

the difference decreases fast to 0.

—  Var(apy)

-~ Var(ag,)

Fig. 3. n = 200, k = 20 Fig. 4. n = 200, k = 100
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5 Results about d*D,k,n

Having given all proofs and derivations above, the results are captured in the
following theorem:

Theorem 1. Estimator &, . ,, as defined in (14) is consistent, asymptotically

unbiased with E [d*D,j,k:| —a=0 (%) and

Lo 1 1
Varldh nl = mk Py (o) — ki) (k) o <> 17

6 Conclusion

We started with a critique of the classical ML estimator widely used to iden-
tify gamma processes as models for given data. Arguing that the stationary
increments property uses too little information about the process, we used
results about the distributional evolution of the gamma process to construct
a composite estimator. Over non-overlapping stretches of the data we fitted
gamma-bridge-derived Dirichlet distributions to obtain a number of estimators
for the same parameter. These were compared to the original one with refer-
ence to bias and variance. Using estimates for the asymptotic bias and variance
we proposed the pooled estimator &7, ; ,, and showed it guarantees better sta-
tistical performance. It also allows modellers to see how different sections of
the data behave by comparing the &’s from different bridges. Furthermore
diagnostics can be developed to identify better anomalous sections within the
data as estimates are compared with varying lengths k of the bridges. This
helps build a dynamic picture of the data, which in practical applications like
climate science and financial time series, can yield useful interpretations.
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Abstract. The Active Principle of Adaptation for linear time-invariant state-space
stochastic MIMO filter systems is applied to human body temperature daily variation
adaptive stochastic modeling.

Keywords: Adaptation, active principle, homeostasis, parameter estimation, stochas-
tic modeling, thermoregulation.

1 Introduction

Stochasticity is a form of uncertainty among those discussed in general by
Wolkenhauer[1]. As stated by Liao et al.[2] and many others in recent times,
stochasticity is increasingly appreciated to play fundamental roles in systemic
biology and bioinformatics especially when biological and clinical processes are
studied at the cellular level. However, the reality in this life-critical area of re-
search is such that the uncertainty of models is twofold: (1) models are stochas-
tic in nature, id est, they are represented by stochastic differential equations,
and (2) they are full of unknown parameters. Even if the stochastic models are
linear in state, they are complex in the sense that many parameters need to be
estimated from the data that are usually noisy and incomplete.

This is a traditional situation of uncertainty in many engineering problems
where also emerges the question as to adaptive system modeling. Adaptation
of models treated as fitting models for data is intended to eliminate or, at the
very least, to reduce uncertainty. In Gibson’s view, as cited in Semushin[3]
the following three functions are considered as the determinant attributes of
each adaptive system: (1) quickest Change Point Detection or more generally,
Model Classification, (2) reliable Model Identification, and (3) adequate System
Modification (or Change Parring). For engineering applications, there exist
well-established mathematical methods for solving above three problems.

In systemic biology or medicine, systems are much more complicated than
engineering ones because they include a living being, a human. This notwith-
standing, it is yet very interesting to extend the approaches developed for
engineering systems to biological or clinical processes.

775



ASMDa Proceedings, 15" Applied Stochastic Models and Data Analysis (ASMDA2013)

\nternatioha International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

Our work is aimed at such an extension. As a trial, benchmark task, we
take a stochastic model of human body temperature. In so doing, we keep in
mind three goals of research:

1. The basic goal is to extend the range of applicability of our active principle
of adaptation (APA, Semushin[3]) to systemic biology, bioinformatics and
medicine.

2. The applied goal is to implement the APA in some biomedical monitoring.

3. The basic and applied goal is to establish an all-purpose Computational
Lab for Adaptive Stochastic Systems Modeling (CLASS-M).

The paper paves the way to the first goal only. Its outline is as follows.
In Section 2, we start from a baseline model (BM) written as a system of
stochastic differential equations for human body temperature daily variation.
Section 3 shows what transformations are to be made towards the Discrete-
time Standard Observable Model in order to build the Discrete Time Adaptive
Kalman Filter in Section 4. Computational experiments with the filter are
made in Section 5. We conclude the paper in Section 6.

2 Baseline model

Human body temperature regulation is a great example of how the homeostatic
mechanism works. Let us consider human body temperature daily variation as
it can be seen in many sources, for instance, in ANTRANIK.org (Fig. 1).

Hours of activity and work, Hours of rest and sleep,
g B, @ m

D:‘ 7 89 m w21 2 3 a5 8 7T B 90 N M1 2 3 4 5.6 T ng
986 3758
oo |—f— A S .//\'-"F_\ 3744

/ N / 5 -
992 s
950 f — \—\ ——t—1lsr22
es8 \ — f——t——3Tn
o8 i — 700
o0a / o
282 / \ -
260 / \ 3687
078 3656

SRS e | 3

914 ——- \ ~{asa3
7. 3622

Fig.1. Human body temperature daily variation (HBTDV). (Courtesy of
ANTRANIK .org http://antranik.org/regulation-of-body-temperature/)

Consider the experimental data similar to Fig. 1 as a sample from a continu-
ous-time stochastic process. Decompose it into the following additive compo-
nents:

e 0, a mathematical expectation of temperature variation relative to daily
mean temperature 0*, for example, 6* = 36.7 °C,
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o G, 2 {0,5 (w)} represents a zero-mean stochastic process with w € 2 being a
point of a fundamental sample space 2,

o 0, =0, + 0%, for which df; = df; because 8* = const.

e 6, £ 0, + 0,, the sum process modeling experimental data similar to those
of Fig. 1.

For simplicity, in what follows we assume that #(t) is modeled by a A° C har-
monic oscillator whose equation is well known:

I 0 1= 1 00° C
io| T | —w? 0 : = in! 1)
21 Wh T2 |, T2 |, wo min
Yp = [1 O}xt, t €[0,00) (2)
The solution to (1) is
0, & 21y = Asin(wnt +¢), A=4/02+ <—O> . O =z
Wn

sing = 0g/A, cosp = (?)/A, tan<ﬂ=00/<%)

To obtain A = 1° C and ¢ = 0, the following initial condition must be assigned:
{xl] = [ Oo i =0°C 1} Obviously, to obtain A = 0.65° C and ¢ = 0, the
0

To wo = wypmin~
xl] _ [ 0y :=0°C
0

. and so on.
To wo := 0.65 w, min 1]’

initial condition are to be: {

To represent 6;, we introduce a Gaussian first order Markov process so as
to write

df, = —(1/T)6, dt + dB,, Jm G, =0 (as) (3)
where [, represents the scalar-valued Brownian motion (Wiener process, WP)
with its constant diffusion Q = 202/T, or, in other words, the zero-mean
process ét with mean squared value 0% £ E {0,52 = QT/2 and correlation time
T. Here E {-} denotes the eoxpectation operator on {2 and tg — —oo to providoe
wide-sense stationarity for 6;. Equation (3) is assumed to obtain the process 6;
with autocorrelation Wy4(7) £ E {étGOHT} =027 I"l/T  As a result, 0, satisfies

the following equation
A6, = —(1/T)(6; — 0%) At + o+/2/T dj3; (4)

where ﬂot is the standard WP, that is, the unit diffusion Wiener process defined
from B £ 0/2/TBr =nf, n = oV2A, A= 1/T.

Having introduced 6, as the third component into (1)-(2), we obtain
jl‘l 0 1 0 X1 0 0_
dg | =|—w2 0 0 | x| + |0 fus+ |0y ()
i3], 0 0 —=AJ [z3], A n
I 900 C
ye=[1 0 1]as+v, |22| = |womin™' |, ¢ € [0,00) (6)
T3 0 0
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There in the above equations u; = 6*, 6* is considered known, and w; is
the standard Gaussian white noise defined by formally writing 1, = dg;/ dt,
as it is usual in control literature. Thus, the baseline model (5), (6) has been
built. In (6), a random measure error v; has been introduced.

3 Towards the discrete-time standard observable model

Our sequence of model transformations is as follows.

3dCRPhM = 3-dimension Continuous-time Real-valued “Physical” Model is

X1 0°C

given by (5), (6). Assuming there |z2| = | ws |, we have a 1°C
I3 0 0

harmonic oscillator with z1,; = (1° C)sinwnt, z2; = (1° C/min) coswnt

with wy, = 27/1440 min 1. Considering transformation z = Tiz* with

11 1 |0 1 1 w;l 0
Ty = | wn|—wn|0|, Tfl = 3 1 —w;l 0
0| 0 |1 0] 0 |2

we change to the next model.
3dCRCM = 3-dimension Continuous-time Real-valued Canonical Model

7 0 —w, O x7 0 0
5| =lwn 0 0 5| + 0|6+ 0 wy  (7)
i |, 0 0 =A| [=5], A | oV2)
x¥ 1/2 ]
ye=1[1 1 1]z} +uv, 5| = |-1/2 (8)
3], 0 |

To make possible further using the active principle of filter adaptation in
order to estimate the unknown parameters A and o, we need to have the
discrete-time standard observable model. Getting ready to this final step,
we construct two more models as follows.

3dDRCM = 3-dimension Discrete-time Real-valued Canonical Model. Here
we omit the ,s and *s for variables and matrices and denote the sampling
interval 7 £ At £ t;,1 — t; = const:

T c —s 0 T 0 0
T =|s ¢ 0 o | + [0 us+ |0 wae (9)
T3 |, 0 0 d z3 |, a b
~—_—— ~—— ~———
(0] 4 I
X1 1/2
Y = [1 1 ].] Tt +’Ut, xTo = —1/2 (10)
N——— x3 O
H 0

A A A —
c2 coswnT, s Esinwyt, d 2 e

a21—-d, b2ov1—d?
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where wq; is a discrete standard (that is, with unit covariance Qd =1)
Gaussian white noise.

3dDSOM = 3-dimension Discrete-time Standard Observable Model. Entering
upon the construction of this final model, we determine the observability
matrix

W, 2 [HT | (H®)" | (H*)" " (11)

This matrix can be calculated either by hand or with Maple. Below are
the results of our by-hand calculations:

1 1 1
We=|c+s c—s d |, f=cos2w,T, g=sin2w,t, (12)
f+g | f-9 | &
det W, = 2(—d*s + dg + sf — cg) = 2(dg — s(1 + d?))
The sought 3dDSOM is obtained as a result of transform z* = W,z in the
following equations:

7 0 1 0 7 1
x5 =10 0 1 25| +|d{(1-d)6 +
x5 . —as —az —ap 73|, d?
D, v,
1
+ cl2 oV 1—d? g (13)
d
I
Ty
ye=1[1 0 0]z +vy, 25| =|s (14)
N %
H, 0
—az3=d,
—ag = —1—2dcoswyT,

—a1 =d+ 2cosw,T

An effective way to check the constructed 3dDSOM is to compare it with
the same result produced by Maple™.

In the case when the daily average temperature 8* is considered unknown
and so is to be also estimated, we infer usage of Maple the only reasonable way
to change from the following 4dDRCM

coSwpT —sinw,T 0 0 0
sinwp,T cosw,T 0 0 0 .
THL=1 0 do|TtT | gyi=ar | W
0 0 0 1 0

ye=[1 1 1 1]x+uw

to the 4dDSOM (this case is omitted here for saving room).
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4 Discrete-time adaptive Kalman filter

Our benchmark point for constructing the APA-b-AKF should be the Discrete-
time Standard Observable Model (DSOM) written, according to Semushin[3],
in the general case as follows:

i = Pxf + Wy + gy, t € Zy, x* € R™

D*(0) :
() yt:H*x:—l—vt,tEZl,yeRm

(15)
Omitting details from the general theory by Semushin(3], recall that W,, the
observability matrix, in our case is given by (11) and (12).

If we work in the context of DSOM, the set

A*:{W*(§)|568CRZ} (16)

of adaptive models :* (5) should be used with 8 denoting an estimate of § € RL,
Reasoning from the Kalman (optimal) filter 9t*(6), we build the adaptive

model R R
~ Gt = AGyje—1 + Yaug + Cnye—1

M*(0) : .
©) Y+ = HaGeje—1 + Neje—1
or equivalently (due to C' = AD) the model

(17)

Gir1)t = AGepe + Py
M(0) 2 Geje = Geje—1 + Dnyjp—1 (18)
Yt = HiGyje—1 + Meje—1

with H, and A = A, taken in the form of (13) and (14).
With the understanding that errors

A x ~ A% ~

Ctr1lt = Lep1 — Gt41t » Ctlt = Ty — G|t (19)
A % - A % =~

et = Toqape — Ge+1)t s Tt = Ty — Gtfe

are fundamentally unmeasurable, we construct the auxiliary performance index
J2(0) which guarantees (proofs are done in Semushin[3]):

True (Unbiased) System Identifiability
min J2(0) < M*(9) = Mm*(6")
9

5 Computational experiments made with MATLAB®

From now on, let p € R! be the vector of unknown parameters. Consider cases:
1. Parameter A is unknown, parameter o is known, i.e. p = A.

2. Parameter ¢ is unknown, parameter \ is known, i.e. p = 0.
3. Parameters A and o are unknown, i.e. p = [\ | o]7.

To measure the quality of estimates compute three values (Table 1). Ex-
perimental conditions are shown in Table 2. The APA-b-AKF has been im-
plemented in a robust square-root form developed by Tsyganoval4]. Results
obtained are as shown in Tables 3 through 5.
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Ngxp
1. The estimation sample mean MEAN = NE1XP > pj
j=1
Nexp 9
2 1pi = pell
2. The root-mean-square error RMSE = =
Nexp
Nexp |4
3. The mean absolute percentage error MAPE = % Z [16; = p-l
Nexp = ]l

pj is the parameter estimation obtained in the j-th experiment run,
px« is the true value of model parameter.

Table 1. Values to measure the quality of parameter estimates

Number of experiments Nexp = 100

Sampling interval (min) T=5

True model noise parameter o, =0.3

Model noise correlation time (min)||T, = 24 - 60, wn = 27/Tn

Average daily temperature 0* =36.85 °C

Covariance of measurement noise |[R = 0.1

Initial values x6 = [0, 0.65 sin(wn7), 0.65 sin(2wn7)]
True parameter values A A« =1/T =0.01(6), T = 60

Initial value for estimate of A Xo =1/(2T)

Initial value for estimate of o oo = 1.

Table 2. Experimental conditions for estimating parameters A and o.

N MEAN RMSE MAPE
0.5]| 0.01673842 | 0.00176175 | 8.53495848

1 || 0.01668899 | 0.00128099 | 6.00706384
3 1| 0.01677946 | 0.00007005 | 3.24514550
6 || 0.01669467 | 0.00005602 | 2.80900894
12]| 0.01665221 | 0.00004990 | 2.37861756

24 || 0.01670608 | 0.00004936 | 2.40873864
48 || 0.01664612 | 0.00004899 | 2.43864040
72| 0.01669707 | 0.00004534 | 2.20453053

Table 3. Experimental results for estimating parameter A\ (N stands for hours of
measurements collection).

6 Conclusion

In this paper, The Active Principle of Adaptation for linear time-invariant
state-space stochastic MIMO systems is applied to human body temperature
daily variation adaptive stochastic modeling.

The baseline HBTDV model has been patterned after the physical data
available. The adaptive model 9T*(0), a replica of the Kalman filter for the
standard observable data model, has been specified.

Computational experiments have been made to demonstrate the applicabil-
ity of our Active Principle of Adaptation to bioinformatics problems.
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N MEAN RMSE MAPE
0.5]| 0.32169022 | 0.34800311 | 96.09089193
1 || 0.31693915 | 0.30205901 | 81.97886696
3 || 0.30406180 | 0.18993025 | 49.42388770
6 || 0.27961800 | 0.12641243 | 32.91595681
12| 0.29865439 | 0.08187854 | 22.40155093
24| 0.29767603 | 0.06173083 | 16.00851023
48 1| 0.29723777 | 0.03914056 | 10.35061636
72 || 0.29601063 | 0.03366058 | 9.09541878

Table 4. Experimental results for estimating parameter o (N stands for hours of
measurements collection).

N MEAN RMSE MAPE

0.5 p= 8(1)(1)2?21?8 0.28056287 | 85.14674225
1| p= 8?122252? 0.27826336 | 84.28790200
3| p= ggéggggéi 0.22572891 | 65.65149641
61| p= ggégggggg 0.16211670 | 44.23780054
12| p= ggigggégi 0.08541397 | 22.48302905
24| p= 83;2;;??2 0.06480563 | 17.75995499
481 p= ggégggggg 0.03909148 | 10.45862558
2| p= ggégggggg 0.03539374 | 9.21590355

Table 5. Experimental results for estimating parameters p (N stands for hours of
measurements collection).
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Optimal control of systems with several
replenishment sources
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Department of Mathematics and Mechanics, Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
(E-mail: ksy-shakhgildyan@yandex.ru)

Abstract The aim of the paper is to investigate a model of inventory management
with several sources of replenishment. There is a possibility of sending orders to either
of two suppliers or both of them. It is supposed that the first supplier delivers orders
immediately, while the other one is unreliable delivering the orders immediately only
with probability p € (0,1). The optimal strategy of the company can be determined,
namely, the values of orders at any step of the multi-step model for various values
of the parameters are obtained. However, the information about the parameters as
well as about distribution functions is often incomplete. This is the reason why we
examine the sensitivity of solutions to small changes in parameters.

Keywords: Periodic-review inventory system, Optimal control, Unreliable suppliers,
Sensitivity.

1 Introduction and model description

The development of a vast body of knowledge known as modern inventory
theory is rapid nowadays and has a range of applications to practical situa-
tions. Modern information technology has created new possibilities for more
sophisticated and efficient control of supply chains. Most organizations can
substantially reduce their costs associated with the flow of materials. Inven-
tory control techniques are crucial components in this development process.

A model of inventory management with the participation of several sources
of replenishment is examined.

Let ¢; be the unit price with the first supplier and we assume that delivery is
made immediately. In its turn, the second supplier makes delivery immediately
with probability p and at the beginning of the next period with probability
q = 1 — p. Denote by ¢y the corresponding unit price. At the beginning of
each period (a day, a week, a month, etc.) the decision to order a certain
amount of goods from the first and second supplier is made, namely z; > 0
and zy > 0 respectively. We also consider the storage cost h and deficiency
payment for unit price r. Suppose x is the initial stock, from this moment
onwards claims are received periodically, namely the amount &; is demanded
during the i-th period, ¢ > 1. We assume that {&;};>o form a sequence of
mutually independent random variables with a common distribution function
F(-) having density ¢(s) > 0 for s € [a, b], where a > 0.

Denote by f,(z) minimum average discounted costs over n periods.
Estimated costs for one period are equal to

L) =E[r& —v)t+h(v—&)T], v=2+21, u=v+ 2.
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By definition, put
Grn(u,v) = (¢1 — c2)v + cou+ pL(u) + ¢L(v) + aE fr—1(u — &),

where «a is the discount factor.
In this case, according to the Bellman’s Principle of Optimality for n > 1 we
obtain the following recurrence relations:

fo(z) = —c1z + min Gp(u,v), fo(z)=0.
rz<v<u
Note that the parameters of the model u and v corresponding to the minimum

costs mean that it is optimal to order the amount v — x of goods from the first
supplier and the amount u — v from the second.

2 Notations and preliminary results

Let us introduce the partial derivative of a function G, (u,v) with respect to
the variables v and u:

Av) = 8Ggg7v) =c1—co+ql(v),
Bl = " eyt ra [ g el

As well as a function

0G4 (v,v)

Cn(v) v

o0
=A(W) + B,(v) =c1 + L' (v) + a/ Il (v —t)p(t)dt.
0
It can be shown in the usual way that all the functions above are nondecreasing.
Critical levels v*, uw, u v,, in case of the existence, are defined as the
solutions of the equations

A(v*) =0, Bp(un) = 0 and Cy,(v,) = 0 respectively.

In case of the nonexistence set them equal to —oo by definition. That is natural
by the monotonicity of functions.
At each step we need to find the value of min G, (u,v)

rz<v<u
First let us obtain the values of w, (z) and v, (x) corresponding to the min-
imum costs depending on the relation of critical levels.

Lemma 1. Let us consider 2 cases:

1) If u, > v*, the argument of min G, (u,v) is
rz<v<u

vp(x) = max(z,v")
Up () = maz(x, uy).

2) If u, < v*, the argument of r<m£1 Gr(u,v) is vy (x) = up(z) = maz(x,vy,).

The proof follows directly from the analysis of partial derivatives of the function
G (u,v).
The next Lemma is needed for the sequel.
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Lemma 2. Suppose B, (v*) > 0 then u, < v, < v*, whereas for B,(v*) <0
we have v* < v, < Unp.

Proof. Since A(v*) = C(v*) — B(v*) =0, we see that C'(v*) = B(v*).

It now follows from the monotonicity of functions that for v < v* we have
A(v) = C(v) — B(v) < 0 C(v) < B(v), whereas for v > v*

A(v) = C(v) — B(v) 2 0 & C(v) > B(v). Clearly, the Lemma statement is
true.l]

3 Optimal control for n =1
In this case A(v) =c¢1 —c2 4+ qL' (v) =0, B1(u) = ca + pL'(u) =0,

C1(v) = e1+ L' (v) = 0. From the explicit form of functions, taking into account
0 < F(x) <1, it can easily be checked that:

= F-1 (w) for (c1,c2) such that co > ¢ — gr;
= 00 in the converse case;
{U1 = F-1 (ﬂ) for (c1,c2) such that ¢; < r;

p(htr)

/l}*
,l]*
up =F1 (pr_c? ) for (¢1,c2) such that co > pr;
Up = —00 in the converse case;

q(h+r)
h+r
v = —00 in the converse case.
According to Lemma 1, we need to compare u; and v*, in order to find the

optimal control. First note that F'(u) > F(v) < u > v. Consequently,

* pr—ca grtce—cy
u; > vt & p(htr) > ahtr) & Prag —c2q > prq + pca — pcy

< —co(l — p) > pea — pe1 < ca < pey. Therefore, we have

Theorem 1. The optimal values of orders are the following:

For {(c1,¢2) : c2 > pr, ¢c1 > r} we obtain that vi(z) = ui(x) = z.

Whereas for {(c1,c2) : ca < ¢1—qr, ca < pr} the optimal orders are vi(x) = z,
up(z) = max(z,uq).

In turn, for {(c1,¢c2) : c¢1 —qr < ca < per} we have vi(x) = max(x,v*),
up(x) = max(x, uq).

The remaining {(c1,c2) : ca > ¢1—qr, ¢1 < r} coincides with vi(z) = ui(z) =
= max(z,v1).

C2
c1 — qr,
’
r(ptaq) ’,
l—« ’
7’
7’
’
’
’ _-
’ - )

PPRe c1p

.-
Pr|j-=-=== === = R
1
1
1
1
0 — p
qr r T—a 1
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Proof. 1) Let us consider {(c1,c2): co > pr, ¢1 > 1}

By Lemma 1 we have that vy (z) = ui(z) = maz(x,v1) in the area above the
line ¢y = ¢1p. Moreover, v; = —oo in the given area, hence vy (z) = uy(z) = .
On the other hand vy (z) = max(z,v*), ui(x) = maz(z,u;) in the area below
the line ¢y = ¢1p. However v* = u; = —oo in this case, thus vy (z) = ui(z) = x.
2) As far as {(c1,¢2) 1 2 < c¢1 —qr, co < pr} is concerned

v1(z) = maz(x,v*), ui(z) = mazx(r,u;) by Lemma 1. Note that v* = —oco in
the considered area, so we obtain vy (z) = z, ui(z) = maz(x, u).

3) When it comes to {(c1,¢2) : ¢1 — gr < 2 < pc1} neither v* nor u; are equal
to —oo. Consequently, vy (z) = max(z,v*), ui(z) = max(x, uq).

4) In the latter case, namely {(c1,¢2) : ¢ > ¢1 —qr, ¢1 < r}, v1 is not equal
to —oo. It now follows from Lemma 1 that vi(x) = uq(z) = max(z,v;).00

4 Optimal control for n = 2

In order to discover optimal orders it is necessary to examine ranges of values
of (c1,¢2): Dy, Dyr, Drrr and Dyy.

.

C2 e

ey —ar /.7

/-
r(pt+oq) A c1(p + «q)
l—«
Drrr
-7 T e
Dy /.-~
Dy
Dy
0
qr r 1Io¢ C1

1) Let us look first of all at Dj.
First note that v* < v; < wy in this area. What we need is to get an equation

for us(x).

Lemma 3.
—c1, T <v* 0, z < v

fil@)=q —co+ql/(z), v <z <u; =-—c1+1 Az), v* <x <uy;
L'(z), x > wy A(z) + Bi(z), z > uy.

Proof. This proposition can be proved by direct calculations. It now follows
that Ba(u) = Bi(u) + aEf](u— &) =ca —acy —pr+plh+7r)F(u) + aF (u —
—up)(ca —rp) + aF(u—v*)(c1 —ca —qr)+a(h+7)(p Ouful Fu—t)p(t)dt+
+ qfou_v* F(u — t)p(t)dt), where uy is the root of the equation.

It can be easily seen that By(v*) = 2=2{+20 () gince ¢y < ¢1(p + aq) in

the considered area. So we can conclude that v* < uy by Lemma2.
Finally, by Lemma 1 we obtain vs(z) = max(z,v*), ua(x) = max(z,usz).0
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Lemma 4. us > u;.

Proof. glonsider the difference By(u)—Bi(u) = —cra+a [ Bi(u—t)p(t)di+
o f, 7" A(u—t)p(t)dt. Substituting uy in the equation, we get:

By(uy) = —cra+a [ 7" A(uy — t)p(t)dt =

= —c1a + caF(up — v*) — caaF(up — v*) + qa [ L(uy — t)p(t)dt <
—caF (uy —v*) + qa [0 L'(ug — t)p(t)dt < 0, since L'(uy — t) < 0 over
the region of integration. Thus we have u; < ugy by the monotonicity of By (u).0]

2) Now let us turn to Dyj.
To begin with, v* = —oo in this area, therefore uy > v*. Now if we recall
Lemma 1, we get vo(x) = maz(z,v*) = z, uz(x) = maz(z, uz).
As before, the aim is to obtain an equation for wus(zx).

Lemma 5.
f{ (l‘) _ —c2 + qL/(I)a r <up — — + A(I)a T < Ui,
L'(z), 2 >w A(z) + Bi(z), > uy.

Consequently, By(u) = By(u) + aEf{(u— &) =
=c(l—a)—r(p+aq)+ph+7r)F(u)+ aF(u—uy)(ca — rp) +
+alth+r)(fg " Flu—t)et)dt+q [°, Flu—t)p(t)d),
where us is the root.

Interestingly, f; = L'(x) for cg > pr. In its turn,
Ba(u) =co —r(p+a)+ (h+7)(pF(u) + aF*%(u)). Therefore

F(u2) + %F*Q(ug) = %. Since F(u) + %F*Q(u) > 0, we see that

ug = —oo for ca > r(p + «).
Lemma 6. us > uq.

Proof. Consider the difference By(u) — By(u) =

=—crata [, " Bi(u—t)p(t)dt + o [;T Alu—t)p(t)dt

Substituting «; in the equation, we get: Bs(u1) = —ciat« fooo A(u—t)p(t)dt =
—caa — qra+ aq(h+r)F*2(uy) < —sa — qra+ qa(h + 1) F(uy) = -2 <0

As a result we have u; < ug by the monotonicity of Ba(u).O]

The results for D;;; and Djy can be acquired in the same way.

It should be mentioned that optimal orders are ve(x) = us(x) = maz(x, ve)
for Dyyy, v > v1. Whenever ¢; > r, it follows that f] = L’(z) and
Co(v) = c1 —r(1 +a) + (h+7)(F(v) + aF*2(v)). Arguing as above, we see
that: F(ve) + aF*?(vy) = %
Let us also remark that F'(v) +aF*?(v) > 0, hence vy = —o0 for c3 > r(1+«).

5 Optimal control for any step n.

Denote by v, (z) and u,,(x) optimal values of orders at the n—th step, meaning
that we need to purchase the amount v,,(z) — z of goods from the first supplier
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and the amount u,(z) — v, (z) from the second.

Our main results are the following:

Theorem 2. For (¢1,c2) € Dy we have:
0, z <v%
fi(z) = —c1 4+ ¢ A(x), v* <2 < up;
A(z) + Bp(x), = > up,.
The corresponding values of orders are v, (x) = max(z,v*) and u,(v) = max(z, u,).
Moreover, the sequence u,, s nondecreasing.

Proof. The proof is by induction on n from n = 1. The basis has already been
proved in the 3th and 4th sections. Now let us assume that conditions of the
Theorem are true for f/ (x), m <n— 1.

By direct calculations, using u,—2 < u,_1, we obtain: B, (u) — B,—1(u) =

U—Un—1
= aQn—1(u), where Q,—1(u) = [ (Bp-1(u—1t) — Byp_o(u—1t))p(t)dt —
0
U—Unp—2
— [ Bu_a(u—t)p(t)dt. Substituting u,_1, we get:
U—Un—1

Un—1—Un—-2

Bn(uy_1) = —« of Bn_o(un_1 — t)p(t)dt < 0.

Therefore, by the monotonicity of B, and by Lemma 2, it is true that
Up—1 < Uy and v* < v, < u,.0
The following theorems can be proved in the same way.

Theorem 3. For (¢1,c2) € Dy it is true that:
A(z), & < Up;
fol@) = —c1 +
A(z) + Bn(z), © = up.
We obtain v,(x) = = u u,(x) = max(x,u,). In addition, the sequence u,
nondecreasing. At the same time for all (cq,c2) such that (c1,c2) € {r(p+
m—=1 m .
+ > o) < ey <r(p+ D o)} it follows that u,, = —oco Vn < m, whereas w41
i= i=1
is defined by the equation o F S~ i D) T+ T, oY) c
y the equation aF (upme1) + >, o' F (Umt1) = j
i=1

Theorem 4. For (¢1,c2) € Dy we have:
0, T < wvp;
() =—c1+1{ "
Ja(@) ! {C’n(x), T > vy,
Optimal values of orders are v,(x) = u,(x) = max(z,v,). Besides, the se-

quence vy, is nondecreasing. Furthermore, assume that (c1,c2) € {r(1+ Z ) <

i=1

s

cp <r(l+ a®)}. In this case, v, = —oo Vn < m, and for v, 1 we get an

i=1

- m : . 145°m i
equation F (V1) + g:l W FFOFD (1) = %
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Theorem 5. For (c¢1,c2) € Dyy it is true that:
0, z <vp;
/ ) = —c _|_ Y n;
Ja(@) ! {Cn(x), x> Uy
There exists k(c1,cz2) such that for any n < k we obtain v, ()
= max(z,v,), whereas for any n > k we get v, (x) = max(x, v
= max(z, u,).

= up(z) =
*) and up(z) =

In order to analyze the sensitivity of the obtained results let us introduce
Sobol’s decomposition. Assume that A = (A, ..., A,) is uniformly distributed
in K™ =1[0,1]" and the function g(a),a € K™, is integrable Put go =ER =
= f g( da gl az f fg H daj— 9o, Gi,j al7aj f fg dak*

Kn k#m

= (90 + gi(ai) + g;(a;)),...
Then the following decomposition of variance holds for a square integrable
random variable R = g(A) :

ZV+ZV”+ > Vigk+ -+ Via..

i<j i<j<k
where V[R f a)da — g3 and partial variances are calculated by way of
Kn
11
Vitroie = [ - fg“, L@y, aq) H da;c Assuming V[R] # 0 we can
0 k=i1,..

formulate the followmg definition:

Sensitivity indezx S;, . ;, for a group of parameters (a;,,...,a;,),1 <i3 < ... <
<is <m,is given by V;, ;. /V[R], whereas the sensitivity index of order s is
> i<ii<..<i<n Si1,...i,- Moreover, global sensitivity index GI(a;) of parameter
a; is the sum os all indices S;, ... ;.,s > 1, containing i

GI(a;)) = (Vi+ Y Vij+ ..+ Via. n)/VIR|
i#j

Thus, GI(a;) represents the total contribution of parameter a; to the variance
of output.

Applying this approach in Wolfram Mathematica we examined the sensitivity
of the obtained solutions to small changes in parameters.
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Abstract Statistical models in linear regression generally focus on estimation and
interpretation of conditional mean effects. However, in some situations considering
mean effects could be not appropriate when for example we have great variations in
response variable percentiles or when we have outliers. We here propose the Stability
Selection method for variables selection in high dimension penalized linear Quantile
Regression. This approach combines subsampling and variable selection algorithms
adapted to the case of high dimension. Particularly, we apply Stability Selection with
Lasso and Randomized Lasso Quantile Regression. Finally, the proposed method is
compared with its competitors on simulated and real data sets.

Keywords: Quantile Regression, High Dimension, Resampling, Stability Selection.

1 Introduction

Meinshausen and Bithlmann[7] advocate that subsampling can be used for Sta-
bility Selection in penalized linear regression models to determine the amount
of regularization such that a certain family type I error rate in multiple testing
can be conservatively controlled for finite sample size. Particularly for complex
and high dimensional problems, a finite sample control is much more valuable
than an asymptotic statement with the number of observations tending to oc.
Moreover, the previous authors also prove that subsampling in conjunction
with Li-penalized estimation requires much weaker assumptions on the design
matrix for asymptotically consistent variable selection than what is needed for
the non-subsampled Li-penalty scheme. Furthermore they show that addi-
tional improvements can be achieved by randomizing not only via subsampling
but also in the selection process for the variables. Recently a variant approach
called Complementary Pairs Stability Selection (CPSS) has been also proposed
by Shah and Sameworth[2]. Beinrucker et al.[1] also propose a simple exten-
sion of the original stability feature selection approach used in Meinshausen and
Bithlmann|7]. We can mention here that variable selection approaches based
on bootstrap, Random Lasso[5] and Bolasso[10], have been proposed in linear
regression case.
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In the lines below, we will focus on the adaptation of Stability Selection|7]
and bootstrap based approaches to Quantile Regression[17]. As a motivation
of this work we have a dataset on volatile compounds previously used in Duflos
et al.[6]. The classical approach based on penalized mean regression is not
adapted for this setting since the response variable presents many variations.
On the other hand, we want to select the set of stable variables among the
volatile compounds which represent the predictors.

The second section of this paper is devoted to the adaptation of Stabil-
ity Selection to Quantile Regression(QR). Moreover, an illustration on a real
dataset is presented and the selection of the tuning parameter based on Belloni
and Chernozhukov[3] idea is discussed in the same section. Finally, last section
is devoted to numerical experiments including simulations and real data set
applications.

2 Linear Quantile Regression Stability Selection

2.1 Variable selection in Quantile Regression

We cousider a size n ii.d sample {(x;,¥;),7 = 1,...,n} from some unknown
population, where x; € RP and y; € R. Linear quantile regression solves the
following optimization problem for 0 < 7 < 1:

(30(7)73(7')) = argmin(ﬁo,g)gmﬂ {Z Pf(yi — Bo — Xtﬁ)} . (1)

i=1

The function p,(.) is called the check function and is defined by p-(u) =
Tuly>o + (7 — 1)ul,<o, where I(.) is the indicator function which takes value
0 or 1. Since we are interested on variable selection, which is a common prac-
tice because in major studies, the main objective is to have a set of relevant
variables in a set of predictors used to explain the response variable y.

The following penalized problem is considered:

(Bo(7), B(r)) = argmin g, ) cprs {Z pr(yi — Bo — xiB) + AP(ﬁ)} o (2)

i=1

where P(.) is the penalty function and the tuning parameter A > 0 controls the
sparsity of the model. As a survey on frequently used penalty functions in the
field of quantile regression we can cite the excellent references of Zou and Yuan
[11], Wu and Liu [9] and Slawski [8]. Since the idea of our proposed methods
are based on Lasso penalty[14], in all the lines below, we will only focus on the
following problem defined by:

ming, g)ckr+1 {Z pr(yi — Bo—xiB) + A || B ||1} : (3)

i=1

All of the methods in this paper are based on the previous formulation except
the Randomized Lasso[7] for quantile regression with weakness o € (0, 1] which
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takes the following form:

n p
ming, g)eprr+1 {Z pr(yi — Bo = XiB) + A |§,’; | } : (4)
k=1

i=1

where W}, are iid random variables in [a, 1] for k =1, ...p.

2.2 Stability Selection and pointwise control

This part is a slightly modified part of Meinshausen and Biithlmann[7] approach.
Since stability paths are derived from the concept of regularization paths, we
recall that for each quantile 7, 0 < 7 < 1 a regularization path is given by the
coefficient value of each variable over all regularization parameters

(BMr)AeAk=1,..p})

Stability paths are the probability for each variable to be selected when
randomly resampling from the data. For any given regularization parameter
A € A, the selected set S’f.‘ is implicitly a function of the samples I = {1,...,n}.

Definition 1 (selection probabilities): Let I be a random subsample of
{1,...,n} of size [n/2], drawn without replacement. For every set K C {1,...,p},
the probability of being in the selected set S'TA(I) is

g (r) = P{K C S}I)}. ()

For every variable k = 1,...,p, the stability path is given by the selection
probabilities T (7), A € A.

In the remainder of the paper, we look at the selection probabilities of
individual variables. Generally, for each quantile of interest variable selection
is concerned by the choice of one element in the set of models

{SM X\ e A}, (6)

where A is again the set of regularization parameters considered, which can
be either continuous or discrete. There are typically two problems: first, the
correct model S; might not be a member of set (6). Second, even if it is a
member it is typically very difficult for high dimensional data to determine
the right amount of regularization A to select exactly S;, or at least a close
approximation. With Stability Selection, we do not simply select one model in
the list (6), instead the data are perturbed (e.g by subsampling) many times and
we choose all variables that occur in a large fraction of the resulting selection
sets.
Definition 2(stable variables). For a cut-off mip, with 0 < mp, < 1 and
a set of reqularization parameters A, the set of stable variables for a quantile T
is defined as
Sstable — (k- maxre A (IT) (1)) > Tonr}. (7)

We keep variables with a high selection probability and discard those with low
selection probabilities.
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o s s

Figurel. From left to right: comparison between L; median regression regularization
paths, QR Stability Selection without randomization and QR Randomized Stability
Selection with oo = 0.1 on PAC dataset for log(y).

2.3 Illustration on PAC dataset

In Figurel, we illustrate the advantage of using Stability Selection with or
without Randomization. We use PAC data available under R software about
GC-retention indices of polycyclic aromatic compounds(y) which have been
modeled by molecular descriptors(X). The data set contains n=209 observa-
tions and p=467 predictors. We first take the 50 variables with the highest
marginal correlation with log(y) and randomly select five predictors. These
five predictors are kept unpermuted and the remaining 462 are permuted across
the samples, using the same permutation that keeps the dependence structure
between the permuted observations intact. The left plot, corresponding to L4
penalized median regression shows that it is very difficult to isolate the five un-
permuted variables paths with noise variables paths. For Stability Selection, a
threshold of 7y, = 0.6 includes all of the five unpermuted variables with some
noise variables. When using Stability Selection with randomization parameter
a = 0.1, we can see that with the same threshold m, = 0.6 all of the five
unpermuted variables are selected without any noise variable.

2.4 Tuning parameter selection

Among many alternatives on the choice of the tuning parameter we can cite
(see Li and Zhu[12]) the Schwarz Information Criterion (Schwarz[16]; Koenker,
Ng, and Portnoy[15]) (SIC) and the generalized approximate cross-validation
criterion (Yuan[13]). The SIC is defined by

n

SIC() = 109(% > oy — (1)) + lo‘;(l”) df,

i=1

where df is a measure of the effective dimensionality of the fitted model. In our
case, f(x;) = Bo+x!3. However, recently Koenker|[4] claims that using the SIC
optimization method often produced insufficient shrinkage and the optimization
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process was quite slow. He also claims that when simulating realizations of the
random vector S, = > (7 — I(U; < 7))xi, one can assert that the event
ISnllec < A should hold with high probability, provided of course that \ is
chosen sensibly so that  is close to the true parameter 5(7). Following this
idea, Belloni and Chernozukov|3] suggested choosing \asa (1 — @) quantile of
the simulated distribution of ||Sy||ec, or perhaps a constant multiple of such a
quantile for some ¢ € (1,2]. This extremely simple approach was used in our

simulations for « = 0.1 and ¢ = 1.

3 Numerical results

3.1 Simulations settings

For our simulations, we consider the following model Y = X 5(0.5) 4 ¢, where
Y is the n dimensional response vector, X is the n x p predictors matrix, 5(7)
is the true p dimensional parameter vector and € is the n dimensional vector of
errors. In the lines below, we consider p = 200-dimensional predictor variables
follow an N (0, X) distribution, where 2;; = pl"=7l and p € {0,0.5,0.75,0.9}.
The sample size is fixed to n = 100 and the Signal to Noise Ratio SNR =
Var(Xp(r))/Var(e) considered takes values in {0.5,2,4}. The error vector
€ ~ N(0,1) and B(7) vector has s nonzero components chosen as uniforms on
[0,1]. The s value considered here is s € {4,8,12,20}.

Simulations are performed 100 times and median of False positive, False
negative and the mean probability to select 0.1s and 0.4s correct variables
without any noise variable are given on Figure 2 and Figure 3.

Each plot gives the performances of the following five methods "QR Stability
Selection","QR Randomized Stability Selection", "QR Lasso", "QR Bolasso"
and "QR Random Lasso".

Results for n=50 seems to be similar. For Stability Selection based ap-
proaches, the threshold is fixed to my, = 0.6 and o = 0.5 for Randomized
Stability Selection . We use fixed value of the tuning parameter(pointwise con-
trol) as previously advocated. Nevertheless we can use R software "IpRegPath"
package which generates the entire solution path as a function of the tuning
parameter. Taking into account the limited size for papers, we only present
results for s € {4, 8}.

For s = 4 and p = 0, stability selection based methods and QR Bolasso
do not introduce FP (SNR € {0.5,2,4}). QR Lasso FP selection is around
14 FP which represents the median about 100 bootstrap (SNR € {0.5,2,4}).
QR Random Lasso seems to introduce more FP variables for SN R = 0.5 than
for SNR € {2,4}. In terms of FN, QR Randomized Stability Selection and
QR Bolasso seems to delete more true regression coefficients than other meth-
ods with decreasing number of median FN when SNR increases. In terms of
P(0.1s correct), QR Randomized Stability Selection and QR Bolasso give very
good result (probability=1), QR Stability Selection corresponding probabil-
ity increases when the SNR increases (0.73,0.77,0.78). Since QR Lasso intro-
duces too many variables, the corresponding probability is zero. QR Random
Lasso also have increasing probability with increasing SNR (0.02,0.27,0.41).
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For P(0.4s correct) and SNR = 0.5, QR Stability Selection gives great proba-
bility(0.68) followed by QR Randomized Stability Selection (probability=0.46)
and QR Bolasso (0.18). QR Lasso and QR Random Lasso give zero probability.
For SNR € {2,4}, QR Randomized Lasso and QR Bolasso give great similar
probability (0.99 and 1 respectively) and we have probability values of 0.01 and
0.1 for the QR Random Lasso. QR Stability selection gives probability of 0.89
and 0.86. The previous comments and for other values of p can be seen on
Figure 2 and Figure 3.

When s = 8 and p € {0,0.5} we have the same remarks as previous (s=4)
for the median number of FP and FN. For P(0.1s correct), QR Randomized
Stability and QR Bolasso have higher performances followed by QR Stability
Selection and QR Random Lasso. For P(0.4s correct), QR Stability Selection
has the highest performances due to the fact that it has the best trade off
between FP and FN, followed by Randomized Stability Selection. We remark
that QR Bolasso has the higher performance for P(0.1s correct) when p = 0.75
followed by QR Randomized Stability Selection and QR Stability Selection
without Randomization. QR Random Lasso has very low selection probability.
For P(0.4s correct) and SNR=0.5, all methods fail to select 40% of correct vari-
ables without introducing any noise variables, due to the fact that QR Lasso
and QR Random Lasso introduce noise variables, and other methods delete
some correct variables. Results for other values of SNR and for p = 0.9 can be
seen on Figure2 and Figure3.
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Figure2. Median number of False Positive and False Negative selection among 100 replications for s=4(top row)

and s=8(bottom row). For each SNR value we have from left to right "QR Stability Selection","QR Randomized
Stability Selection", "QR Lasso", "QR Bolasso" and "QR Random Lasso".
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3.2 Real data application

We consider the data set on volatile compounds previously used in Duflos et
al.[6]. The sample considered consists of n = 37 observations and p = 49 pre-
dictors(X) used to model Freshness index and Quality scores (y). A direct use
of methods on the full data gives results only for L; median regression and
QR Bolasso. For Stability Selection and bootstrap based methods, we have
no results due to the fact that subsampling of size n/2 leads in some cases
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Flgure3. Probability of selection of 0.1s and 0.4s of relevant variables without selection any noise variables
among 100 replications for s=4(top row) and s=8(bottom row). For each SNR value we have from left to right "QR
Stability Selection","QR Randomized Stability Selection", "QR Lasso", "QR Bolasso" and "QR Random Lasso".
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to singular design sub matrixes and we cannot compute the tuning parameter
A = cA(1—a|X) since the matrix of predictors X is very sparse with many zero
entries. On another hand, QR Bolasso with 100 bootstrap selects no variables
for many values of \, so we consider QR Soft Bolasso (QR SBolasso) which se-
lects at least 60% of variables which are selected for all bootstrap samples. In
the line below we only consider compounds with at least n/2 nonzero observa-
tions which lead to a predictors matrix with sizes n = 37 and p = 37. Selection
results are summarized below where for the tuning parameter A\, ¢ = 2 and
a = 0.1. For stability selection methods, the threshold is fixed to msp, = 0.6.
According to selection results in Tablel, we see that for A = 25.253 no variable
is selected by all of the methods. Selection results for A/5 and A/10 are given
in Tablel with selected volatiles names given in Table2. As expected, sub-
sampling improves important variables selection and additional randomization
prevents against noise variables selection. The selected compounds by Stabil-
ity Selection approach also have been found by Duflos et al.[6] to be related to
fish spoilage during storage. This important compounds are Ethanol(d), Ethyl
acetate(o), 3-Methyl butanal(r) and 3-Methyl-1-butanol(ag) where more stable
compounds seem to be Ethanol(d) and 3-Methyl-1-butanol(ag).

Methods Selected Compounds

A=25.253 Freshness index Quality scores
All methods - -

A/5

QR Lasso a,d,l,o,q,r,aa,ag b,d,r,aa,ag,ah
QR SBolasso d,r,ag d,ag,ah

QR Stability Selection d,r,ag d,ag

QR Randomized Stability Selection a = 0.2(- -

QR Randomized Stability Selection a = 0.5|d,ag ag

QR Randomized Stability Selection a = 0.8|d,r,ag d,ag

X/10

QR Lasso b,d,j,l,0,r,aa,ag,aq,ar,bh b,d,l,aa,ag,ah,aq,bh
QR SBolasso d,o,r,ag,bh d,r,ag

QR Stability Selection d,o,r,ag d,ag

QR Randomized Stability Selection a = 0.2|d d,ag

QR Randomized Stability Selection a = 0.5|d,r,ag d,ag

QR Randomized Stability Selection a = 0.8|d,r,ag d,ag

Tablel. Selected volatiles for penalized median regression.
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International

Compounds|Names Compounds|Names

a Acetaldehyde T 3-Methyl butanal

b Methanethiol aa 2,3-Pentanedione

d Ethanol ag 3-Methyl-1-butanol

j 2,3-Butanedione ah 2-Methyl-1-butanol

1 2-Butanone aq 1-Hexanol

o Ethyl acetate ar 3-Heptanone

q 2-Methyl-1-propanol |bh Nonanal
Table2. Selected volatiles names.
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Abstract. The probability of death depended in the past to a considerable extent
on the level of advancement of the health service, the medical findings acquired and
knowledge of the appropriate treatment processes. In the case of persons with Celiac
Disease, which is a disease involving gluten intolerance, the hope of survival in the
majority of countries was slim until the eighties of last century. These people died at
a very young age thanks to ignorance of the diagnosis of their disease. However, as
soon as it was possible to determine the diagnosis of Celiac Disease correctly there
was a considerable breakthrough and progress rapidly changed the hope of survival
for these people. This breakthrough occurred earlier in some countries and later in
others. In this way treatment procedures were found for hitherto unknown diseases,
or at least there was information on reducing the consequences of these diseases. The
submitted study will provide a look at the alternative assessment of the probability
of death of persons with Celiac Disease and the probability of death in general. The
modelling of the probability of death is possible with the use of the LOGIT model.
On the basis of supplementary information about the population it is then possible to
construct various probability scenarios with the utilisation of alternative variables.

Keywords: Probability of Death, Celiac Disease, LOGIT, Alternative Assessment.

1 Introduction

In spite of the fact that medicine is constantly bringing people new information
and the diagnosis of new diseases, there were and still are diseases for which
the existing diagnosis is only partial and thus insufficient for the complete
cure of the patients (Logan et al. [4]). In the second half of last century
the diagnosis began to appear in some countries of a disease involving gluten
intolerance, later described as Celiac Disease. This diagnosis, however, only
spread to certain countries. There were countries not only in Europe, but also
throughout the world, which did not have all the necessary information from
science and research published abroad (Rubio-Tapia et al. [5]). This caused
various information delays and the consequences of insufficient information
about the diagnoses of certain diseases had an impact on the life expectancy
of these people. The probability of the death of persons with specific diseases
was thus raised in comparison with the probability of death of persons in the
general population not burdened by any of the diseases with a still insufficient
diagnosis.
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2 Methodology and Model

The dependence on age of the probability of death of a person z years old
can be explained with the use of further variables, both discrete and also cat-
egorical (Freese and Long [1]). The LOGIT models are capable of estimating,
with the use of the distribution function of logistic distribution, the value of
the probability of death of a person z years old, where further supplementary
information may create various forms of the probability function. In the pre-
sented model the probability of death of a person z years old will be estimated
for the course of the next k years after the medical examination (where £ is any
whole number) in the case where the person has some diagnosed disease, or in
the case where the person is completely healthy. In the illustration case study
the analysis will be used of the probability of death of persons with Celiac Dis-
ease in comparison with the probability of death for the population as a whole.
The explained variables of Y will be alternative. When the value of variable Y
equals 1, then the person will die within %k years, and on the contrary when the
value of variable Y equals 0, the person will survive k years. So that it would
be possible also to determine the values of the probability of the occurrence
of this phenomenon between the two extremes, the LOGIT model of discrete
selection will be applied, when the explained variables acquire values from the
interval <0 ; 1> (Hoyos et al. [2]). The following variables may be used for the
model:

- AGE is the precise current age of the person invited for a health check,

- CIRD is the Constant of Increased Risk of Death, which acquires values from
the interval < [ ; h >, where [ and h are whole numbers. The calculation of this
constant arises for the i*" patient from Table 1, which is created during the
medical examination and where instead of the verbal replies given there were
recorded w; ;, acquiring the values 0 and 1, where 0 = patient’s reply does not
coincide with the word given in the appropriate square and 1 = patient’s reply
coincides with the word given in the appropriate square.

Vi V, V3 Vi V, V3
Smoker no |occasionally|regularly||v; ; = 0/1
Black Coffee| mno |occasionally|regularly
Alcohol no |occasionally|regularly
Sleep regular| irregular poor
Nutrition  |regular| irregular poor

Table 1. Replies of patients to doctor’s questions during general examination (left)
and 0/1 matrix replies (right)

From Table 1, in which the replies are recorded in the 0/1 format, emerges
the CIRD for the ** patient from the formula (1),

5 5 5
CIRD = (wy x va) + (w2 x Z%‘,Q) + (w3 X va) (1)
i=1 i=1 i=1
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where wi, wo and ws are the weights recommended on the basis of the
doctor’s opinion, who provided data matrices for analysis. (We can use wy; = 1,
we = 3.5 and w3z = 7). The general rule, arising from the literature, is not here.
This Constant can take values from interval <5 ; 35>, where the extreme value
of 5 means, that the patient does not increase the risk of death because of its
poor lifestyle and extreme value of 35 means, that the patient increases the risk
of death in the worst way possible.
- ILL is a binary variable, acquiring the values 0 = the person does not have a
diagnosed illness, or 1 = the person has a diagnosed illness. In the model with
Celiac Disease the variable CEL will be used.
- DEATH _K is a binary variable, acquiring the values 0 = the person did
not die within & years after the medical examination, or 1 = the person died
within k years after the medical examination.

The probability function for the LOGIT model (Christensen [3]) is

1

P=FEY=1X,)=———7—
= B(Y = 1K) = ——

(2)

modified for this study in the form

1
P =E(Y =1X;) = 1+ e~ (botb1 AGE; +62CTRD; +b5CEL;) ’ (3)

where i is the i*" patient. Let us set
Z; = by + b x; (4)
and let us insert it for the purposes of this study
Zi =bo+01AGE; + b2CIRD; + bsCEL,. (5)
The subsequent expression

1 eZi

Pi: =
1+e % 1+e%

=F(Z) (6)
is the distribution function of the logistic distribution. The probability that a
person aged z-years will not die within & years after the moment of the medical
examination is

1
1-P, = 7
1+ e% @
and therefore P
P 7,
1-p - ®)
By calculating the logarithm we obtain LOGIT
P; /
ln(l_Pi):Ziib0+in, (9)

which is transferred for the purposes of this study into the form

P;
1- P

) = Zi = by + b1 AGE; + byCIRD; + bsCEL;. (10)
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From the general assumptions, the logarithm of the credibility function

N 7. 7.
eZi e?i
InL(bg,b) = Yiin(——— 1-Y)in(l — —— 11
Lo b) = Yol oz) + (- Yo - Tl ()
there arises after the substitution
N b0+b/Xi boer/X-;
InL(by,b) = Y [Yiln(——————) + (1= Yi)ln(l - ————)]  (12)
i1 1+ eb0+b X; 1+ €b0+b X
and for the purposes of this study is
N ebo+b1 AGE;+b;CIRD;+byCEL;
InL(bo, b1, b2,b3,) = Z[Yil”(l + ebo+b1AGE;+b;CIRD, +b3CEL; )+

i=1

eb0+b1 AGE;+b3CIRD;+b3sCEL;,
+(1—Y;)in(1

"1 + ebotb1 AGE;+b:CIRD;+b3CEL; -

3 Data, Material and Case Study

For the study mentioned it is possible to use data from the databases of health
insurance companies and medical statistics. There are few health insurance
companies which record events to the necessary extent. Practical analysis will
be carried out for selected periods of the nineties in the Czech Republic, Slo-
vakia and Poland. The analysis will be restricted to persons with Celiac Disease
and persons with no health complications and the results will be published sep-
arately for the male and the female gender. For the experiment of non-linear
regression (Spector and Mazzeo [6] or Yang and Raehsler [7]), applied in the
first part of this study about 200 observations of variables consisting of two
samples were obtained for each country - Czech Rep., Slovakia and Poland. It
is important to note, that this is not a representative selection for the appli-
cation of standard methods of mathematical statistics. The selection was not
taken at random. This is the data matrix, obtained by tentative minor research.
Selection consists all individual invited in 1990 to general medical examination
and their health status was checked in the future. For consecutive experiment
of non-linear regression, applied in the second part of the study, approximately
other 200 observations of patients, consisting of two samples were obtained for
each country. It is a selection of patients invited in 1995 to the overall medical
examination and their health status was checked in the future (but obtained
from other sources than the first selection). We hope that there is minimum
probability that some patients from the first sample are contained in the second
sample. Estimating the unknown parameters of non-linear regression models is
no problem today. To estimate the parameters of LOGIT model Statgraphics
Centurion XVI version 16.1.11 and Gretl 1.8.7 build 2010-01-24 were used.

Based on the methodology showed above the estimates of unknown parameters
of LOGIT models for males in 1990 and 1995 as well as for females in 1990 and
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1995 were calculated for Czech Rep., Slovakia and Poland. Table 2 shows the
results for the Czech Republic (top), for Slovakia (middle) and Poland (bot-
tom). The first model for each country is always for males in 1990, the second
model always for females in 1990, a third model always for males in 1995 and
the fourth model always for females in 1995. Of the estimated models were
constructed graphs showing the development of the probability of death of z-
years old person. (See Figure 1 for Czech Rep., Figure 2 for Slovakia and finally
Figure 3 for Poland.

CIRD=19,7875
CEL=0

DEATH_5

CIRD=19,7875 |
CEL=1

60 20 30 40 50 60

CIRD=19,7875 7
[ CEL=0 yd

DEATH_5

CIRD=19,7875 ]
CEL=1

DEATH_5

20 30 40 50 60

CIRD=18,775 _—
8- CEL=0 e ]

DEATH_5

Fig. 1. Probability of death of z-years old person in the Czech Republic (males 1990
with CEL - 1% row left, males 1990 without CEL - 1°* row right, females 1990 with
CEL - 2" row left, females 1990 without CEL - 2" row right, males 1995 with CEL
- 3" row left, males 1995 without CEL - 3"¢ row right, females 1995 with CEL - 4**
row left and females 1995 without CEL - 4" row right.)
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Parameter|Estimate|St. Error|Odds Ratio||Factor|Chi-Sq. DF|P-Value
Constant -15,6423 | 3,71635

AGE 0,333211 | 0,09654 1,40052 AGE [31,3889| 1 | 0,0000
CIRD 0,370041 | 0,08211 1,40563 CIRD |39,0002| 1 | 0,0000
CEL-0 -8,23231 | 1,90601 0,00029 CEL 78,8484 | 1 | 0,0000
Constant -15,7816 | 3,71599

AGE 0,329121 | 0,08534 1,38975 AGE [31,2349| 1 | 0,0000
CIRD 0,361625 | 0,08578 1,43566 CIRD |38,8651| 1 | 0,0000
CEL-0 -8,19201 | 1,89216 0,00027 CEL 78,8339 | 1 | 0,0000
Constant -9,17489 | 1,90414

AGE 0,161341 | 0,03913 1,17509 AGE 21,591 | 1 | 0,0000
CIRD 0,195672 | 0,04715 1,21613 CIRD |22,1363| 1 | 0,0000
CEL-0 -1,84446 | 0,52223 0,15811 CEL 14,2464 | 1 | 0,0002
Constant -9,26566 | 1,91888

AGE 0,189633 | 0,04001 1,18655 AGE |22,0001| 1 | 0,0000
CIRD 0,201122 | 0,04023 1,22366 CIRD |22,1963| 1 | 0,0000
CEL-0 -1,83663 | 0,52889 0,16889 CEL 14,6398 | 1 | 0,0001
Constant -14,771 3,61432

AGE 0,319513 | 0,08661 1,37646 AGE [29,5255| 1 | 0,0000
CIRD 0,337395 | 0,08146 1,40129 CIRD 36,9356 | 1 | 0,0000
CEL-0 -7,98723 | 1,89016 0,00033 CEL 76,0443 | 1 | 0,0000
Constant -11,177 2,47924

AGE 0,221478 | 0,05806 1,24792 AGE [22,5223| 1 | 0,0000
CIRD 0,27303 | 0,06150 1,31394 CIRD | 33,842 | 1 | 0,0000
CEL-0 -5,64065 | 1,16173 0,00355 CEL |64,0071| 1 | 0,0000
Constant -7,16711 | 1,60754

AGE 0,133789 | 0,03569 1,14315 AGE 16,7686 | 1 | 0,0000
CIRD 0,146313 | 0,04042 1,15756 CIRD | 15,711 | 1 | 0,0001
CEL-0 -1,90989 | 0,50245 0,14809 CEL 16,8345 | 1 | 0,0000
Constant -7,05805 | 1,62331

AGE 0,119955 | 0,03438 1,12745 AGE |14,1924| 1 | 0,0002
CIRD 0,15557 | 0,04191 1,16832 CIRD |16,4657 | 1 | 0,0000
CEL-0 -1,87092 | 0,49519 0,15398 CEL 16,4205 | 1 | 0,0001
Constant -10,565 2,35537

AGE 0,23943 | 0,05954 1,27053 AGE 28,3616 | 1 | 0,0000
CIRD 0,2161 0,05382 1,24123 CIRD |24,6238| 1 | 0,0000
CEL-0 -5,30962 | 1,12046 0,00494 CEL |59,8911| 1 | 0,0000
Constant -8,565789 | 1,92926

AGE 0,163137 | 0,04635 1,1772 AGE |16,7961| 1 | 0,0000
CIRD 0,217977 | 0,04990 1,24356 CIRD |28,4366 | 1 | 0,0000
CEL-0 -4,27303 | 0,84652 0,01393 CEL |51,4505| 1 | 0,0000
Constant -5,64467 | 1,42814

AGE 0,103277 | 0,03250 1,1088 AGE |11,2856| 1 | 0,0008
CIRD 0,122385 | 0,03745 1,13019 CIRD |12,1086| 1 | 0,0005
CEL-0 -1,80914 | 0,47412 0,16379 CEL 16,6206 | 1 | 0,0000
Constant -7,11323 | 1,63255

AGE 0,123955 | 0,04111 1,13222 AGE |14,2396 | 1 | 0,0000
CIRD 0,23357 | 0,04263 1,17888 CIRD |16,4756 | 1 | 0,0000
CEL-0 -1,89992 | 0,50122 0,14536 CEL 16,4322 | 1 | 0,0000

Table 2. Estimations of unknown LOGIT models parameters
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Fig. 2. Probability of death of z-years old person in Slovakia (see legend in FIG. 1.)

4 Conclusion

The aim of this study was to analyse the probability of death of z-year old
persons in Czech Rep., Slovakia and Poland during next five years (k = 5)
after the general medical examination in 1990 and 1995. The analyses were
solved using LOGIT models and tried to confirm the hypothesis claiming, that
the probability of death of z-year old person suffering from celiac disease de-
creased few years after the gaining of another medical knowledge from other
countries. Even if some assumptions for the application of methods of mathe-
matical statistics are broken, it is possible to say, that the key hypothesis was
confirmed. Looking at Fig. 1, 2 and 3 we can see only slight differences between
the presented countries. Their development of the compared statistics in the
past should be similar.
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Abstract. In this paper a Hidden Markov Model (HMM) based prediction algorithm will
be introduced for algorithmic trading, the performance of which is enhanced by
clustering and PPCA algorithms. The performance of the new method is tested on
different financial assets and instruments. We use various training methods (e.g.
Baum-Welch expectation maximization, simulated annealing and hybrid methods) for
optimizing the parameters of HMM in order to capture the underlying characteristics
of the financial time series. The new hybrid algorithm combines simulated annealing
(SA) with the Baum Welch algorithm (used as a local search after each step of SA)
and can provide relatively fast and good quality solutions. The real time nature of
learning can be guaranteed by running SA only for a limited number steps determined
by a predefined time interval. To cope with the underlying complexity and perform
high frequency trading we apply clustering for reducing the number of data and PPCA
for dimension reduction as preprocessings. The algorithms are tested on US SWAP
rates and FOREX series. The results demonstrate that a good average return can be
obtained by HMM based prediction and the applied preprocessings. It is noteworthy
that the continuous model gives better result, however it requires more complex
training.

Keywords: Hidden Markov Models, financial time series, algorithmic trading

1 Introduction

In this paper we investigate the performance of prediction based trading on
financial time series by Hidden Markov Models (HMM). HMMs are widely
used for predictions (Mamon and Elliott[15], Durbin et al.[5], Jurafsky and
Martin[13], Hassan and Nath[7]), however there are no efficient algorithms
have yet been developed for real-time training of the free parameters for the
purpose of high-frequency algorithmic trading (Hassan et al.[8]). The trading
action is based on the probabilities of the predicted future values. For
minimizing the risk, the highest probability future value is selected and
depending its increasing (or decreasing) nature a buying (or short-selling) action
is taken. In order to optimize the parameters of the HMM, different training
methods are used: Baum-Welch expectation maximization (Baum et al.[3]),
simulated annealing (Kirkpatrick et al.[14]) and hybrid methods proposed by the
present paper. In the hybrid method, after accepting a new state by SA the
Baum-Welch algorithm is used as a local search method. After the convergence
of the Baum-Welch algorithm to a state in the parameter space, SA adopts it as
the new state and calculates its next step from there. The real-time nature of this
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algorithm can be ensured by limiting the number of steps of SA making it fit

into a predefined time interval. In this way, good quality solutions can be

achieved in relatively short time.

Unfortunately, the algorithms in the present form are very exhaustive

computationally. Thus, to ease the complexity, we introduce clustering to limit

the number of data and PPCA to reduce the dimension.

The HMM based predictor is tested on US SWAP rates and FOREX series. The

results demonstrate that a good average return can be obtained. It is hoteworthy

that the continuous model gives better result, however it requires more complex

training.

The material is treated in the following order:

- insection 2, the discrete and continuous HMM is briefly summarized;

- insection 3, the computational model is mapped out;

- insection 4, we delve into the different learning algorithms;

- insection 5 and 6 we explain the preprocessing with clustering and PPCA,
respectively;

- insection 7 the trading method is outlined;

- insection 8, the numerical results are given;

- finally, in section 9, some conclusions are drawn.

2 The model

A Hidden Markov Model (HMM) (Baum and Petrie[2]) is a statistical model
which is an extension of Markov chains. In this model, the current state is no
longer directly visible to the observer, but each state emits an observable output
quantity denoted by

X={0,,0,,..,0: }, (2.0)
and each emission depends only on the hidden state
Q={0, 01O } - (2.2)

The probability of an emitting a specific output is determined by the conditional
probabilities P(o, |Q)=P(o, |q(t) =0q,), while the transition probabilities of

the underlying Markov chain, describing the jumping probabilities from one
state to another is given by the transition probability —matrix

A= P(q(t+1)=qi |q(t):qj). m,, denotes the initial distribution vector.
HMMs are commonly used in various fields, for instance in bioinformatics

(Durbin et al.[5]) or speech recognition (Jurafsky and Martin[13], Rabiner[17]).
In our case we use them to predict future values of financial time series.

2.1 Description of a discrete HMM
If we treat the observations having discrete values over a given alphabet

0, € {ky, Ky, Ky } (2.3)
then the observation probability matrix, B,,, describes the probability

distribution over the possible values for each state. For continuous data, pre-
processing is needed to quantize the data to the discrete alphabet. The easiest

810



P04 ¥y Proceedings, 15™ Applied Stochastic Models and Data Analysis (ASMDA2013)

international International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

alphabet has a three-element code indicating that the asset price is {increasing,
stagnating, decreasing}. In the discrete case, HMM is described by

©={m A B}. (2.4)
Vector valued observations can be coded as n-tuples, note that in this case the
alphabet size will grow accordingto O(M").

2.2 Description of a continuous HMM

When the observable output is continuous, the observation probabilities are
described by a probability density function, instead of a probability matrix. For
this purpose a multivariate Gaussian mixture model (Dasgupta[4]) was used, in
which the density function is composed as a weighted sum (according to the W
weight matrix) of M independent Gaussian functions:

P(o1a®) =a;) =2 wyby (0), (25)

where by, (0,)J N (pjk,):jk). Note that this approach can handle multivariate

observations as well. In the continuous case, HMM is then described as
0= {n, AW, , ):} . (2.6)

3 The computational approach to trading

The model parameters of HMM are identified during the training phase based
on a set of observations in historical data sequences. After learning, the HMM
can predict the values of the newly observed sequence, and then the predicted
distribution is converted to a trading signal for taking the appropriate trading
actions.

Our computational framework is shown on the following structural block
diagram (Fig. 1) and detailed as follows:

e Training phase: HMM model fitting (by using one of the learning
algorithms described in section 4) based on a training set;

e  Prediction: using the identified model and a newly observed sequence
of the time series, in this step the most likely prediction for the future
asset prices is calculated (see chapter 7);

e Trading strategy forming the trading signal: mapping the prediction
into a trading action (also detailed in chapter 7);

e Performance analysis: a framework for trading and testing and
evaluating various numerical indicators for the sake of comparison of
the profitability of different methods (chapter 8 contains further
details).

This framework will be extended in chapter 6 with dimensional reduction.
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Fig. 1. Computational approach

4 Training for predicting future values of financial time series

The model parameter estimation (learning) is a key aspect when we are using
HMMs for prediction. First, the construction of a training set is needed. This is
carried out by sampling the input time series with a sliding window of length T:

X={X,X,, .. X}, (4.1)
where X ={r_ ,..r} and I, is the daily return at the tth time instance:
I - PP ={r,i=1..n}, (4.2)
Py,

where p,; denotes the price of the ith asset in the tth time instance.

In the discrete case, the daily returns were partitioned into M equal sized
subsets. While handling the daily returns as a continuous value required a
normalization step:

* rti _F(I)
= g (e
std(r'’)
During training, the likelihood of the model is maximized based on the given
observations (Rabiner and Juang[16]):
@, =argmax P(X|®). (4.9
opt o

(4.3)

To avoid numerical instabilities due to the small order of magnitude of such
probabilities, it is better to calculate the logarithm of the likelihood:

L(®)=IlogP(X]|®). (4.5)
The optimization problem described in (4.4) can be solved in multiple ways.
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4.1 Baum-Welch expectation maximization

The Baum-Welch expectation maximization (EM) algorithm (Baum et al.[3]) is
a mechanism to iteratively update the model ((2.4) or (2.6)) starting from an
arbitrary initial value and iterating until the likelihood of the model converges to
a certain value. Since this is an iterative method, which can use the forward-
backward algorithm, implemented in an efficient way by dynamic programming
(Rabiner[17]), this algorithm is relatively fast.

On the other hand, it may get stuck in one of the local minima making the final
result highly dependent on the initialization. In our implementation, these
matrices were initialized randomly.

4.2 Simulated annealing

In the absence of analytical solutions for finding the global optimum of the
likelihood of model parameters, one can use simulated annealing (SA) to obtain
good quality heuristic solutions. Simulated annealing (Kirkpatrick et al.[14]) is
a stochastic search method for finding the global optimum in a large search
space. In this context the energy function J (@) is the log-likelihood of the
selected model:

J(®)=L(0). (4.6)
Let ® be an arbitrarily initialized model, and then by calling random number
generation a model ®' is generated subject to its constraints. The neighbor
function on each iteration modifies one of the probability vectors or matrices
with an amount according the current temperature (T). Accept the new model if

_3(0)-3(9)

J(©)>J(®), or otherwise with e T probability. Continue the

sampling while decreasing the T until zero. The last state is how describes the
identified model.

This method, in theory, can provide us the best fitting model. It is a rather slow
method due to the large dimension of the search space.

4.3 Hybrid solution

Having the Baum-Welch EM algorithm and the SA at hand, one can construct a
hybrid solution. In this case, after a new state was accepted during the annealing
process, we ran the Baum-Welch as a local optimization algorithm to speed up
the convergence. After the Baum-Welch algorithm converged to a state in the
parameter space, SA adopts it as the new initial state and calculates its next
move from there. The real-time nature of this algorithm can be ensured by
limiting the number of steps of SA. In this way, good quality solutions can be
achieved in relatively short time. This approach can bring more reliable results,
which are less dependent on the initialization.

5 Clustering algorithms

As we have seen, optimizing model likelihood in the full space of ® including
every available observation is computationally exhausting. To ease the
underlying computational complexity, one can pre-process the training set and
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form clusters out of the observations. Having the clusters at hand and assigning
them to the corresponding hidden states, the p.d.f. describing the observation
probabilities can be estimated for each cluster, separately. (Note that the
obtained model parameters could also be used as an initial estimate for the
previously shown methods.)

Rabiner addressed this topic in his work (Rabiner[17]) suggesting the following
algorithm in continuous case:

Algorithm 1.:

1. Arbitrary initialization of model parameters.

2. Segment the observations in the training set based on the optimal state
sequence (Viterbi path) calculated by the Viterbi algorithm
(Viterbi[20], Forney[6]) and assign each data point to the
corresponding maximum likelihood hidden states.

3. Perform k-means clustering over the observation vectors within each
state resulting M clusters per state.

4. Re-estimate the model parameters in a standard manner (calculate the
relative frequency of observations in each state and the relative
frequency of transitions, estimate sample mean and covariance for each
cluster).

5. Calculate statistical similarity with the previous model, if we can
assume convergence then stop, continue from step 2 otherwise.

It has been demonstrated in (Rabiner[17]) that the algorithm above performs
well in the field of speech recognition, giving essentially identical likelihood
values in an order of magnitude faster than the model obtained by the Baum-
Welch algorithm. However, attempts of application for financial time series
shown in (ldvall and Jonsson[11]) has vyielded much more moderate
performance, although the importance of a proper clustering mechanism is
emphasized. This gives the motivation for our new approach to obtain HMM
model parameters by clustering.

The main idea was to avoid a separate and linear clustering phase if a non-linear
GMM is used to describe the observation p.d.f. for the hidden states. This leads
to the following algorithm:

Algorithm 2.:
1. Fita Gaussian mixture distribution using every data point in the
training set.

2. Assign each mixture component to a corresponding hidden state, index
the price vectors accordingly.

3. Calculate the transition probabilities and the initial distribution vector
from relative frequencies (note that the remaining model parameters,
namely the p.d.f. of the observations, are already estimated during the
first step).
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One may note, that in the proposed algorithm only one single Gaussian
component will belong to each state. This will not restrict generality, as a model
having N hidden states with M mixture components can be rewritten in the form
of N times M states with only one component. Clearly, a grouping step could
take place in the algorithm forming two phase clustering similar to the previous
one. However, if the model parameter estimation is not used for further iteration
in the EM or SA algorithm, then the increased state space does not cause
difficulties in terms of computational resources. Using only one component per
state also gives us the advantage to control the model degree by tuning only one
free parameter.

The performance of the algorithm can be further enhanced by also taking into
consideration the price vector in the next time instance besides the current one
during clustering, as data points having similar distribution can differ in this
aspect. In this case we need to perform the Gaussian mixture estimation (step 1.)
on the following data set:

={{r.r,},0<i<K}, (5.1)

which embed the return vectors into a 2n dimensional space. After the clustering
is done, in step 2, we need to consider only the top-left quarter of the matrices
describing the p.d.f., which belongs to the first n dimensions.

6 Dimension reduction

Transforming the data from a higher dimensional space into a space of fewer
dimensions as a pre-processing step for the HMM can also yield certain
advantages:

e asmaller dimensional space requires much less computational time,
which enables us to do higher frequency trading, or to involve a larger
number of assets, which was not feasible formerly;

e allows us to control the model degree in order to avoid overfitting.

Deploying a feature extraction algorithm into to computational framework
introduced in chapter 3 can be done in a straightforward manner.
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Dimensional
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(optional)
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L |
Training set .
Training phase
b Set 0:_ [ discrete continuous
observation A A
sequences |
| Model parameters (11, A, B or m, A, W, M, X)
| ' |
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| (optional) Trading
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Performance
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Results

Fig. 2. Extended computational approach

As it is shown in figure 2, the dimensional reduction (as in (6.2)) and the back-
projection to the original space (will be given in (6.1)) is simply precedes and
follows the training and prediction modules, while the trading strategy is the
same as before.
The goal of dimension reduction is to relate a d-dimensional return vector (r)
into a g-dimensional (q <d ) latent vector denoted by x . If we assume a linear
relationship with non-zero mean, we get the basic model of factor analysis
(Bartholomew[1]):

r=Wx+p+eg, (6.1)
where matrix W,,, describes the transformation between the two spaces, p is

the mean and € represents the noise in the model. Having the mapping matrix
and the mean of the data, the reduction can be formulated as

x=(r—p)(W")". (6.2)

6.1 Probabilistic principal component analysis

Principal component analysis (PCA) is a well-known technique for dimension
reduction in various applications (Jolliffe[12]), however, the lack of associated
probabilistic model called for a derivation, called probabilistic PCA (PPCA),
having a proper density-estimation framework (Tipping and Bishop[18]).

If we assume isotropic Gaussian noise in (6.1) with ¢ ~ N (0,0'zl), that leads us
to the following conditional probability distribution (Tipping and Bishop[18]):
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r[x~N(Wx+p,o’). (6.3)
By convention, the marginal distribution for the latent variables is Gaussian
with
X~N(o,1), (6.4)
causing the marginal distribution for the observed data to be
r~N(pWW' +0°1). (6.5)

To obtain the maximum-likelihood estimator for W and o, in the lack of a
closed-form solution, we used an iterative expectation-maximization (EM)
algorithm to estimate their values (Tipping and Bishop[18]). The EM algorithm
consists of the following two steps:

W =SW(o’ 1+ M*W'sw) (6.6)
and

. 1 “I\R T

& :Htr(S-SWM W), (6.7)

where M=W'W+o?l, S is the covariance matrix
1& T
S= > (n-m)(n ). ©8)
i=1
while W and & denote the new value of the related parameters. When the

iteration judged to have converged, one should perform an orthogonalization on
the matrix W as well.

7 Prediction based trading

After the training phase has been done, the model is able to predict future stock
prices based on a window of observed previous data denoted by X. The forward
algorithm (Rabiner[17]) can be used to calculate the forward values, the
conditional probabilities being in each hidden state:

e (i)=P(X|0©,qt)=q,). (7.1)
The forward algorithm calculates these values in a memory- and running time

efficient manner by using a dynamic programming table. In our case, we are
interested only in the probability vector belonging to the last state:

a={e, (i),i=1..,N}. Having this at hand, one can formulate the probability
density functions belonging to observations in the next step as follows:

e discrete case: & =aAB, where @ =P (0, =k );

e continuous case:

EON (iZNl“(aA)iiwuuu , iZNl:(aA)iiWijEij j : (7.2)

and P(=y)=P(o,, =y).
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These p.d.f.-s are our predictions for the future asset prices. In each step, the
asset with the highest probability of increasing (or decreasing) is selected which
determines the trading action, whether to buy or shortsell for the sake of
maximizing the profit. In the discrete case, the trading action is determined by

the movement coded by different states, we can de-quantize it as E(&)=o'v

accordingly, where v denotes the quantization vector used to map the alphabet
(in the case of vector data, represented as n-tuples, an additional decoding step
is needed to sum up the probabilities belonging to each asset). While, in the
continuous case, a de-normalization step is needed as per (4.3). Thus, the
trading signal is described as:
E(£)>0—>hbu
i := argmax|E(&)[; (%) a (7.3)
i E(£) <0 — shortsell

8 Simulation results and performance analysis

An extensive back-testing framework was created to handle trading actions on
various input data sets and provide numerical results for comparison of different
methods on different financial data series. In this section we show the numerical
results obtained on SWAP and FOREX mid-prices.
For performance analysis we used the following data sets:
e U.S. SWAP rates (between August 2008 and August 2010 in daily
resolution);
¢ FOREX rates (EUR/USD, GBP/USD, AUD/USD, NZD/USD,
USD/CHF, USD/CAD between December 2009 and 2011 in daily
resolution).
The training set consisted of the first one year long period of daily returns, while
the tests were performed on the second year of data.
For the sake of comparison the following performance measures were calculated
for each simulation, where ¢, denotes the sum of owned cash and the market

value of the owned portfolio at time instance ¢, while ¢, denotes the initial cash

. . N 1
(in each case the agent started with $10,000): (i) minimal value G;, = —gnth C,
C <t<

. 1
= &; (iii) maximal value G, = —gnax C,; (iv) average
C <t<

; (i1) final value G

final

T

2.6

t=

value G, =

|
—|||—\

8.1 Comparison of different training methods

Both in the training set and during the test phase a sliding window of 8 days
were used (T=8). In the continuous case, 3 hidden states (N=3) were used with
the mixture of 3 uncorrelated Gaussian functions (M=3). Unfortunately, there is
no analytical method known to find the optimal value for these parameters
(Hassan et al.[8]). During the simulations, using the discrete representation of
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observations, it turned out that trading SWAP rates is more profitable with a
larger number of hidden states and a smaller alphabet size (during the
simulations N=4 and M=2 were used), while on FOREX data a longer alphabet
size together with less hidden states proved to be more favorable (we used N=2
and M=5 respectively).

In this period, the U.S. SWAP rates had a decreasing tendency, at the end of the
year they are worth only 60.73% of their initial prices on average. The bar
charts (Fig. 3 and Fig. 4) show that all of the introduced methods beat this
tendency, and in the scenario when SA was used to train the continuous mode
HMM the trading was profitable with a 108.52% yearly profit.

The FOREX rates in this period showed only a slight increase during the year
(0.45%), our methods achieved up to 26.62% profit (Fig. 4).

200,00%

150,00% i E %%
%g — %g B a_min
100,00% /E = I E = J /E = MG max
N 12N 2N = d2E =
a4 x5l 1 =
50,00% %/g %E %E g %E %E
%E /E %E = %E %E
NI ENll = = Nl = Nl =
Fig. 3. Trading results in discrete case
100,00% = q %E %E %E b E 1 %E g_;n:x
% %g 4 ég %g %% %g =] G:ﬂngl
N =2 & =R =R -
50,00% = %E %E %E \ %E %E
=N =N =N =N =\ =

Fig. 4. Trading results in continuous case

As one can see, the novel HMM optimization methods outperform the
traditional EM algorithm in most scenarios.
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During the training phase, an EM step takes around 900ms, while one step of
SA consumes 250ms using the continuous training sets on an Intel
M330@2.13GHz processor. The prediction based trading step is quasi real-time.
The hybrid approach speeds up the convergence with one order of magnitude.
8.2 Results obtained with clustering and PPCA

During clustering 8 clusters were formed in each case (N=8, M=1) with a shared
covariance matrix. On the following bar charts CLUST denotes the case when
clustering were applied as described in algorithm 2, while CLUST (2) refers
to its enhanced version, where the next states are also taken into consideration.
In the case of SWAP data, we investigated the event when the number of
dimensions were reduced to 3 by PPCA from the original 8 assets. Similarly, the
dimensions of FOREX data were reduced to 4 from 6.

SWAP
250,00%
20000%
150,00% B G_min
I — [0 G_max
E BG_avg
10000% = B6_final
- NII7Z2 N
CLUST. CLUST.  PPCA CLUST. (2) CLUST. (2) + FPCA
Fig. 5. Trading results on SWAP using clustering and PPCA
FOREX
140,00%
120,00% —
100,00% = § Ql
80,00% § = S _min
\ —— — [0 G_max
— = BG_avg
60,00% — — BG_final
4000% % 5

20,00%

CLUST. CLUST. + PPCA CLUST. (2) CLUST. (2) + PPCA

Fig. 6. Trading results on FOREX using clustering and PPCA

[
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As it is shown in figure 5 and 6, these methods were also proven to be profitable
on the tested time series, outperforming the market tendencies. The numerical
results show that applying PPCA is beneficial with normal clustering, and less
profitable with the enhanced version.

In comparison with the results shown in section 8.1, the range of the realized
profits are comparable, reaching up to total 138.28% yearly profit on SWAP.
The applied preprocessing steps yielded over one order of magnitude speed up
compared to the previous methods.

9 Conclusion

In this paper we have proposed novel approaches for training HMMs and using
them for predicting future values of financial time series. The proposed trading
algorithms proved to be profitable in real scenarios. Using the continuous
representation yields better trading results, however, its training time is
substantially longer than the discrete case. We used three learning methods: (i)
Baum-Welch EM,; (ii) SA; and (iii) a hybrid solution. The performance analysis
demonstrated that a better learning algorithm could increase trading efficiency
and profit compared to the traditional learning strategies. The newly introduced
clustering and PPCA methods can further speed up the algorithms giving rise to
high frequency trading applications.

As a direction for future research, besides single asset price prediction, HMMs
could be used for portfolios, obtained from an arbitrary portfolio optimization
method, as well.
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Abstract. We study the numerical approximation of Ito stochastic differential equa-
tions driven by multifractional Brownian motion.
‘We consider the following stochastic differential equation driven by multifractional
Brownian motion
t t

X(t) :Xo+/F(X(s),s)ds+/G(X(s),s)dB(s), te0,T]. (1)

We assume that with probability 1 we have F € C(R"™ x [0,T],R™),G € C*(R™ x

[0,7],R™) and for each ¢ € [0,7] the functions F(-,t), %, % are locally

Lipschitz. B is a multifractional Brownian motion.
The equation (1) will be approximated for each N € N through

Xn(t) :Xo+/F(XN(S),s)der/G(XN(S),s)dBN(s). (2)

We will show that the equation (2) has a local solution, which converges in probability
to the solution of (1) in the interval, where the solutions exist. We use power series
expansions for multifractional Brownian motion.

Keywords: multifractional Brownian motion, stochastic differential equations, series
expansion.

1 Introduction

The notion of fractional Brownian motion (fBm) was introduced by Kolmogorov
in 1940. Self-similarity, long-range dependence, and smoothness of the sample
paths make fBm a useful tool in modelling natural phenomena. A constant
Hurst parameter is too rigid for some applications, for example in finance and
turbulence. Therefore different generalizations of fBm have been introduced.
The multifractional Brownian motion (mfBm) was proposed in [11] and [2]
replacing the Hurst parameter H of fBm by a scaling function t — H (t).

The fractional Brownian motion (fBm) with Hurst index H € (0,1) is a

zero mean Gaussian random process (B (t)) - with continuous sample paths
t>0

and with covariance function

E(B(s)B(t)) - %(#H 2 s t|2H).
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For H = % the fractional Brownian motion is the ordinary standard Brow-
nian motion.

The fractional Brownian motion B has on any finite interval [0, 7] Holder
continuous paths with exponent v € (0, H) (see [5]). Moreover, the quadratic
variation on [a,b] C [0,T] is

n 2 (0] if H< %7
lim 3" (B(t?) —B(t;zl)) = (ba il H=4, (3)
|An|_’0 i=1 0 lf H > bR

where A, = (a = ¢f < ... < tI' = b) is a partition of [a,b] with |A,| =

n
n_yn
Joax (' — 1),

The multifractional Brownian motion (mfBm) is obtained by replacing the
constant parameter H of the fractional Brownian motion by a smooth enough
functional parameter H(-). We denote by H a function defined on the real line
and with values in a fixed interval [a,b] C (0,1). We assume that it is uniformly
Holder continuous of order 3 > b on each compact subset of R. For example
let H piecewise constant function H : R —]0,1]

k
H(t) = Z ail[Tini-%-l[(t)
=0

where 79 = —00, 741 = oo and 7q, 7o, ...T IS an increasing finite sequence of
real numbers.

Investigations concerning stochastic differential equations driven by a frac-
tional Brownian motion or a more general fractional process have been done by
L. Coutin and L. Decreusefond [3], L. Coutin and Z. Qian [4], M.L. Kleptsyna,
P.E. Kloeden and V.V. Anh [7], F. Klingenhéfer and M. Zihle [8], M. Zihle
[16], [17] and many others. These studies were motivated by the problems in
mathematical finance, internet traffic, biology, hydrology etc. The main dif-
ficulty raised by the fractional Brownian motion and the processes related to
it, is that they are not Markovian, even more, they are not even semimartin-
gales. Hence a new approach to stochastic fractional calculus was developed.
There exist several ways to define the stochastic integral pathwise and related
techniques, Dirichlet forms, anticipating techniques using Malliavin calculus
and Skorohod integration (e.g. [15], [5]). In this paper we use the approach of
M. Zahle [15], based on the ideas of Lebesgue-Stieltjes integrals and fractional
calculus [12] for fractional Brownian motion.

The multifractional Brownian motion (B (t)>te[0 | with Hurst index H can
be approximated using the series expansion given in [13].

For v # —1,—2,... the Bessel function J, of the first type of order
v is defined on the region {z € C : |argz| < 7w} as the absolutely convergent
sum

IR G
Toz) = kz:% T+ ) w+k+1) (5) '
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It is known that for » > —1 the function J,, has a countable number of real,
positive simple zeros (see [14]). Let x1(¢) < x2(t) < ... be the positive, real
zeros of J_p(y) and let yy(t) < y2(t) < ... be the positive, real zeros of Jy_ ).

0.8

-0.6 L L L L L L I I I
0 10 20 30 40 50 60 70 80 90 100

Fig. 1. Bessel functions: J_g (with ), Ji_g (with - ), H = 0.65

Let (X,)nen and (Yy,)nen be two independent sequences of independent
Gaussian random variables such that for each n € N we have

and 2c2 2c?
VarX,, = SH{D QH(t) , VarY, = SH{D) f(t) ,
T I gy (wn) Yn J—H(t)( Yn)
where
iy = Mr(l +2H(t)).
It is proved in [13] that the random process (B(t))te[o,u given by

ismxn X, Z — cos(ynt) Y., tefo1]

is well defined and both series converge absolutely and uniformly in ¢ € [0, 1]with
probability 1. The process B is a mfBm with Hurst index H.
For each N € N we define the process

N . N
By(t) = wan+zwn, te[0,1]. (4)

T Yn

n=1 n=1
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Step fractional Brownian motion (k = 2) - Step fractional Brownian:motion (k.= 10)

=075 /

a) K =2 b) K = 10

Fig. 2. Approximation By of multifractional Brownian motion

Then using the above mentioned result from [6] we have

P( lim sup |B(t)— By(t)]=0)=1. (5)
N—o001e0,1]

We will use the following result:

Theorem 1. For all N € N the approzimating processes (By(t))icjo,1) are
Lipschitz continuous with probability 1 .

Proof. Let N € N be fixed. We write
sin(x,t) — sin(x, ) cos(yns) — cos(ynt)
Yn

-y

n=1

N
|By(t)=Bn(s)| <>

n=1

Xn Yol.

T

But the functions sin and cos are Lipschitz continuous, therefore

N
B () — Ba(s)| < |t —s| 3 (|Xn| + |Yn|) = Onlt — s| for all s,t € [0, 1],
n=1

N
where Cy = Z (|Xn| + |Yn|> < o0 is a random variable.

n=1

2 Fractional Integrals and Derivatives

Let a,b € R, a < b and f,g : R — R. We use notions and results about
fractional calculus from [12] and [15]:

flat) = lim f(a+3). f(b-) = lim f(b—9).

far () = Tap) (@) (f(z) = flat)),  gp—(2) = ap)(2)(g(2) — 9(b—)).

Note that for o > 0 we have (—1)® = ¢,
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For f € L1(a,b) and a > 0 the left- and right-sided fractional Rieman-
Liouville integral of f of order « on (a,b) is given for a.e. x by

x

19, f(x) = ﬁ / (— )™ f(y)dy

and

(=)™

b
5@ =5 [ =t

For p > 1 let I¢ (Ly(a,b)), be the class of functions f which have the rep-
resentation f = I, @, where & € L,(a,b), and let If* (Ly(a,b)) be the class
of functions g which have the representation g = I* ¢, where ¢ € L,(a,b).
If 0 < a < 1, then the functions @, respectively ¢, in the above representa-
tions agree a.s. with the left-sided and respectively right-sided fractional
derivative of f of order « (in the Weyl representation)

e 1 f(@) [ f(z) — f(y)
D(x) = Dy, f(z) = Ti—a) | @=a)pn + aa/ =g dy | Tiap ()

and

b
(-1° g(x) /g(w) —9(y)
«@ + o o Na+l

p(x) = Dy_g(z) = Iri—a)\ (b—x) (y —z)>t?

dy | Tiap)(2).

x

The convergence at the singularity y =  holds in the L,-sense. Recall that
I3 (Dgy f) = [ for f € I3 (Ly(a,b), L (Dy_g) =g for g € Ij* (Ly(a,b))

and
Dg (I3 f) =, Dy (Iy_g) = g for f,g € Li(a,b).
For completeness we denote

Day f(x) = f(x), Dy_g(a) = g(x), Dgy f(x) = ['(x), Dy_g(a) = g'(x).
Let 0 < a < 1. The fractional integral of f with respect to g is defined as

b b
[ H@dgta) = ()7 [ D2, fur @)D= (o) + (©)

+/f(a+)(g(b=) — g(a+))
if far € 134 (Lp(a,0)), 9o € =" (Lg(a, b)) for § + 3 < 1.
In our investigations we will takep =g =2. f 0 < a < %, then the integral
in (6) can be written as

b b
[ t@gta) = (-1 [ Dz, @)D= (@) (7)

if f €12 (La(a,b)), f(a+) exists, go— € I,~*(La(a,b)) (see [15]).
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3 The Stochastic Integral

Without loss of generality we consider 0 < T < 1, because for arbitrary 7" > 0
we can rescale the time variable using the H-self-similar property of the mfBm

meaning that (B(ct)) and (cH(t)B(t)) o, e equal in distribution for
t=>
every ¢ > 0.

t>0

T t
We will define the It6 integral /G(u)dB(u) instead of /G(u)dB(u) and

0 0
use t .
/G(u)dB(u) = /H[O,t] (u)G(u)dB(u) for t € [0,T]
0 0
(see [15]).
We consider o > 1 — H. It follows by (7) that
T T
/G(u)dB(u) = (—1)0‘/D8‘+G(u)D}__°‘BT_(u)du (8)
0 0

for G € I§, (L2(0,T)), where G(0+) exists and Br_ € I-*(L2(0,T)).
The condition G € I, (L2(0,7)) (with probability 1) means that G' €
Ly(0,T) and
[ G(x) - aly)
I.(z) = / Wdy for x € (0,T)
0

converges in L?(0,T) as € \, 0.
The condition By_ € I7-%(L2(0,T)) means Br_ € Ly(0,T) and

T
[ B®)-BWw, .
T () —xl -2 dy f € (0,7)

converges in Ly(0,7T) as € \, 0 This condition for B is fulfilled for & > 1 — H,
since the fractional Brownian motion B is a.s. Holder continuous with exponent
~v € (0,H) (see [5]).

We will use (7) for the integrals with respect to the approximating processes

(BN(t)> o) Observe that By r— € I%T_"‘(LQ(O,T))7 which follows from the
telo,T
Lipschitz continuity property in Theorem 1. We have

T T

[y ) = (-1* [ D§, G@Dy=" By (i 9)

0 0

for G € 1§ (L2(0,T)), where G(0+) exists.
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Let (Z (t))te[o - be a cadlag process. Its generalized quadratic varia-

tion process ([Z](t)) o01] is defined as
tefo,

1

. e—1 / 1 2 2
2)(t) = lim e / u / LB (s 4 ) — Zu(5))Psdu+ (2(0) — Z(1-))°,

if the limit exists uniformly in probability (see [17] ).
In particular, if B is a fractional Brownian motion with Hurst index H €
(1,1) and By is an approximation of B as given in (4), it is easy to verify that

[B](t) =0 and [Bn](t)=0 foreach te|0,T], (10)

because B is locally Hélder continuous with exponent > % and By is Lipschitz
continuous. The Ito formula for change of variable for fractional integrals is
given in the next theorem.

Theorem 2 ([17]). Let (Z(t)) 0.1] be a continuous process with generalized
te

s

quadratic variation [Z]. Let Q : R x [0,T] — R be a random function such that
2
a.s. we have @ € CY(Rx [0,T]) and ‘?9;22 € C(Rx[0,T)). Then, fortg,t < [0,T)]

we have
QU1 ~ Q(Z(to) 1) = [ F2(2(5),9)az(5) + [ 2(2(5),5)as
+%/68T§(Z(3),3)d[Z]5

Let 1 — H < o < % and let G € I§, (L2(0,T)) such that G(0+) exists. We
define the processes

2(t) = / G(s)dB(s) and Zy(t) = / Gs)dBx(s), te€]0,T].

Then by [17] it follows that
[Z](¢t) = 0 and [Zn](t) = 0.

So,if @ : R x [0,7] — R is a random function such that a.s. we have @ €
2
CY(R x [0,7]) and -2 € C(R x [0,T]), then for o, ¢ € [0,7] we have

t
0Q

QZ(1).0) - QZ(t).to) = | 5

to

(Z(s),5)G(s)dB(s) (11)

t@Q

] e

(Z(s),s)ds

to
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and

[ 9Q

Q(Zn(t),t) = Q(Zn(to) to) = | 5~ (Zn(s), 5)G(s)dBn(s) (12)
+ %?(ZN() s)ds.

4 Stochastic Differential Equations Driven by
MultiFractional Brownian Motion

Let (B(t)) N be a mfBm with Hurst parameter H such that H(t) > 5. We
>0

investigate stochastic differential equations of the form

dX(t) = F(X(t),t)dt + G(X(t),t)dB(t), (13)
X(to) = Xo,
where tg €]0,T], Xj is a random vector in R and the random functions F and
G satisfy with probability 1 the following conditions:
(C1) Fe C(R" x [0,T],R"),G € CY(R" x [0,T],R™);
0G(-,t) 0G(-,t
(C2) for each t € [0,T] the functions F(-,t), 3(33; ), a(t’ )
chitz for each i € {1,...,n}.

are locally Lips-

We consider the pathwise auxiliary partial differential equation on R” xR x [0, T']

w2 0) = G(K(y, %)), (14)

K(YO, ZOatO) = X07

where Yj is an arbitrary random vector in R™ and Zy an arbitrary random
variable in R. From the theory of differential equations it follows that with
probability 1 there exists a local solution K € C*(R™ x R x [0,T],R") in a
neighbourhood V of (Yy, Zo, tg) with partial derivatives being Lipschitz in the
variable y and

OK®
det ( o (y,z,t)> # 0.

1<i,j<n

For (z,y,t) € V we have
’K - G ,
oz a.2 y,z t = Z 87 yaz’t)at)G](K(yazvt)at)'

We also consider the pathwise differential equation (in matrix representation)
on [0,7]
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International
%—Iy{mw, BU),0AY (1) + D (v (1), B, 0t = F(K(Y (1), B(1), 1), 1d15)
Y (to) = Yo, (16)
-1
dY (1) = (?;(Y(t),B(tLt)) {F(K(Y(t),B(t)J),t) - %(Y(t),B(t),t)}dt
Y(to) = }/Oa

which has a unique local solution on a maximal interval |t§, t3[C [0, T] with
to €]ts, t3] (see [9]).

Applying the Ito formula, and relation (11), to the random function Q(z,t) =
K(Y (t), 2,t) (in fact, successively for K1, ..., K™) and the step fractional Brow-
nian motion B we obtain

K(Y (1), B(t),t) — K(Y(to), B(to), o)

= Z/ ay] B(s), )dY]( ) + /%(Y(5)73(5)75)d3(5)
+ %if(Y(s),B@,s)ds
:Z/%(Y(s)’B( )Y (s /G B(s),s),s)dB(s)

Therefore,

satisfies

_ X, +/F ds—i—/tG(X(s),s)dB(s).

Instead of the process (B(t)) we consider its approximations (B N (t))

te(0,1] t€(0,1]
given in (4). For each N € N we consider the pathwise differential equation (in
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matrix representation)

() = (G (0. Bx@0.0)) [P0, By (0.0,
—%%@@BMWM&
Yn(to) = Yo,

which has a unique local solution Yy on a maximal interval (t!,¢?) C (¢},t3)
of existence which contains ¢y ([13]). Applying the Ito formula to the random
function Q(z,t) = K(Yn(t),2,t) (in fact, successively for K',... K™) and the
process By we obtain

K(Yn(t),Bn(t),t) — K(Yn(to), Bn(to), o)

z
to

:i 8—Ii(YN(s),BN(s),s)dY]{',(s)+ aK(YN(S)yBN(S),S)dBN<S)
, oy 0

+/ %—]:(YN(S), Bn(s), s)ds

to

=30 [ SR By (). AR (6) + [ GUR(Yx (), Ba(s). ). 5)B(s)

+ %—I:(YN(S),BN(S),s)ds

:/F(K(YN(S),BN(S),S),s)ds—|—/G(K(YN(S),BN(S),5),s)dBN(s).

Therefore,
Xn(t) = K(Yn(t), Bn(t), 1)

satisfies
XMO:%+/FMM$Q%+/G@M$$MMQ,tdmm{

So we have the following pathwise property

lim sup ||[Yn(t) =Y (¢)| =0.

N—=00 4]ty to]
Then the continuity properties of K and (5) imply that for a.e. w € {2 it holds
lim sup || Xn(t)—X(t)| =0.

N—=00 ety ta]

By this we have proved the main result of our paper:
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Theorem 3. Let B be a mfBm approzimated by the processes By given in (4)
and (5). Let F,G : R" x [0,T] — R™ be random functions satisfying conditions
(C1) and (C2) with probability 1. Let ty €]0,T] be fized. Then each of the
stochastic equations

X(t) :Xo+/F(X(s),s)ds+/G(X(s),s)dB(s),

to tO

XN(t) :Xo+/F(XN(S)7S)dS+/G(XN(S),S)dBN(S)7 N eN

admits almost surely a unique local solution on a common interval |t1,ts)]
(which is independent of N and contains to). Moreover, we have the following
approrimation result

P(lim sup | Xn(t)—X(t)]|=0)=1.

N—=00 ety ta]

5 Application
We consider the one dimensional stochastic linear equation from financial math-
ematics, modeling the price S of a stock

t t

S(t) = Sp + /,u(s)S(s)ds + /U(S)S(s)dB(s)7

0 0

where (B(t)):e(o,7) is @ mfBm with Hurst index H(t) > %, p is the interest rate
and o the volatility function.
It is known (see [8]) that this equation has the following unique solution

t t

S(t) = Spexp /u(u)dqu /U(u)dB(u) for all t € [0,T].
0 0

By the methods of the above section we approximate B through the processes
By, via (4) and (5) and consider

t t

Sn(t) = So exp /u(u)du + /a(u)dBN(u) for all ¢ € [0, T7.
0 0

Using Theorem 3 it follows that

P( lim sup ||Sn(t)—S@)||=0)=1.
N—ooiel0,7)
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In the special case when p and o are constants, we obtain that the price of

a stock is

S(t) = Sper PO

and we can simulate it by computer using

S (t) _ SoethraBN(t)

as given in Figure 3, where K is the number of constant pieces of H.

peodid) Price of a stock
Approximate solution Sy (k = 2)

Sy

K =2

Fig. 3. Approximated solution Sy
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Interpolation methods for internet traffic

So6s Anna Somogyi Ildiké

Abstract

The classical methods of data interpolation can be generalized with
fractal interpolation. Our aim is to maid some comparison of the fractal
and numerical analysis interpolation methods. The experimental data
regarding the internet traffic were processed using fractal interpolation
and also spline and some Shepard type interpolation.

1 Spline interpolation

Let H™?[a,b], m € N* be the set of functions f € C™ '[a,b] with f(m=1
absolutely continuous on [a,b] and f™ € L2[a,b], A = {N;|\; : H™?[a,b] —
R,i = 1...,n} a set of linear functionals, yinR™ and

U, ={f € H™*[a,b]|\i(f) = yisi = 1,...,n}.
Definition 1 The problem that consists of determining the elements s € U such

that

[+1, = ng ]
2 uelU 2

1s called polinomial spline interpolation problem.

For the solution of a spline interpolation problem we can give the following
structural characterization theorem ([4]):

Theorem 2 Let A be a set of Birkhoff type functionals and let U be the cor-
responding interpolatory set. The functions s € U is a solution of the spline
interpolation problem if and only if:

1. 5™ (2) =0, z € [x1, 78]
{xl,...mk},

2. S(m)(x) = 07 x e (a,ml) U (xkvb)a

3. s@m=u= (g, — 0) = sCm=r=D (2, +0), p{0,1,...,m—1}
I fori=1,.. k.

The caracterization theorem states that the solution s of the polynomial spline
interpolation problem is a polynomial of 2m — 1 degree on each interior interval
(24,2;+1) and it is a polynomial of m — 1 degree on the intervals [a,z1) and
(zg,b]. Furthermore, the derivative of order 2m — p — 1 is continuous in z; if
the value of the vth ordin derivative in z; does not belong to A.
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1325 1=3 1 =35 1.=3a 1.3as 135 1355

Figure 1: Spline interpolation: for internet traffic data

Definition 3 The solution s of the polynomial spline interpolation problem is
called a natural spline function of order 2m — 1.

When A = {\|N(f) = f(zy),¢ = 1,..,n}, with z; € [a,b],i = 1,...,n and
n > m, then for every f € H™?[a,b] the interpolation spline function Sy f
exists, is unique and the corresponding operator is called the spline operator of
Lagrange type.

The function Sp, f may be written in the form

Sef =" skf(ck),

k=1

where spk = 1,..,n are the fundamental interpolation spline functions. To
determine these functions we use the caracterization theorem and we have

m—1 n
sp(x) = Z af; + be(m —z) " Nk =1,..,n,
i=0 =1
whith af,i =0,....,m—1 and b;?,j = 1,...,n obtained as the solution of the

following systems:

sh(@) = 0, p=m,..,2m—1, and a >z,
Sk(l'y) = 6kua V= 17"'7”
fork=1,...,n.

We will use the third degree Lagrange type spline interpolation operator on
internet traffic datas.

2 The Shepard operator

Our next approximation method is the Shepard method, introduced in 1968,
which is a well suited method for interpolation of very large scattered data sets.
It has the advantages of a small storage requirement and an easy generalization
to additional independent variables.
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1325 1=3 1. =35 1.3a 1.3as 135 1.355
> 10°

Figure 2: Shepard interpolation: for internet traffic data

Considering the interpolation points (z;, f(x;)), i = 0, ..., N, Shepard introduced
in [5] the linear interpolation operator

N
(Sof)(@) =D Aiu(@) (),  p>0,
=0
with
lz — = ™"

Al}ﬂ(x) = N 3
> e — @l
k=0

So reproduces exactly only the constant functions. To avoid this, several
authors, starting with Shepard himself, have suggested to apply Sy not directly
to f(x;), but to some interpolation operators P[f,z;](x) at z; by considering
the so-called combined operator:

i=0,..N.

N

(Spf)@) =) Aiu(@)Plf,al(@),  p>0. (1)

=0

The operator Sp still interpolates f at x;, i = 0, ..., N but the algebraic degree
of exactness is max dex(P[f,z;]).

The combined é.}’lepard—Lagrange operator Sg,_, is given by [3], [2]:

(St f)(@) = % AL ) ),

where
m

L@ =3 ——Op )

=0 (@ = Tigw )ui(@ito)

is the Lagrange polynomial corresponding to the set A;(f) = f(zit,) : v =

0,1,...,m},i=0,...,N, with x4, = xN_,.
In our next Figure we plot the graphics of Sy f considering p = 2 and the
same datas.
3
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3 Fractal functions

The tird interpolation will be the fractal interpolation on internet traffic datas.
Let (X, d) be a complete metric space, let D(X) the class of all non-empty
closed bounded subsets of X. Then (D(X),h) is a complete metric space with
the Hausdorff metric: h: D(X) x D(X) — R
h(A,B) := inf d(a,b inf d(a,b
(4,B) Sup{ggg inf d(a, b), sup inf (a,b)}
Let F C X, p>0,e>0, and define the Hausdorff p-dimensional measure
of E:
HP(E) := liH(l) HE(E) = supHP(E),
€ >0
where -
HP(E) == inf{) _|Ei|",E C U2, E;, |E;| < €}
i=1
For each E there is a unique real number g,named the Hausdorff dimension

of E, such that
+o0o if 0<p<yq

HP(E):{O if ¢g<p<o

B. Mandelbrot define fractal as the set of which Hausdorff dimension is
noninteger.

The functions f : I — R, where I is a real closed interval, is named by
M. F. Barnsley fractal function if the Hausdorff dimensions of their graphs are
noninterger.

Let N a natural number, N > 1, and let w; : X — X : i € {1,...,N}
be continuous. Then we call {X,w; : i = 1,..., N} an iterated function sistem
(IFS).

If, for some 0 < k <1 and all ¢ € {1,...,N},

d(w;(z), w;(z") < kd(x,2"),Vz,2’ € X,
then the IF'S is named hyperbolic.
Define W : D(X) — D(X) by
W(A) := UN w;(A),

where w;(A4) = {w;(x) : x € A}.
W is a contraction mapping if the IFS is hyperbolic:

h(W(A),W(B)) < kh(A,B)Y A, B € D(X).
Any set G € D(X) such that W(G) = G is called an attractor for the IFS.

Theorem 4 (Hutchinson) Let {X,w;i = 1,..., N} an hyperbolic IFS. There is
a unique compact set G C X, such that W(G) = G, and

G := lim W"(E), E € D(X), W°

n—oo
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Let {(2;,v:;) € R?,i=0,1,---, N} be given, and I = [z, zx]. The functions
f : I — R,which interpolate the data according to f(x;) = y;, i = 0,1,..., N,
and whose graphs are attractors of IF'S are fractal interpolation functions

Let X = I X [a,b] with Euclidean metric d, I, = [xp—1,2p]) un : I — I, n €
{1,2,..., N}, contractiv homeomorphism such that

Un(X0) 1= Tp_1, Un(TN) :=2p, YR €{l,--- N}

[tn(c1) —un(ea)| <lep —eaf, c1,2 € 1,0< 1< 1
vp : X — [a, b] continuous, with

vn(x()vyo) = Yn—-1, vn(xvaN) = Yn, Vn € {17 e 7N}
|vn (e, di) —vp(e,d2)| < qldy —da|, ¢ € I, dy,ds € [a,b],0 < g < 1.
Let w, : X - X, ne{1,2,..,N}
wn(z,y) = (un(z), vo(7,9)).

{X,w, :n=1,2,..,N} is an IFS but may not be hyperbolic.

Theorem 5 (Barnsley) For the IFS {X,w, : n = 1,2,..., N} defined above,
there is a metric d equivalent to the FEuclidean metric, such that the IFS is
hyperbolic with respect to d. The unique attractor G of the IF'S is the graph of a
continuous function f : I — R which interpolates the date set {(x;,y;) € R%,i =
0,1,---,N}

Example: Let {(z;,y;) € R%,i=0,1,--- ,N}, N > 1

wten = (o 2 (0) (7).

where |d,,| < 11is given, ay,, cn, €y, fn are real number such that

wn (20,Y0) = (Tn-1,Yn—1), Wn(TN,YN) = (Tn, Yn)
We can solve the above equations for a,, ¢, €n, fn

_ Tp — Tp-1
an = )
TN — Zo

o = Yn —Yn—1 dn (YN — yo)
" N — X0 N — X9 ’

INTp—1 — ToTn
ep=————"—"—7"—"""

TN — Zo

£, = INYn-L = ToYn _ dn(TNYo — Toyn)
= :

TN — X0 IN — Zo

wy, is a shear transformation: it maps lines parallel to the y-axis into the lines
parallel to the y-axis. d,, is the vertical scaling factor.
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Figure 3: Fractal interpolation: for internet traffic data
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Abstract. The present paper explores the patterns of intergenerational educational
mobility in Greece and its changes for different birth cohorts born between 1930 and
1976. More specifically, we investigate the transmission of educational attainments
from both father and mother through generations and over time. The main purpose
is to trace the transitions of individuals between educational categories and to de-
termine the relationship between an individual’s education class and the class of his
or her parents. Based on data drawn from ESS (2002-2010), our analysis provides
Markov transition probability matrices and the absolute and relative mobility rates,
by comparing the different rounds of the survey.

Keywords: Transmission of education, intergenerational mobility, transition proba-
bility matrices, mobility indices, cohort analysis, ESS.

1 Introduction

Intergenerational mobility can be defined as the trajectories observed from one
generation to another and between different social classes. The term indicates
whether and to what extent the socio-economic status of origins (measured
here in terms of parental education) transmit from parents to children and has
been used as a measurement of equality of opportunities.

Among other factors, education has played an important role in the study
of social mobility, as it can mediate between the class of origins and the class
of destination, by forming the individuals’ social status. In this respect and
driven by the principles of human capital theory, in the middle ’60s, the Greek
educational system has undergone major reforms, in order to provide more
equal opportunities in education and to promote greater social mobility and
fairness. As a result, an explosion of education and an improvement in individ-
uals’ educational outcomes were observed and the number of higher education
graduates has rapidly increased in recent decades [4,9].

Empirical evidence illustrates that despite the expansion of education, Greece
as well as other Mediterranean countries are the most immobile across Eu-
rope, as there is a linkage between paternal education and individuals outcomes
[2,3,12]. However, an increase in the mobility rates is observed over time and
the individuals seem to move upwards, attaining a higher educational level
[4,15].
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In the present paper, we investigate the intergenerational transmission of
education in Greece. The main aim is to capture the extent of educational mo-
bility through generations and to provide further evidence on the movements of
individuals within the Greek educational system. Two specific research ques-
tions are examined: (i) To what degree does the educational status of both
parents pass on to their children? (ii) How have the mobility rates changed
over time and among different birth cohorts? Our analysis is based on data
drawn from all rounds of ESS (2002-2010), except for the third one (2006) in
which Greece did not participate.

The paper is organised as follows. Section 2 deals with the data and
the methodology used in the analysis of intergenerational mobility. Section
3 presents the findings of the analysis, the relationship between origins and in-
dividuals’ education and the respective patterns of educational mobility, while
Section 4 provides the conclusions regarding the finding of Section 3.

2 Data and methods

The European Social Survey (ESS)! is a long-term comparative research project
designed to record and document the attitudes, beliefs and behavioural patterns
of the European populations. Funding via the European Commission’s Frame-
work programmes, the European Science Foundation and national academic
funding agencies, the survey aims to produce comparable social indicators to
be used for the European social policy. Started in 2002, the ESS is conducted
every two years in more than 20 European countries. It involves national prob-
ability samples, a minimum target response rate of 70% and rigorous method-
ological criteria. The survey population is defined as all individuals aged 15
years and more, regardless of their nationality, citizenship or legal status. The
"homeless’ and people living in collective dwellings are excluded.[8]

The ESS is one of the very few free access databases in Greece which pro-
vides the opportunity to investigate the trends of intergenerational social mo-
bility, as it provides data on social status of both parents and individuals, even
if they do not live in the same residence. In particular, we focus on raw data
relating to the highest educational attainment of both parents and individ-
uals, which were harmonised according to the latest version of International
Standard Classification of Education (ISCED11).

For analytical purposes, the educational attainment has been recoded into
four educational states, as indicated in Table 1.2 Moreover, the data was
weighted by applying the design weight ("dweight’), as is required by probability
sampling theory.

In contrast to the economic trandition, where a regression approach is usu-
ally adopted, we base our analysis on a more sociological descriptive perspec-
tive. Thus, as in Symeonaki et al [14-16], we constructed Markov transition

For more information on ESS visit http://www.europeansocialsurvey.org/.

Since 1974 both primary and lower secondary education are compulsory, while atten-
dance in the upper secondary schools is optional. According to OECD, the advanced
vocational training or post-secondary can be allocated to tertiary education in a
broader way, even if it is not tertiary level.[3]
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ISCED |Educational categories Description States
0-1 |Less than lower secondary Primary education (un)completed 1
2 First stage of secondary completed |3-year lower secondary education 2
3 Second stage of secondary completed|3-year upper secondary education 3
4-6  |Advanced education Post-secondary or tertiary education| 4

Table 1. Educational categories according to ISCED11 classification used by ESS.

probability matrices, the elements of which show the transitions that take place
between educational categories. Each element p;;, Vi,7 = 1,2, ...,n of a Markov
matrix P describes the probability of an individual to move from state i (educa-
tional level of origins) to state j (individual’s educational level). The elements
found off the main diagonal of matrix P give the movements of individuals,
while p;; denotes the probabilities of individuals, Vi,j = 1,2, ...,n being immo-
bile.

Two types of indices are calculated to show the movements of individuals
within the educational system: (i) relative indices such as the Prais-Shorrocks
index, which indicate the rate of social fluidity and (ii) absolute mobility in-
dices, which reflect the direction of the movements.? More specifically, we have
computed the following indices:

The Prais-Shorrocks index [11,13] given by Equation (1):

Mps = (27 ) (0= (@) o

where ¢r(P) represents the sum of the diagonal elements of a transition matrix

P, n is the number of states and Mpg € [0, 1].

Mpg = 1 indicates perfect mobility and Mpg = 0 implies perfect immobility.
The Bartholomew Index|[1] defined by Equation (2):

k k
> pijli -l (2)
i=1 j=1

where p;; as mentioned above denotes the probability of an individual to move
from state 4 (social status of origins) to state j (individual’s social status) and
k is the number of states. The minimum value of the index is zero, which
indicates perfect immobility.

The immobility ratio[7] is given by:

I (tr(P)) -

n

Mp =

El e

and provides individual’s rate of remaining to the social state of their origin,
as well the degree of educational transmission through generations.

Absolute mobility indices refer to the absolute number of individuals moving from
one state to another, while the relative mobility rates are referring to the probabilities
that individuals have to move upwards or downwards.[10]
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Finally, Equations (4) and (5) define an upward and downward mobility
index, respectively, based on the absolute number of individuals [10]:

1

7>
1

1<t

Additionally, in order to show how the mobility patterns have changed
through generations, a synchronic cohort analysis was carried out. Three birth
cohorts were defined (1930-1945, 1946-1960, 1961-1976) to ensure sufficiently
large number of cases in each cell. Individuals aged 25 and less were not in-
cluded in the analysis, as they have not in theory completed their education.[5]

3 Empirical results

In this section, we proceed with the presentation of the results of our analysis.
In Table 2, the Markov transition probability matrices and the mobility indices
according to father’s educational profile are provided for all rounds of ESS.

Individual’s state Mobility indices
pss rather’s 2 3 4 Mps Mz
state
2002 1 0.492 0.189 0.239 0.080 0.734 0.758
2 0.131 0.270 0.401 0.197
3 0.042 0.130 0.568 0.260
4 0.017 0.160 0.354 0.470
2004 1 0.483 0.168 0.246 0.104 0.803 0.857
2 0.126 0.126 0.437 0.311
3 0.030 0.131 0.475 0.364
4 0.018 0.188 0.288 0.506
2008 1 0.265 0.210 0.355 0.171 0.870 0.943
2 0.057 0.205 0.405 0.333
3 0.011 0.165 0.414 0.410
4 0.007 0.108 0.378 0.507
2010 1 0.374 0.127 0.369 0.128 0.794 0.887
2 0.085 0.144 0.520 0.251
3 0.046 0.108 0.551 0.295
4 0.014 0.061 0.376 0.549

Table 2. The transition probabilities and the estimated mobility indices according
to father’s educational state (European Social Survey 2002-2010)

As shown, the transmission of paternal educational disadvantages to indi-
viduals attainments is obvious in the first two rounds of ESS, as children of less
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educated fathers have high chances to remain to the first educational category
in accordance with their origins’, while those of more educated fathers are more
likely to attain a higher educational level. The picture is somewhat different in
the last two rounds, as more upward movements are observed. As a result, both
Mpg and Mp are quite high for the whole surveyed population and they seem
to slightly increase across the ESS rounds, indicating that father’s educational
profile affects the individuals’ educational attainments to a lesser extent over
time.

A similar pattern is detected when we examine the transition probability
matrices and the extracted mobility indices according to mother’s educational
background (Table 3). Note that the mother’s education and the individual’s
educational attainment are related in different rounds of ESS. However, an
increasing trend of mobility rates over time is also observed.

Individual’s state Mobility indices
Mother’s
ESS 1 2 3 4 Mps Mg
state
2002 1 0.467 0.192 0.246 0.095 0.809 0.807
2 0.056 0.240 0.497 0.207
3 0.016 0.141 0.471 0.372
4 0.000 0.143 0.462 0.396
2004 1 0.462 0.163 0.255 0.120 0.838 0.945
2 0.028 0.159 0.434 0.379
3 0.027 0.153 0.448 0.372
4 0.092 0.183 0.308 0.417
2008 1 0.253 0.203 0.358 0.186 0.870 0.943
2 0.010 0.161 0.389 0.440
3 0.011 0.207 0.428 0.355
4 0.000 0.141 0.329 0.529
2010 1 0.357 0.124 0.370 0.150 0.826 0.887
2 0.035 0.106 0.603 0.255
3 0.024 0.123 0.541 0.312
4 0.013 0.094 0.375 0.519

Table 3. The transition probabilities and the estimated mobility indices according
to mother’s educational state (European Social Survey 2002-2010)

A more illustrative representation of the above results is given in Figure
1, where the progress of both mobility rates across the different rounds of the
survey is provided. The increasing trend of the mobility rates based on both
parents’ profile over time is notable. Additionally, although the mobility rates
seem to follow the same patterns for both parents, it is remarkable that the
transmission of father’s educational status to individuals attainments is more
evident than that of mother’s.

The comparison between birth cohorts gives also interesting results (Tables
4-5), as it reveals an increasing trend in mobility rates over time.
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Fig. 1. The mobility rates across the European Social Survey

Birth

Mps Mg M UM DM
cohorts

ESS Round 1, 2002

1930 - 1945 0.717 0.744 0.462 0.242 0.061
1946 — 1960 0.755 0.810 0.434 0.531 0.038
1961 - 1976 0.792 0.836 0.406 0.655 0.045

ESS Round 2, 2004

1930 — 1945 0.710 0.785 0.467 0.241 0.034
1946 — 1960 0.736 0.794 0.448 0.494 0.022
1961 — 1976 0.812 0.892 0.391 0.717 0.022

ESS Round 4, 2006

1930 — 1945 0.528 0.487 0.604 0.336 0.022
1946 — 1960 0.900 0.935 0.325 0.626 0.036
1961 - 1976 0.825 0.960 0.381 0.781 0.026

ESS Round 5, 2008

1930 — 1945 0.636 0.685 0.523 0.233 0.040
1946 — 1960 0.706 0.761 0.470 0.533 0.039
1961 - 1976 0.834 0.932 0.375 0.721 0.035

Table 4. Intergenerational mobility based on father’s education, by birth cohorts
and ESS rounds
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More particularly, although both the Mpgs and Mpg differ between the
rounds of ESS, the indices seem to increase through generations, indicating
that both paternal and maternal educational profile affects to a lesser extent
the individuals’ educational attainments. The most illustrative example is pro-
vided in the fourth round of ESS (Table 5), while the Bartholomew mobility
index with respect to mother’s educational profile has substantially changed
through generations, taking values between 0.463 (for the oldest birth cohort)
and 1.004 (for the youngest birth cohort).

Birth

Mps Mg IM UM DM
cohorts

ESS Round 1, 2002

1930 — 1945 0.687 0.653 0.484 0.269 0.010
1946 — 1960 0.890 0.881 0.333 0.584 0.017
1961 - 1976 0.857 0.889 0.357 0.740 0.020

ESS Round 2, 2004

1930 — 1945 0.846 1.203 0.365 0.264 0.018
1946 — 1960 0.844 0.906 0.367 0.540 0.013
1961 — 1976 0.869 0.968 0.348 0.748 0.020

ESS Round 4, 2006

1930 — 1945 0.533 0.463 0.600 0.346 0.009
1946 — 1960 0.805 0.838 0.396 0.656 0.004
1961 — 1976 0.885 1.004 0.336 0.852 0.012

ESS Round 5, 2008

1930 — 1945 0.571 0.524 0.571 0.275 0.005
1946 — 1960 0.729 0.767 0.454 0.582 0.007
1961 — 1976 0.830 0.937 0.377 0.780 0.017

Table 5. Intergenerational mobility based on mother’s education, by birth cohorts
and ESS rounds

Consequently, the immobility ratio appears to decrease through generations,
indicating that the transmission of parental background to their children’s ed-
ucation seems to be weakened.

Regarding the directions of the movements, it is worth noting that very
low rates of upward mobility for the oldest birth cohort (1930-1945) exist
in all rounds but increase considerably over time. Nevertheless, the upward
movements are more perceptible than the downward transitions.

4 Concluding remarks

In the present paper we attempted to provide further analysis on the relation-
ship between parental education and individuals educational outcomes, based
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on data drawn from ESS. Focusing on the method of Markov transition prob-
ability matrices and by estimating widely used mobility indices, our analysis
revealed that mobility patterns have substantially changed through generations
and an increase in the chances of individuals to attain a higher educational level
has been noted over time. Additionally, it seems that the effect of paternal ed-
ucational background on individuals’ attainments is stronger, as the mobility
rates appear higher with respect to mother’s profile. However, in terms of so-
cial policy, there is a further need of actions to consider in order to weaken the
intergenerational transmission of educational disadvantades.
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Abstract. We present a variance drift adjusted version of the Heston model which
leads to significant improvement of the market volatility surface fitting (compared
to Heston). The numerical example we performed with recent market data shows a
significant (44%) reduction of the average absolute calibration error ! (calibration on
Sep. 30" 2011 for underlying EURUSD). Our model has two additional parameters
compared to the Heston model, can be implemented very easily and was initially in-
troduced for volatility derivatives pricing purpose. The main idea behind our model
is to take into account some past history of the variance process in its (risk-neutral)
diffusion. Using change of time method for continuous local martingales, we derive a
closed formula for the Brockhaus&Long approximation of the volatility swap price in
this model. We also consider dynamic hedging of volatility swaps using a portfolio of
variance swaps.

Keywords: variance swap; volatility swap; stochastic volatility with delay; Heston
model with delayed stochastic volatility, change of time; dynamic hedging.

1 Introduction

The volatility process is an important concept in financial modeling as it quanti-
fies at each time ¢ how likely the modeled asset log-return is to vary significantly
over some short immediate time period [t,¢ + €]. This process can be stochas-
tic or deterministic, e.g. local volatility models in which the (deterministic)
volatility depends on time and spot price level. In quantitative finance, we
often consider the volatility process \/V; (where V; is the variance process) to
be stochastic as it allows to fit the observed vanilla option market prices with
an acceptable bias as well as to model the risk linked with the future evolution
of the volatility smile (which deterministic model cannot), namely the forward
smile. Many derivatives are known to be very sensitive the forward smile, one
of the most popular example being the cliquet options (options on future asset
performance).

Heston model (Heston [6]; Heston and Nandi [7]) is one of the most popular
stochastic volatility models in the industry as semi-closed formulas for vanilla

1 average of the absolute differences between market and model implied BS volatilities

851



ASMDa Proceedings, 15" Applied Stochastic Models and Data Analysis (ASMDA2013)

\nternatioha International Conference, Matar6 (Barcelona), Spain 25 - 28 June 2013

option prices are available, few (five) parameters need to be calibrated, and it
accounts for the mean-reverting feature of the volatility.

One might be willing, in the variance diffusion, to take into account not only its
current state but also its past history over some interval [t —7,t], where 7 > 0 is
a constant and is called the delay. Starting from the discrete-time GARCH(1,1)
model (Bollerslev [1]), a first attempt was made in this direction in Kazmerchuk
et al. [8], where a non-Markov delayed continuous-time GARCH model was
proposed (S; being the asset price at time ¢, v, 6, « some positive constants):

th St
=162 + 2 n? - 1
i 2 () - eV )
this model being inherited from its discrete-time analogue:
= 50% + Q2 (St +(1—a+7)0i_, (2)
L Sn-1-1L "

The parameter 62 (resp. ) can be interpreted as the value of the long-range
variance (resp. variance mean-reversion speed) when the delay is equal to 0 (we
will see that introducing delay modifies the value of these two model features),
and « a continuous-time equivalent of the variance ARCH(1,1) autoregressive
coefficient. In fact, we can interpret the right-hand side of previous diffusion
equation as the sum of two terms:

e the delay-free term (6% —V;) which accounts for the mean-reverting feature
of the variance process
e« <% In? (%) - Vt) which is a pure (noisy) delay term, i.e. that vanishes

when 7 — 0 and takes into account the past history of the variance (via

the term In ( StS: )) The autoregressive coefficient o can be seen as the

amplitude of this pure delay term.
J.C. Duan remarked the importance to incorporate the real world P—drift

dp(t,7) = ft L — V)du of In ( tT> in the model (where p stands for the

real world IP’fdrlft of the stock price S;), transforming the variance dynamics
into:

t—T1

The latter diffusion (3) was introduced in Swishchuk [12] and Kazmerchuk et
al. [9], and the proposed model was proved to be complete and to account
for the mean-reverting feature of the volatility process. This model is also non
Markov as the past history (Vi)ue[t—r4 of the variance appears in its diffusion

equation via the term In ( SSf ), as it is shown in Swishchuk [12].

In the continuity of this approach, pricing of variance swaps for one-factor
stochastic volatility with delay has been presented in Swishchuk [12], for multi-
factor stochastic volatility in Swishchuk [13] and for one-factor stochastic volatil-
ity with delay and jumps in Swishchuk and Li [10]. Variance swap for local
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Levy-based stochastic volatility with delay has been calculated in Swishchuk
and Malenfant [15].

Unfortunately, the model (3) doesn’t lead to (semi-)closed formulas for the
vanilla options, making it difficult to use for practitioners willing to calibrate
on vanilla market prices. Nevertheless, one can notice that the Heston model
and the delayed continuous-time GARCH model (3) are very similar in the sense
that the expected values of the variances are the same - when we make the delay
tend to 0 in (3). As mentioned before, the Heston framework is very conve-
nient, and therefore it is naturally tempting to adjust the Heston dynamics in
order to incorporate the delay introduced in (3). In this way, we considered in
a first approach adjusting the Heston drift by a deterministic function of time
so that the expected value of the variance under the delayed Heston model is
equal to the one under the delayed GARCH model (3). In addition to making
our delayed Heston framework coherent with (3), this construction makes the
variance process diffusion dependent not on its past history (Vi)ueft—r.s, but

on the past history of its risk-neutral expectation (]Eg(Vu))ue[t_T,ﬂ, preserving

the Markov feature of the Heston model (where we denote E2(-) := EQ(-|F)).
The purpose of sections 2 and 3 is to present the Delayed Heston model as
well as some calibration results on call option prices, with a comparison to the
Heston model. In sections 4 and 5, we will consider the pricing and hedging of
volatility and variance swaps in this model.

Volatility and variance swaps are contracts whose payoff depend (respectively
convexly and linearly) on the realized variance of the underlying asset over some
specified time interval. They provide pure exposure to volatility, and therefore
make it a tradable market instrument. Variance Swaps are even considered
by some practitioners to be vanilla derivatives. The most commonly traded
variance swaps are discretely sampled and have a payoff PV (T) at maturity T

of the form:
252 — S;
PV T :N - 1 2 ,L+1 7Kvar
V(T [n g n ( :

, where S; is the asset spot price on fixing time t; € [0, 7] (usually there is one
fixing time each day, but there could be more, or less), N the notional amount
of the contract (in currency per unit of variance) and K4, the strike specified
in the contract. The corresponding volatility swap payoff PY(T') is given by:

252 «~ . o [ Sit1
PY(T)=N|,=Y m? (2L ) - Ky,
(1) Ty (%) K

One can also consider continuously sampled volatility and variance swaps (on
which we will focus in this article), which payoffs are respectively defined as
the limit when n — 400 of their discretely sampled versions. Formally, if we
denote (V})i>0 the stochastic volatility process of our asset, adapted to some
brownian filtration (F;),~,, then the continuously-sampled realized variance
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Vg from initiation date of the contract ¢ = 0 to maturity date t = T is given
by Vg = % fOT Vids. The fair variance strike K, is calculated such that the
initial value of the contract is 0, and therefore is given by:

]Eg [eirT(VR — Kq)ar):l =0= Kvar = E((?(VR)

In the same way, the fair volatility strike K, is given by:

Eg [efrT(\/E - Kvm“):| =0= Ky = Eg(M)

The volatility swap fair strike might be difficult to compute explicitly as we
have to compute the expectation of a square-root. In Brockhaus and Long
[4], the following approximation - based on Taylor expansion - was proposed to
compute the expected value of the square-root of an almost surely non negative

random variable Z: Var(Z)
B(VZ) ~ VE(D) - o ) W

We will refer to this approximation in our paper as the Brockhaus&Long ap-
proximation.

Carr and Lee [5] provides an overview of the current market for volatility deriva-
tives. They survey the early literature on the subject. They also provide rela-
tively simple proofs of some fundamental results related to variance swaps and
volatility swaps. Pricing of variance swaps for one-factor stochastic volatility
with delay has been presented in Swishchuk [11], for multi-factor stochastic
volatility in Swishchuk [13] and for one-factor stochastic volatility with de-
lay and jumps in Swishchuk and Li [10]. Variance swap for local Levy-based
stochastic volatility with delay has been calculated in Swishchuk and Malenfant
[15]. Variance and volatility swaps in energy markets have been considered in
Swishchuk [14]. Broadie and Jain [3] covers pricing and dynamic hedging of
volatility derivatives in the Heston model.

The paper is organized as follows: in section 2, we present the Delayed Heston
model; in section 3, we present calibration results (for underlying EURUSD
on September 30th 2011) as well as a comparison with the Heston model. In
section 4, we compute the price process X;(T) := E?(VR) of the floating leg of
the variance swap of maturity 7', as well as the Brockhaus&Long approximation
of the price process Y;(T) := E?(M) of the floating leg of the volatility swap
of maturity T'. This leads in particular to closed formulas for the fair volatility
and variance strikes. In section 5, we consider - in this model - dynamic hedging
of volatility swaps using variance swaps.

2 Presentation of the Delayed Heston model

Throughout this paper, we will assume constant risk-free rate r, dividend
yield ¢ and finite time-horizon T'. We will also denote E2(-) := E2(-|F;) and
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Var9(~) = Var®(-|F)

Assume the following risk-neutral Q— stock price dynamics (Z2 and W2 being
two correlated standard brownian motions):

dSy = (r — q)Sydt + Sy\/V,dZ2. (5)

The well-known Heston model has the following Q—dynamics for the variance
Vi

AV, = v(6? — Vy)dt + 61/ V,dW 2, (6)

where 62 is the long-range variance, v the variance mean-reversion speed, ¢ the
volatility of the variance and p the brownian correlation coefficient (<WQ, VA Q> .=
pt). We also assume Sy = sp a.e. and Vj = vg a.e., for some positive constants
Vo, SO-

As explained in the introduction, the following delayed continuous-time GARCH
dynamics have been introduced for the variance in Swishchuk [12]:

dVs e t ?

& :7‘9”7{ iz - (M_m} (et Ve (D)
t—T1

where p stands for the real world P—drift of the stock price S;. We can interpret

the right-hand side of previous diffusion equation ? as the sum of two terms:

e the delay-free term (6% —V;) which accounts for the mean-reverting feature
of the variance process

2
et (i |:-f;5t—7' VVedZQ — (u— ’I")Ti| — V}) which is a pure (noisy) delay term

of amplitude «, i.e. that vanishes when 7 — 0 and takes into account the
past history of the variance via the integral ftt_T VVedZ2. As we will see
below, the introduction of this pure delay term modifies the value of both
the long-range variance and variance mean-reversion speed of the model.

We can see that the two models are very similar. Indeed, they both give the
same expected value for V; as the delay goes to 0 in (7), namely 62 + (Vo —
6%)e=7t. The idea here is to adjust the Heston dynamics (6) in order to ac-
count for the delay introduced in (7). Our approach is to adjust the drift
by a deterministic function of time so that the expected value of V; under
the adjusted Heston model is the same as under (7). This approach can be
seen as a correction by a pure delay term of amplitude « (in the sense of (15))
of the Heston drift by a deterministic function in order to account for the delay.

note that % (resp. ) has been defined in introduction for the delayed continuous-
time GARCH model as the value of the long-range variance (resp. variance mean-
reversion speed) when 7 = 0, therefore it has the same meaning as the Heston long-
range variance (resp. variance mean-reversion speed). That is why we use the same
notations in both models.
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Namely, we assume the adjusted Heston dynamics:

Vi = [4(0% = Vi) + e-(t)] dt + 61/ VadW 2, 8)
er(t) == ar(u—1)*+ g /t_ vsds — awy, (9)

with v, := IEBQ(Vt) It was shown in Swishchuk [12] that v; solves the following:

d t
e _ ~v6? + at(pu— 7")2 + 2 / vsds — (o + 7). (10)
dt T Jt—r

And we have the following expression for v;:

vy = 02 + (Vo — 02)e ", (11)
with: )
g2 .= g2 4 0T —1)" (12)
Y

The parameter 62 can be interpreted as the adjusted long-range variance -
that has been (positively) shifted from its original value 6% because of the
introduction of delay. We have 62 — 6% when 7 — 0, which is coherent.
We will see below that we can interpret the parameter v, > 0 as the adjusted
mean-reversion speed. This parameter is given in Swishchuk [12] by a (nonzero)
solution to the following equation:

(0%

Y=+ + (1—erm). (13)

YT

By (9), (11) and (13) we get an explicit expression for the drift adjustment:
er(t) = ar(p—r)*+ (Vo — 07)(y —yr)e " (14)

The following simple property gives us some information about the correction
term e, (t) and ,, that will be useful for interpretation purpose and in the
derivation of the semi-closed formulas for call options in the next section. In-
deed, given (15) and (11), the parameter -y, can be interpreted as the adjusted
variance mean-reversion speed, and we have by (13) that v, — v when 7 — 0,
which is coherent.

Property 1: ~; is the unique solution to (13) and:

0<~r <7, lim sup |e(¢)]=0 (15)

T—0 teR+
Proof: Let’s show 7, > 0. If v < 0 then by (13) we have a4y+:2-(1-€7") <
0,ie 1—e"" +7,7>—Ty7. But 7 > 0850 3wg > 0s.t. 1—e™*0 —x9 > L.
A simple study shows that is impossible whenever 1 > 0, which is what we
have by assumption. Therefore v, > 0, and in fact , > 0 since it is a nonzero
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solution of (13). If v < ~, then by (13) v,7+1—¢€7"7 > 0. But v,7 > 0 there-
fore Jzg > 0 s.t. 29 +1 —€*® > 0. A simple study shows that is impossible.
The uniqueness comes from a similar simple study. Now, because v, > 0, we

have sup [er(8)] < ar(u—r)?+|(Vo = 02)(y=7,)] and (1o~ 82)(y ~7) = (1)
teR
by (13). So lim ar(u — ) +|(Vo — 62)(y — )| = 0. A

3 Calibration on call option prices and comparison to
the Heston model

It is possible to get semi-closed formulas for call options in our delayed Hes-
ton model. Indeed, our model is a time-dependent Heston model with time-
dependent long-range variance 62(t) := 62 + (Vj — 93)”;7%)6_77
our calibration on September 30" 2011 for underlying EURUSD on the whole
volatility surface (maturities from 1M to 10Y, strikes ATM, 25D Call/Put,
10D Call/Put). The implied volatility surface, the Zero Coupon curves EUR
Vs. Euribor 6M and USD Vs. Libor 3M and the spot price are taken from
Bloomberg (mid prices). The drift g = 0.0188 is estimated from 7.5Y of daily
close prices (source: www.forexrate.co.uk).

t. We perform

The calibrated parameters for delayed Heston are:
(Vo,7, 02,8, p, o, 7) = (0.0343,3.9037,10~%,0.808, —0.5057, 71.35,0.7821)
and for Heston:
(Vo,7v,02, 6, p) = (0.0328,0.5829, 0.0256, 0.3672, —0.4824)
The absolute calibration error (in bp of the BS volatility) for Heston model and

our delayed Heston model are given below. The results show a 44% reduction
of the average absolute calibration error (46bp for delayed Heston, 81bp for

Heston).
ATM 25D Call 25D Put 10D Call 10D Put
M| 152 192 i1 193 67
2M | 114 139 15 136 81
3M | 89 109 3 110 92
AM | 48 61 17 67 101
6M| 5 15 34 29 85
9M | 59 42 63 2 85
1Y | 107 83 102 31 96
L5Y| 141 116 11 42 73
2Y | 166 137 127 54 68
3Y | 145 124 7T 52 0
1Y | 96 95 18 37 66
5Y | 20 47 52 7 138
7Y | 39 10 112 28 186
10Y| 100 67 168 58 225

Table 1: Heston Absolute Calibration Error (in bp of the BS wolatility)
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ATM 25D Call 25D Put 10D Call 10D Put

1M | 116 91 109 128 115
2M | 44 24 59 54 88
3M | 14 3 32 36 60
4M | 18 28 1 5 29
6M | 31 37 23 19 3

9M | 45 45 56 37 57
1Y | 51 47 82 50 104
1.5Y| 29 30 79 49 129
2Y | 24 23 83 47 139
3Y | 11 9 29 30 90
4Y | 41 28 14 17 38
5Y | 76 55 59 5 16
7Y | 71 49 58 1 14
10Y| 26 8 18 47 24

Table 2: Delayed Heston Absolute Calibration Error (in bp of the BS wvolatility)

4 Pricing Variance and Volatility Swaps

In this section, we derive a closed formula for the Brockhaus&Long approxi-
mation of the volatility swap price using change of time method introduced in
Swishchuk [11], as well as the price of the variance swap. Precisely, in Brock-
haus and Long [4], the following approximation was presented to compute the
expected value of the square-root of an almost surely non negative random vari-

able Z: E(VZ) ~ \/E(Z) — SVE%Z; We denote Vi = & [ Vids the realized
2
variance on [0, T.

We let X,(T) := E2(VR) (resp. Yi(T) := E2(\/VR)) the price process of the
floating leg of the variance swap (resp. volatility swap) of maturity 7.

Theorem 1: The price process X;(T') of the floating leg of the variance swap
of maturity 7" in the delayed Heston model (5)-(8) is given by:

1 [t T—t 1—e(T-1)
Xt(T):—/ Vids + —— 02 + (V, — 62) <67T )
0

T
1—e V- (T=t) 1 _ e(T-1)
Vo — 02)e 0t —
Vo = re < v T T )

(16)

Proof: By definition, X¢(T) = EZ(% [/ Vids) = & [ Vids + L [T ER(V.)ds. Let
s > t. Then we have by (8) that E} (V. — V;) = EZ(Va) — Vi = [ 7(6% — EZ(Va)) +
e-(u)du+ E?(fts VVudW). But (v/Vz)s>0 is an adapted process s.t. IEQ(foT Vudu) <
+00, therefore [ v/VudWZ is a martingale and we have EZ( [ v/V,dW) = 0. There-
fore Vs > t > 0, the function s — EX(V;) is a solution of y, = (8% — ys) + €-(s)
with initial condition y: = V;. Simple calculations give us E?(VS) =02 + (Ve —
02)e 7D 4 (Vo — 02)e V7t (e 77578 — 77578y A calculation of ftT EX(V:)ds
completes the proof.

Corollary 1: The price K, of the variance swap of maturity 7" at initiation
of the contract t = 0 in the delayed Heston model (5)-(8) is given by:
1—e T

Kyar = 62 — 02
-+ (Vo —07) T

(17)
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Proof: By definition, Kyar = Xo(T).

Now, let z; := — (Vo — 02)e(V=77)t 47 (V, — 62). Then by Ito’s Lemma we get:

da; = e \/ (@ + (Vo — 02)er—m))et 4 62dW 2, (18)

Which is of the form da; = f(t,z;)dW2 with:

ftz) = 5ewt\/(g; + (Vo — 62)er—70)t)e=t + 92

The process (x¢)¢>0 is therefore a continuous local martingale, and even a true
martingale since EQ(fOT f?(s,x5)ds) < oo. We can use the change of time
method introduced in Swishchuk [11] and we get z; = W,,, where W; is a
F sl adapted Q—Brownian motion, which is based on the fact that every
continuous local martingale can be represented as a time-changed brownian
motion. The process (¢¢):>0 is a.e. increasing, non negative, 7, — adapted and
is called the change of time process. This process is also equal to the quadratic
variation (x), of the (square-integrable) continuous martingale ;.

Expressions of ¢, ¢; L and W, are given by:

@z@thF@%Ms (19)

- ¢!
Wim [ flszaw? (20)
0
1 t
-1 _ —2( -1
o7l = /0 f (¢s ,x¢;1) ds. (21)
This immediately yields:
Vi =02+ (Vo — 02)e 7" + 7' W, (22)
Lemma 1: .
B (Ws,) = Woyn. (23)

And for s,u > t:

2v(sAu 2
EQ(Wo, W, ) = 22 + 6 {93 (M)

2y
W 02) (6(27*%)(%“) _ e(%*%ﬁ) <ew(s/\u) _ e“’t)} (24)
+ — 07 | ———
’ 2y =7 ' Y
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Proof: (23) comes from the fact that z; = W, is a martingale. Let s > u > t. Then
by iterated conditioning: EQ(W¢S Wy,) = EQEQ(W, Wy,)) = EX(W,s,EQ(W,,)) =
EQ(W%) because z; = Wy, is a martingale. Now, by definition of the quadratic
variation, xﬁ — (z),, is a martingale and therefore EQ(VV¢ ) =7 — (z), +E2((z Vo) =
— +]E (u) = 22 — by + ¢ +IEQ ft f2 (s,zs)ds). By definiton off (s,zs) and
since z; martingale, then we have (for s > t) I[*':Q(f2 (s,25)) = f2(s,:), and so that
EX(Wy Wy,) = a7 + [.* f? (s,x1) ds. A simple integration completes the proof.

The following theorem gives the expression of the Brockhaus&Long approxi-
mation of the volatility swap floating leg price process Y;(T).

Theorem 2: The Brockhaus&Long approximation of the price process Y;(T)
of the floating leg of the volatility swap of maturity 7' in the delayed Heston
model (5)-(8) is given by:

Var? (Vgr)

YD) = VR(T) - ST

(25)

where X;(T) is given by Theorem 1 and:

2

Q _ 0T e (1 29T\ _ oy T

Var, (VR)_’}/3T2 e (1 e ) 2(T — t)vye ]
2

+ 2027(T — t)+ 2(Vo — 02)Le 7t 4 402771 _ g2e=27(T—0) _ 342

273T2 [ ,YT
_ 52 (Vo — 62)
VT2 (V2 + 292 = 3yy7)

[ 2(,% _ Q,Y)e—W(T—t)—%t

2
+(y - ,y_r)ef%v(T*t)*%t + ZlefvTT:|
Yr

Proof: The (conditioned) Brockhaus&Long approximation gives us:

Yi(T) = E}(vVr) ~ /E2(Vi) — :;éfgv( f)— = mE

Furthermore:

Var?(VR) = Il":9((‘/12 - E?(VR))2)

= B (( [ - E?(vs»ds)Z) )

From ( 2) we have V; = 62+ (Vo —0%)e ™! +e”’t%t, and since Wy, is a martingale,
QV)=0if s <t, and Vi — EX(V,) = e~ (W, — x¢) if s > t.
t ®s
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Therefore

1 5/ (7 1. T . 2
— s s
= Tt (/t e ds) + ﬁEt (/z e W¢sds)

9 T _ T
et (/ efstg(Wm)dS) (/ eﬂSds) (28)

t t
1 2 g =S ’ 1 0 g —YSTf, ’

=~ (/t e ds) + ﬁEt (/t e W¢,Sds)

2
1 /T/T (W) Q. Ti R
== e TETWES(Wy Wy, )dsdu — —xze” 7" | —————
T2 t t ¢ T2 ¢ Y

Lemma 1 and some straightforward computations complete the proof.

Corollary 2: The Brockhaus&Long approximation of the volatility swap price
K01 of maturity T at initiation of the contract t = 0 in the delayed Heston
model (5)-(8) is given by:

where K, is given by Corollary 1 and:

R I 24T T 2T 2
Var®(V; :797(27’7 4”—3”—1) Vo — 62
(Vi) = S (62 (2 4 g 1) 4 (- )
(y=v-)T _
<26M’ (21 - 1> — 4y (;> + 47 (1 - le(”‘WT) - 2)}
YT Y= Yr
(30)

We notice that letting 7 — 0 (and therefore v, — =) we get the formula of
Swishchuk [11].

Proof: We have by definition Ko = Yo(T'), and straightforward computations using
theorem 2 finish the proof.

5 Volatility Swap Hedging

In this section, we consider dynamic hedging of volatility swaps using variances
swap. In the spirit of Broadie and Jain [3], we consider a portfolio containing
at time ¢ one unit of volatility swap and (; units of variance swaps, both of

maturity 7. Therefore the value II; of the portfolio at time ¢ is:

I, = e 70 Yi(T) — Kyor + Be(Xe(T) — Koar)] (31)
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The portfolio is self-financing, therefore:
dIl; = rITdt 4+ e " T [dYy(T) + BdX(T)) (32)

The price processes X (T) and Y;(T') can be expressed, denoting I; := fot Vds
the accumulated variance at time ¢ (known at this time):

Yi(T) = B¢ \/ I+ —/ Vids | = h(t, I, V) (34)

X,(T) =E2 | = =g(t, 1, Vi) (33)

Letting 02 := 62 + (Vg — @2)@677# and noticing that dI; = V;dt, by Ito’s
lemma we get:

99 99, 09 1 9% dg o
dXy(T) = [at+81Vt a1, Y07 — Vi) 29V Vil dt + Vtwvtdwt
(35)
oh  Oh oh 10%h
dYy(T) = {aﬁa Vit 57 V(07 - )+28V262Vt} dt—s——&x/thWt

(36)

As conditional expectations of cashflows at maturity of the contract, the price
processes X;(T') and Y;(T) are by construction martingales, and therefore we
should have:

dg g, 09 10% o, _
TR TG A O av25 V=0 (87)
oh  Oh . Oh - 10%h ,
2 T arn V+8Vt (07 — )+§W5W—O (38)

The second equation, combined with some appropriate boundary conditions,
was used in Broadie and Jain [3] to compute the value of the price process
Y;(T), whereas we focus on its Brockhaus&Long approximation.

Therefore we get:

dXy(T) = 761/ VidW 2 (39)
oV;
aYi(T) = D5/ Vaw (40)
oV,
and so:
dIl, = rtht—i—e_T(T_t) (S\/thWt +5t 5\/17tth (41)
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In order to dynamically hedge a volatility swap of maturity 7', one should
therefore hold §; units of variance swap of maturity 7', with:

Oh Y+ (T)
oV, _ Vv,

Bt = - aigt = - 6Xt(tT) (42)
oVy oV,

The initial hedge ratio By is given by (Var®(Vg), K,q,» being given resp. in
Corollary 2 and 1):

Yo (T)
Vv
50 = - BXOE)T) (43)
Vo
(@) 1 (44)
Vo 7T
9Xo(T aVarl(ve 3 9Xo(T)
8YO(T) - a(%/o ) _ Kvar agvo ) -3 3(‘)/53 VCLTQ(VR) (45)
Mo 2VKuar 8K,
Varl(Ve) _ 8" 4 [T <21 _ 1)
Vo T2y% 2y =77 Vr (46)
—Yr T
_Qﬁye’YT (&) + 27T (1 _ le('y—'yT)T> _ 1}
Y= Yr

The hedge ratio §; for ¢ > 0 is given by (Var?(VR), X:(T) being given resp.
in Theorem 2 and 1):

oY (T)
OV;
Pe =~ axt(tT) (47)
oV
OX(T) 1—e 7T (48)
ov, ~T
oVard(v,
ovi(T) | TR X(DEEE RVl
Vi 2y/X(T) 8X(T)%
8VCLT9(VR> 62 o~ (T — —~(T—
— 1— e 20(T=t) _op _ ( t)] 50
S = o 1 e (T = t)ye (50)

We take the parameters that have been calibrated in section 3 and we plot
the naive Volatility Swap strike v/ K4, and the adjusted Volatility Swap strike

Q
vV Kyar — LQ/R) along the maturity dimension, as well as the convexity ad-
8K1)20/T
Var®(Ve) .
2

SK’UZO/T‘

justment
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Figure 1: Naive Volatility Swap Strike Vs. Adjusted Volatility Swap Strike
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Figure 2: Convexity Adjustment

We also plot the initial hedge ratio By along the maturity dimension.
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Figure 3: Initial Hedge Ratio
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Abstract. This paper presents a methodology of estimating social intergenerational
mobility as a distance or similarity measure between the parent’s probability distribu-
tion function and the sibling’s. Several distance and similarity measures are provided
and their properties are discussed. An illustration of the methodology is presented
providing the measurement of the intergenerational occupational mobility with evi-
dence drawn from the Survey of Health, Ageing and Retirement in Europe (SHARE
project), and more specifically from SHARELIFE release 1.0, concerning Greece'.
Keywords: Intergenerational mobility, distance and similarity measures, SHARE
project, occupational intergenerational mobility.

1 Introduction

The measurement of intergenerational mobility is of utmost important for the
Social and Economical Sciences as it reveals information about the existence
of social inequalities, the intergenerational transmission of poverty, social in-
clusion etc providing a measurement of the extent to which positions, social
status or socio-economical thesis change from one generation to another.
There are many approaches to the measurement of intergenerational so-
cial mobility. The statistical approach (see for example Bartholomew [3],
Bartholomew et al. [2] and Boudon [5] among others), where the concept
of transition matrices is used and social mobility is studied by examining the

This paper uses data from SHARE wave 4 release 1, as of November 30th 2012.
The SHARE data collection has been primarily funded by the European Commission
through the 5th Framework Programme (project QLK6-CT-2001-00360 in the the-
matic programme Quality of Life), through the 6th Framework Programme (projects
SHARE-I3, RII-CT-2006-062193, COMPARE, CIT5- CT-2005-028857, and SHARE-
LIFE, CIT4-CT-2006-028812) and through the 7th Framework Programme (SHARE-
PREP, No 211909, SHARE-LEAP, No 227822 and SHARE M4, No 261982). Ad-
ditional funding from the U.S. National Institute on Aging (U01 AG09740-13S2,
P01 AG005842, P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553-01, TAG
BSRO06-11 and OGHA 04-064) and the German Ministry of Education and Research
as well as from various national sources is gratefully acknowledged (see www.share-
project.org for a full list of funding institutions).

This study was supported in part by a grand from THALIS-Panteion University-
Investigating Crucial Interdisciplinary Linkages in Ageing Societies
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mathematical properties of these transition matrices. A number of mobility in-
dices based on the elements of the transition probabilities are proposed in the
context of the transition matrix approach [13,11,3]. Other approaches based on
the estimation of transition probabilities and on empirical data can be found
in Symeonaki et al. [14-16].

On the other hand, there is the distance approach (see for example Cowell
[6] and Fields and Ok [7]). The concepts of distance and similarity are essential
in both abstract and applied sciences and consequently distance measures have
become an important tool in many areas including Probability and Statistics,
Computer Science, Social Sciences, Pattern Recognition, Image Processing, etc.
In the literature, distances, dissimilarity and similarity measures, or similarity
coefficients are used to express quantitatively the similarity or dissimilarity of
two data points, objects, clusters, distributions, samples, etc. Similarity mea-
sures and similarity coeflicients are used to describe how similar two data points
(clusters, objects, samples, distributions, etc) are, whereas distance measures
or dissimilarity measures are used to examine how dissimilar two data points
(clusters, objects, samples, distributions, etc) are ([9]). Many measures of sim-
ilarity or dissimilarity have been proposed in the literature. Understanding the
relationship between different distance measures is helpful in choosing a proper
one for a particular application.

In the study of social mobility, the distance approach covers only the income
intergenerational mobility, where the continuous variable of income is taken into
account. Therefore, this leaves out the comparison of discrete probability dis-
tribution functions and moreover it uses income as the means of stratification.
This is not always the best way, since in most cases we cannot have access to
valid income data. In the present paper, we propose alternatively the measure-
ment of intergenerational occupational mobility and provide a methodology
of measuring mobility with the aid of distance or similarity measures. More
specifically, we provide distance and similarity measures that can account for
the dissimilarity between the parent’s occupational distribution and the re-
spective distribution of the sibling. In this case, we are actually looking for a
distance or similarity measure, between two discrete probability distributions.
In order to illustrate the methodology, we use data drawn from the Survey of
Health, Ageing and Retirement in Europe (SHARE project) and more specif-
ically data drawn from SHARELIFE release 1.0, concerning Greece in respect
to the respondent’s occupation and the occupation of main breadwinner.

The paper has been organised in the following way. Section 2 provides
the preliminaries and the notation employed in the paper, whereas Section 3,
presents the distance and similarity measures of occupational intergenerational
mobility. Having presented the measures the similarity and distance measures
between the respondent and main breadwinner in respect to their occupation
are estimated for Greece, with data drawn from SHARELIFE release 1.0, in
order to facilitate the theoretical aspects of Section 3. Section 5 summarises
the conclusions of our analysis.
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2 Preliminaries and notation

The mathematical notion of (metric) distance introduced in Frechet [8] and
Hausdorff [10] is given by the following Definitions.

Definition 1. Let X be a set. A distance on X is a function d: X x X — R,
where R is the set of real numbers, if and only if it satisfies the following
conditions, Vz,y € X:

1. d(z,y) > 0, (non-negativity or positivity axiom),
2. d(z,y) =0, if and only if =y, (reflexivity axiom), and
3. d(z,y) = d(y,z), (symmetry axiom).

Definition 2. Let X be a set. A metric distance on X is a function d :
X x X — R, where R is the set of real numbers, if and only if it satisfies the
following conditions, Vz,y € X:

1. d(z,y) > 0, (non-negativity or positivity axiom),
(x,y) =0, if and only if x = y, (identity axiom),
d(m,y) = d(y,x), (symmetry axiom), and

d(z, z) < d(z, y) +d(y, z) (triangle inequality).

Table 1 provides a summary of the basic notation used in the remaining of the

paper.
Table 1. Summary of the notation used
Notation Description
d denotes the number of occupational classes, i.e. the occupational space,
denoted by S is equal to S ={1,2,...,d},
xT; is the number of respondents in the ¢ — th occupational class,
fi is the number of main breadwinners in the ¢ — th occupational class,
T is the total number of respondents, i.e. © = ijl i,
I is the total number of main breadwinners, i.e. f = Z?zl fis
P denotes the proportion of respondents in ¢ — th occupational level, i.e. p?
p{ denotes the proportion of fathers in ¢ — th occupational level, i.e. p fT
P. denotes the vector p, = [p{,p%, ..., pg], and
Py denotes the vector py = [p{,pg, ,..,pg].
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3 Intergenerational mobility based on distance and
similarity measures

In the present section, following the notation introduced in Section 2 we provide
a number of distance and similarity measures, which will be used in the mea-
surement of intergenerational mobility of occupation. The most widely known
distance between two points (clusters, objects, etc) is the Euclidean distance.
The Euclidean distance between the vectors py and p. is given by Equation

(1):

d
dEuc: Z|pg 7p‘z7‘6‘2'
i=1

In Manhattan distance (Equation (2)) the distance between two points is
calculated as the sum of the absolute differences of their coordinates. Its true
meaning, therefore, lies in the fact that it represents the total proportional
variation of parents and siblings when their distribution to occupational classes
is considered.

d
datan = ) Ip] = pf|- (2)
i=1

The Minkowski distance (Equation (3)), or L,, is a metric on Euclidean
space which can be considered as a generalization of both the Fuclidean dis-
tance and the Manhattan distance. It is also true that the higher the value of
p, the greater the importance given to large differences. Therefore, deciding
upon an appropriate value of p, comes to the emphasis that one would like to
give to the larger differences of proportions to the occupational classes between
siblings and parents.

d

p
> ip! —prl". (3)
=1

The Sorensen index (Equation (4)), also known as Sorensen’s similarity co-
efficient, is a statistical index used for comparing the similarity of two samples.

d d
Sl —prl S Il - p?

dsor = =3 . = . (4)
S (! +p?) 2
It is obvious from Equation (2) that dg.. = dMQ‘”‘ and is usually used as a

measure for gender segregation.
Gower’s similarity index is given by Equation (5).

d f T
dGow _ Zi:l ‘Zz b | (5)

Chebyshev distance, or L metric is a metric on a vector space where
the distance between two vectors is the greatest of their differences along any
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coordinate dimension. Chebychev distance considers only the part for which
the difference is maximum, while Manhattan distance gives equal importance to
all differences. Therefore, we could assume that Chebychev distance represents
the maximum proportional variation of the occupational distribution between
parents and siblings.

dcohey = max |pzf - il (6)

4 Distance and similarity measures of intergenerational
mobility with evidence from the SHARELIFE release
1.0.

The SHARE project[1,4] is a multidisciplinary, longitudinal and cross-national
panel database, developed to understand the relations between health, labour
force participation and institutional context of old people support in Europe.
Funding mainly via the European Commission, as well as the US National
Institute on Ageing and national sources, it is designed in January of 2002 and
it is conducted every two years. The first wave of the survey took place in
2004-2005, in 11 European countries ranging from Nordic to Mediterranean
countries, while the fourth wave took place in 2010-2011. The main purpose
of survey is to provide a full picture of all aspects of ageing process and its
impact in the different cultures of Europe. Moreover, using the knowledge of
its predecessors, the US Health and Retirement Study (HRS) and the English
Longitudinal Survey on Ageing (ELSA), the survey aims to collect comparable
data useful for the policies planned and applied in the European Union. In order
to succeed its purposes, the survey divided into 21 modules. Except for the
coverscreen (CV) and the demographic (DN) modules, it covers a large variety
of subjects, such as physical and mental health, behavioural risks, employment
and pensions, social support etc. The target population of the survey is all the
non-institutionalised population aged more than 50 years old, as well as their
spouse, regardless of their age.

SHARELIFE [12] is the third wave of data collection for SHARE, which
focuses on people’s life histories. SHARELIFE assembled more comprehen-
sive information on significant areas of our respondents lives, including part-
ners and children, housing and work history, detailed questions on health and
health care, etc. SHARELIFE thus complements the SHARE panel data by
providing life history information to enhance the understanding of how early
life experiences and events throughout life influence the circumstances of older
people. With this variety SHARELIFE constitutes an unique cross-national,
interdisciplinary database for research in the fields of sociology, economics,
gerontology, and demography. SHARELIFE links individual micro data over
the respondents entire life with institutional macro data on the welfare state.
It thereby allows assessing the full effect of welfare state interventions on the
life of the individual. Changes in institutional settings that influence individ-
ual decisions are of specific interest to evaluate policies throughout Europe.
SHARELIFE follows a Life History Calendar (LHC) approach, which has been
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Fig. 1. Distribution of job description between main breadwinner and respondent.
2Source: SHARELIFE, release 1.0, N = 2,938.

designed to help respondents in remembering past events more accurately. Us-
ing the life history calendar technique has been shown to improve the accuracy
of the retrospective information given by respondents [12]. In the present sec-
tion, we provide the experimental results obtained by using the similarity and
distance measures of Section 3, with data drawn from SHARELIFE release 1.0
(SHARE, wave 3) for Greece, in respect to the respondent’s occupation and
the occupation of main breadwinner.

In Figure 1 the probability distributions of the main breadwinner and the
respondent are exhibited. The categorisation used is the one provided in Table
2. The shortest distance, i.e. the Euclidean distance, for example will be equal
to dgye = 0.361. Other distance measures can be found in Table 3 and Table 4.
In the case of Chebyshev distance, only the maximum difference is estimated,
and therefore dopep = 0.327, being the difference in the proportions in the
6—th occupational class, which is actually a considerable distance, caused by
a notable drop in the percentage of individuals in the Agricultural or Fishery
occupations.

5 Conclusions

The justification for using distance and similarity measures or similarity coeffi-
cients as a measure of intergenerational (or intragenerational) social mobility is
established upon the understanding that high mobility indicates different dis-
tribution probabilities between siblings and parents (or different distributions
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Table 2. Respondent’s and main breadwinner’s job description

Field of subject, highest qualification|Main breadwinner|Respondent
Legislator, senior official or manager 1.7 1.6
Professional 2.5 7.1
Technician or associate professional 1.2 3.4
Clerk 4.7 14.1
Service, shop or market sales worker 8.7 16.9
Skilled agricultural or fishery worker 51.0 18.3
Craft or related trades worker 11.2 13.2
Plant /machine operator or assembler 2.0 2.0
Elementary occupation 12.8 19.8
Armed forces 1.5 1.8
Total 100.0 100.0

3Source: SHARELIFE, release 1.0, N = 2,938.

Table 3. Distance and similarity measures between main breadwinners and respon-
dents

1.|Euclidean distance dEue = 0.665

.|Manhattan distance dyran = 0.361

.|Sorensen index darr = 0.333

2
3
4.|Gower simmilarity index|dgow = 0.067
5.|Chebyshev distance dones = 0.327

4Source: SHARELIFE, release 1.0, N = 2,938.

during one’s lifetime) across the occupational, educational or social classes; the
more different the distributions, the more mobile individuals are in respect to
the social ladder, the bigger the distance measures (or the smaller the simi-
larity measures). Therefore, it is important to consider distance measures, to
understand the meaning of their values and to be able to choose between them.
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